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A CATEGORIFICATION OF ACYCLIC PRINCIPAL COEFFICIENT
CLUSTER ALGEBRAS

MATTHEW PRESSLAND

Abstract. In earlier work, the author introduced a method for constructing

a Frobenius categorification of a cluster algebra with frozen variables by

starting from the data of an internally Calabi–Yau algebra, which becomes

the endomorphism algebra of a cluster-tilting object in the resulting category.

In this paper, we construct appropriate internally Calabi–Yau algebras for

cluster algebras with polarized principal coefficients (which differ from those

with principal coefficients by the addition of more frozen variables) and obtain

Frobenius categorifications in the acyclic case. Via partial stabilization, we

then define extriangulated categories, in the sense of Nakaoka and Palu,

categorifying acyclic principal coefficient cluster algebras, for which Frobenius

categorifications do not exist in general. Many of the intermediate results used

to obtain these categorifications remain valid without the acyclicity assumption,

as we will indicate, and are interesting in their own right. Most notably, we

provide a Frobenius version of Van den Bergh’s result that the Ginzburg dg-

algebra of a quiver with potential is bimodule 3-Calabi–Yau.
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2 M. PRESSLAND

§1. Introduction

Cluster algebras, introduced by Fomin and Zelevinsky [19], are combinatorially defined

algebras with applications to many areas of mathematics, and have been the subject

of intense study (see [33] for a survey of connections between cluster algebras and the

representation theory of associative algebras, and the references therein for applications to

other fields).

A cluster algebra is typically defined using a generating set of cluster variables, which

is constructed iteratively from the data of an initial seed via a process of mutation. Here,

we consider cluster algebras of geometric type coming from quivers (equivalently, skew-

symmetric matrices), so that a seed is given by the data of a quiver together with a collection

of rational functions (which are some of the aforementioned cluster variables) in bijection

with its vertices. Mutating at one of the quiver vertices modifies the quiver according to

Fomin–Zelevinsky’s mutation rule (see, e.g., [33, §3.2]) and exchanges the cluster variable

attached to this vertex for a new one. A subset of the quiver vertices may be frozen (giving

the quiver the structure of an ice quiver; see Definition 2.1), indicating that mutation at

these vertices is not permitted, and thus the corresponding cluster variables, also called

frozen, appear in every seed.

Categorification provides an effective tool for studying this combinatorics via the

representation theory of quivers. Cluster algebras without frozen variables have been

successfully categorified in large generality, beginning with Buan–Marsh–Reineke–Reiten–

Todorov’s construction [10] of cluster categories of acyclic quivers, later generalized by

Amiot [1] to allow for the existence of cycles. In these categories, certain maximal rigid

objects, called cluster-tilting objects, play the role of seeds—in particular, they can be

mutated at their indecomposable summands [31]. Cluster algebras categorified in this way

have seeds in bijection with cluster-tilting objects (within a fixed mutation class) in the

category, and cluster variables in bijection with indecomposable rigid objects (appearing as

indecomposable summands of cluster-tilting objects in the fixed mutation class). Cluster

categories of acyclic quivers have only a single mutation class of cluster-tilting objects (see

[11, Th. A.1]), and so the caveats in the preceding sentence may be dropped.

These results have led to clean, conceptual proofs of many key statements for those

cluster algebras without frozen variables admitting such a categorification, including cluster

determines seed [11], linear independence of cluster monomials [14], sign coherence of

c-vectors [49], and so on. However, most cluster algebras appearing in nature, such as the

cluster structures on the coordinate rings of partial flag varieties [24], their double Bruhat

cells [4], and Grassmannian positroid strata [23], do have frozen variables, which we would

also like to capture in a categorification.

This has been achieved for a number of families of cluster algebras [16], [17], [24], [32],

[39] using suitable stably 2-Calabi–Yau Frobenius categories in place of the 2-Calabi–Yau

triangulated cluster categories appearing in the case of no frozen variables. A Frobenius

category is, by definition, an exact category with enough projective objects and enough

injective objects, such that these two classes of objects coincide. It is the indecomposable

projective–injective objects, which necessarily appear as summands of any cluster-tilting

object, that will correspond to the frozen variables. The fact that specializing all frozen

variables to 1 in a cluster algebra produces a new cluster algebra without frozen variables

(which we call the principal part) corresponds to the fact that the stable category of a

Frobenius category, defined as the quotient by the ideal of morphisms factoring through a
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A CATEGORIFICATION OF ACYCLIC PRINCIPAL COEFFICIENT CLUSTER ALGEBRAS 3

projective object (so that these objects are isomorphic to the zero object in the quotient), is

a triangulated category (see [29, §I.2]). We require this stable category to be 2-Calabi–Yau

so that cluster-tilting objects may be mutated in the appropriate way.

In this paper, we will primarily consider the cluster algebra ÃQ with polarized principal

coefficients associated with a quiver Q. We define this cluster algebra precisely in §2, but
for now note that each of its seeds has 3n cluster variables, of which 2n are frozen, when

Q has n vertices. Specializing half of these frozen variables to 1, we obtain the principal

coefficient cluster algebra A •
Q attached to Q by Fomin–Zelevinsky. They used this cluster

algebra to study the combinatorics of other cluster algebras having the same principal

part; for example, their expansion formula [20, Cor. 6.3] for cluster variables in such a

cluster algebra involves F-polynomials, defined as specializations of cluster variables in A •
Q

[20, (3.3)], and hence also obtained as specializations of cluster variables in ÃQ. Many of

the results of Gross–Hacking–Keel–Kontsevich [28] on canonical bases are proved by first

reducing to the case of principal coefficients. Further applications of principal coefficient

cluster algebras include Lee–Schiffler’s realization [38] of Jones polynomials of 2-bridge

links as specializations of their cluster variables. The polarized principal coefficient cluster

algebra ÃQ, in the case that Q is a Dynkin quiver, has itself appeared in recent work of

Borges and Pierin [5], who define a modified cluster character on the ordinary triangulated

cluster category of Q, taking values in ÃQ. (A more general version of this final result is a

consequence of our considerations here, as explained in Remark 9.8.)

Our main result is to construct a Frobenius categorification of the cluster algebra ÃQ in

the case that Q is acyclic.

Theorem 1 (Categorification for polarized principal coefficients). Let Q be an acyclic

quiver. Then the category EQ (Definition 5.3):

(a) is a Hom-finite Frobenius cluster category (Definition 2.7),

(b) has stable category EQ equivalent to the cluster category CQ,
(c) carries a Fu–Keller cluster character [21], inducing a bijection between isomorphism

classes of indecomposable rigid objects of EQ and cluster variables of ÃQ, and

(d) the previous bijection induces a further bijection between isomorphism classes of cluster-

tilting objects of EQ and seeds of the polarized principal coefficient cluster algebra ÃQ,

commuting with mutation, such that the ice quiver of the endomorphism algebra1 of

each cluster-tilting object agrees, up to arrows between frozen vertices, with the ice

quiver of the corresponding seed.

In addition to providing categorifications for a new family of cluster algebras, the proof

of Theorem 1 demonstrates the effectiveness of a new and general methodology for making

such constructions, based on prior work of the author [42]. Earlier work providing Frobenius

categorifications of cluster algebras has typically depended on having some insight into

the cluster algebra in its totality, rather than just the data of an initial seed, before

constructing the categorification. For example, Geiß–Leclerc–Schröer [24], Demonet–Luo

[17], Jensen–King–Su [32], and Demonet–Iyama [16] construct Frobenius categorifications

for cluster algebra structures on coordinate rings of partial flag varieties by exploiting the

fact that these rings are well understood geometrically. The Frobenius categorifications of

1 Throughout the paper, we interpret the quivers of endomorphism algebras as ice quivers by declaring
the frozen vertices to be those corresponding to projective indecomposable summands.
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4 M. PRESSLAND

universal coefficient cluster algebras by Nájera Chávez [39] are restricted to finite type,

again making the global combinatorics of the cluster algebra (such as its exchange graph

and cluster complex) more tractable. By contrast, our approach is more akin to the work

of Buan–Marsh–Reineke–Reiten–Todorov [10] and Amiot [1], in which categorifications

are constructed from the local data defining the cluster algebra, namely the initial seed

(enhanced in Amiot’s case by choosing the extra data of a potential on the quiver).

Indeed, our construction begins with the definition of an algebra A as a particular

quotient of the (complete) path algebra of a quiver Q̃ agreeing with that of the initial

seed of ÃQ up to the addition of arrows between frozen vertices. The algebra A is finite-

dimensional and has a strong homological symmetry property—it is bimodule internally

3-Calabi–Yau with respect to the frozen vertices (see [42, Def. 2.4]). We then construct the

category EQ from A by applying earlier results of the author (see [42, Ths. 4.1 and 4.10]).

The main step in the proof of Theorem 1, taking up §2–5 of the paper, is to define A and

show that it satisfies the assumptions of these theorems.

As a consequence of this approach, we obtain the following surprising result, which is

not specific to acyclic quivers, and which we expect to be of independent interest. For the

definitions of ordinary and frozen Jacobian algebras, see Definition 2.1.

Theorem 2 (Corollary of Theorem 4.14). Let (Q,W ) be a quiver with potential, and

let A= J(Q,W ) be its Jacobian algebra. Then there is a frozen Jacobian algebra A=AQ,W

(Definition 3.1), internally bimodule 3-Calabi–Yau with respect to its frozen idempotent e,

such that A=A/〈e〉.

We see this statement as analogous to a result of Van den Bergh [34, Th. A.12],

implying that the Jacobian algebra of a quiver with potential may be realized as the zeroth

homology of a bimodule 3-Calabi–Yau dg-algebra constructed by Ginzburg [25]. Indeed, the

construction of AQ,W has some features in common with that of the Ginzburg dg-algebra

ΓQ,W of (Q,W ) (see Remark 4.16), but at present we do not know a precise recipe for

constructing AQ,W from ΓQ,W .

It is necessary to pass from the more familiar system of principal coefficients to some

larger collection of frozen variables in order for a result like Theorem 1 to be possible, since

a Frobenius categorification of the principal coefficient cluster algebra A •
Q cannot exist (see

Proposition 2.3). However, by taking a suitable quotient of EQ, we also define a second

category E+
Q , which is extriangulated in the sense of Nakaoka and Palu [40]. This second

category is the categorification of A •
Q referred to in the title. Our construction allows the

desired properties of E+
Q to be deduced directly from the corresponding properties of EQ

appearing in Theorem 1, via [40, Prop. 3.30].

Corollary 1 (Categorification for principal coefficients). Let Q be an acyclic quiver.

Then the category E+
Q (Definition 7.1) has the properties that:

(a) The stable category E+
Q is equivalent to the cluster category CQ.

(b) The cluster character on EQ (see Theorem 1(c)) induces a bijection between isomor-

phism classes of indecomposable rigid objects of E+
Q and cluster variables of A •

Q.

(c) This induces a further bijection between isomorphism classes of cluster-tilting objects of

EQ and seeds of the principal coefficient cluster algebra ÃQ, commuting with mutation,

such that the ice quiver of the endomorphism algebra of each cluster-tilting object agrees,

up to arrows between frozen vertices, with the ice quiver of the corresponding seed.
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A CATEGORIFICATION OF ACYCLIC PRINCIPAL COEFFICIENT CLUSTER ALGEBRAS 5

We note that Fu and Keller [21] have a different approach to categorifying A •
Q, via a

full subcategory UQ of the cluster category CQ• attached to the quiver Q• of the standard

initial seed of A •
Q. Since it is extension-closed as a subcategory of the triangulated category

CQ• , the category UQ is naturally extriangulated (see [40, Rem. 2.18]).

Conjecture 1. The category E+
Q from Corollary 1 is equivalent, as an extriangulated

category, to Fu–Keller’s category UQ.

Producing equivalences between cluster-like categories is known to be a hard problem,

although there are some results of this kind for triangulated categories, due to Keller–

Reiten [36] and Amiot–Reiten–Todorov [2]. At present, we are not aware of any general

result constructing such equivalences between extriangulated categories. Even if Conjecture

1 is true, the fact that we describe the categorification via a partial stabilization of the

Frobenius category EQ instead of as an extension-closed subcategory of CQ• gives us access

to different techniques for studying it, as we demonstrate in §9. Indeed, cluster theory is

at present better developed for exact categories than for extriangulated categories such as

E+
Q and UQ, and it is useful to be able to exploit this.

The main results of the paper are contained in §2–7. In §2, we describe the cluster

algebras with polarized principal coefficients that we will categorify, and recall the results

of [42], which we will use to construct the category EQ appearing in Theorem 1. The

algebra A = AQ,W needed as input for this construction is defined in §3, from the data

of a quiver with potential (Q,W ). In §4, we explain results from [42], which allow us to

establish the bimodule internally 3-Calabi–Yau property for a frozen Jacobian algebra,

and apply these results to A, thus proving Theorem 2. We first restrict to acyclic

quivers in §5, where we show that A is finite-dimensional, and hence Noetherian, under

this assumption—this is why we require Q to be acyclic in Theorem 1. All of these

ingredients are combined in §6 to give a proof of Theorem 1. The proof of Corollary 1 then

follows in §7.
In the remaining sections, we investigate some of the features of the category EQ

appearing in Theorem 1. This category is defined as the category of Gorenstein projective

modules over an Iwanaga–Gorenstein algebra BQ, which we describe explicitly via a quiver

with relations in §8. In §9, we explain how to use the category EQ to recover cluster-algebraic

information about ÃQ and A •
Q. We close in §10 with examples, in particular observing that

Theorem 1 remains true when Q is a 3-cycle, provided we replace CQ by Amiot’s cluster

category CQ,W for a particular potential W.

Throughout, algebras are assumed to be associative and unital. All modules are left

modules, the composition of maps f : X → Y and g : Y → Z is denoted by gf , and we use

the same convention for compositions of arrows in quivers. The Jacobson radical of a module

X is denoted by radX. If p is a path in a quiver, we denote its head by hp and its tail by

tp. We fix an algebraically closed field K, over which all our algebras and categories will be

defined unless specified otherwise. For a K-algebra A, we denote the module category of A

by ModA and the subcategory of finitely generated A-modules by modA.

§2. Coefficient systems and cluster categories

In this section, we introduce our main definitions. We will not give the full definition of

a cluster algebra, since this is somewhat lengthy and can be found easily in many other
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6 M. PRESSLAND

sources; we recommend Keller’s survey [33]. For concreteness, our cluster algebras will be

defined over Q, and we do not assume frozen variables to be invertible; that is, the cluster

algebra A generated by an initial seed with cluster (x1, . . . ,xn,xn+1, . . . ,xm), in which the

mutable variables are x1, . . . ,xn, is defined to be a subalgebra of Q(x1, . . . ,xn)[xn+1, . . . ,xm].

However, since our results are concerned with the set of cluster variables of A, their grouping

into clusters, and the exchange graph on these clusters, they are insensitive to changing

these conventions by replacing Q by a field extension or inverting the frozen variables. As

such, we de-emphasize these conventions below, and simply refer to the cluster algebra

generated by a seed.

Let A be a cluster algebra of geometric type without frozen variables, and let s0 be a seed

of A, with quiver Q and cluster variables (x1, . . . ,xn). By definition, the quiver Q has no

loops or 2-cycles. The principal coefficient cluster algebra A •
Q corresponding to these data

is defined by the following initial seed. The mutable cluster variables are again (x1, . . . ,xn),

and the frozen variables are (x+
1 , . . . ,x

+
n ), where the indexing reveals a preferred bijection

between the mutable and frozen variables. The ice quiver Q• of this seed contains Q as

a full subquiver, with mutable vertices, and for each vertex i ∈ Q0 (corresponding to the

variable xi), Q
• has a frozen vertex i+ (corresponding to x+

i ) and an arrow i→ i+. While

A is isomorphic (as a cluster algebra) to the cluster algebra determined by any quiver

mutation equivalent to Q, this is not true of A •
Q.

Specializing all frozen variables of A •
Q to 1 to obtain a cluster algebra without frozen

variables (which we refer to as taking the principal part) recovers A, and gives a bijection

between the seeds of A •
Q and those of A [14]; we write s• for the seed of A •

Q corresponding

to a seed s of A. Precisely, if s• has cluster (v1, . . . ,vn,x
+
1 , . . . ,x

+
n ), then s has cluster

(v1, . . . ,vn)|x+
i =1,1�i�n, and the quiver of s is the full subquiver of that of s• on the mutable

vertices. Principal coefficients are important since knowledge of the cluster algebra A •
Q can

be used to study any cluster algebra A ′ with principal part A , via the theory of g-vectors

and F-polynomials [20].

By choosing some extra data on Q, Amiot [1] constructs a categorification of A. The

construction uses Jacobian algebras, so we recall some relevant definitions, at the level of

generality needed later in the paper.

Definition 2.1. An ice quiver (Q,F ) consists of a finite quiver Q without loops and

a subquiver F of Q. Denote by K〈〈Q〉〉 the completion of the path algebra of Q over our

fixed algebraically closed field K with respect to the ideal JQ generated by arrows, treated

as a topological algebra with the JQ-adic topology. A potential on Q is an element W of

the vector space quotient K〈〈Q〉〉/{K〈〈Q〉〉,K〈〈Q〉〉}, of K〈〈Q〉〉 by the closure of the subspace

spanned by commutators, such that W lies in the image of the natural map from JQ to

this vector space. (More informally, W is a possibly infinite linear combination of cyclic

equivalence classes of cycles of positive length in Q.)

A vertex or arrow of Q is called frozen if it is a vertex or arrow of F, and mutable or

unfrozen otherwise. For brevity, we write Q◦
0 = Q0 \F0 and Q◦

1 = Q1 \F1 for the sets of

mutable vertices and unfrozen arrows, respectively. For α ∈ Q1 and αk · · ·α1 a cycle in Q,

write

∂ααk · · ·α1 =
∑
αi=α

αi−1 · · ·α1αk · · ·αi+1.
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A CATEGORIFICATION OF ACYCLIC PRINCIPAL COEFFICIENT CLUSTER ALGEBRAS 7

Extending the map ∂α linearly and continuously, and noting that it vanishes on commuta-

tors, allows us to define ∂αW . The ideal 〈∂αW : α ∈ Q◦
1〉 of K〈〈Q〉〉 is called the Jacobian

ideal, and we define the frozen Jacobian algebra associated with (Q,F,W ) by

J(Q,F,W ) =K〈〈Q〉〉/〈∂αW : α ∈Q◦
1〉.

Write A= J(Q,F,W ). The above presentation of A suggests a preferred idempotent

e=
∑
v∈F0

ev,

which we call the frozen idempotent. We will call the subalgebra B = eAe the boundary

algebra of A. If F = ∅, then we refer to the pair (Q,W ) as a quiver with potential, and

call J(Q,W ) = J(Q,∅,W ) simply the Jacobian algebra of (Q,W ). If J(Q,W ) is finite-

dimensional, we call both W and the pair (Q,W ) Jacobi-finite.

Remark 2.2. In much of the paper, we will consider algebras defined by a quiver Q

together with a set of relations R, in the ordinary path algebra KQ, having the property

that the natural map KQ/〈R〉→K〈〈Q〉〉/〈R〉 is an isomorphism—for example, this happens

when the domain is finite-dimensional. However, we take complete path algebras in the

general theory since we want the categories we construct to be Krull–Schmidt [37, §4] (cf.
[32, Rem. 3.3]). Furthermore, we note that the Jacobson radical JQ of K〈〈Q〉〉 is generated
by the arrows (unlike the Jacobson radical of KQ when Q has cycles). Since the Jacobian

ideal defining A = J(Q,F,W ) is contained in JQ, it follows that A has Jacobson radical

J(A) generated by the arrows of Q, and so A/J(A) ∼= K〈〈Q〉〉/JQ ∼= KQ0 is a semisimple

algebra. We use this fact in §4.
The terminology boundary algebra is inspired by and compatible with [3] (see also [45]),

although in the general case Q need not admit any embedding into a manifold so that F is

embedded into the boundary.

Assume that Q is a quiver admitting a Jacobi-finite potential W. Then, by work of

Amiot [1], there is a 2-Calabi–Yau triangulated category CQ,W categorifying AQ. If W is

additionally nondegenerate [18, Def. 7.2], then the seeds of A correspond bijectively to

additive equivalence classes of cluster-tilting objects of CQ,W related by a finite sequence

of mutations to an initial cluster-tilting object T0 with EndCQ,W
(T0)

op = J(Q,W ); such

cluster-tilting objects are called reachable, and we denote the seed corresponding to such an

object T by sT . Nondegeneracy is needed here to see, using results of Buan–Iyama–Reiten–

Smith [9], that mutation of cluster-tilting objects in the mutation class of T0 corresponds

to Fomin–Zelevinsky mutation at the level of quivers of endomorphism algebras, and so

in particular mutation is well defined at any indecomposable summand of any reachable

cluster-tilting object.

A priori, to categorify the principal coefficient cluster algebra A •
Q, we would like to find

a Frobenius category E such that:

(a) The stable category E is triangle equivalent to CQ,W (so that cluster-tilting objects of

E may be identified with those of CQ,W , and hence cluster-tilting objects in E can be

mutated at their nonprojective indecomposable summands).

(b) For any reachable cluster-tilting object T, there is an isomorphism K〈〈Q′〉〉/I ∼→
EndE(T )

op, for some ideal I ⊆ J2
Q′ , where Q′ is, up to arrows between frozen vertices,

the quiver of the seed s•T of A •
Q. (As always, we define the frozen vertices of Q′ to be
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8 M. PRESSLAND

those whose image under the given isomorphism to EndE(T )
op is a projection onto an

indecomposable projective summand.)

Unfortunately, this is not possible.

Proposition 2.3. There does not exist a Frobenius category E satisfying conditions (a)

and (b) above.

Proof. Assume that E were such a Frobenius category, and let T̂0 be the cluster-tilting

object in E which, when viewed as an object of E , is identified with T0 under the equivalence

in (a). By (b), we have an isomorphism EndE(T̂0)
op ∼→K〈〈Q〉〉/I for I ⊆ J2

Q and Q a quiver

differing from Q• only by the possible addition of arrows between frozen vertices. This

latter property means that there is no path in Q from a frozen vertex to a mutable one,

and hence there are no nonzero maps in E from an indecomposable nonprojective summand

of T̂0 to an injective object in E , contradicting the assumption that E has enough injective

objects.

For this reason, we will first consider, and categorify, a different cluster algebra ÃQ

with initial seed obtained from that of A •
Q by adding more frozen variables. Starting

from our seed s0 of A, with quiver Q and cluster variables (x1, . . . ,xn), we construct

an initial seed s̃0 of ÃQ as follows: the seed s̃0 has mutable variables (x1, . . . ,xn), and

frozen variables (x+
1 , . . . ,x

+
n ,x

−
1 , . . . ,x

−
n ). Its ice quiver Q̃ is described fully in Definition 3.1;

the relevant features for defining the cluster algebra are that Q̃ contains Q as a full

subquiver, with mutable vertices, and has two frozen vertices i+ (corresponding to x+
i )

and i− (corresponding to x−
i ) for each mutable vertex i ∈ Q0, with arrows i → i+ and

i− → i. (In Definition 3.1, we also describe arrows between the frozen vertices that will

play a role in our categorification, but are not important for defining ÃQ.) We call ÃQ the

polarized principal coefficient cluster algebra associated with Q.

We adopt the word polarised, referring to the partitioning of the frozen variables into two

sets, to differentiate this coefficient system from the double principal coefficients studied by

Rupel, Stella, and Williams [46]. Since one encounters the same issues categorifying cluster

algebras with double principal coefficients as in the case of ordinary principal coefficients,

namely that no categorification may have enough injective objects, our preference here is

for the polarized version.

As discussed in the introduction, we will construct a categorification of ÃQ using

methodology introduced by the author in [42]. We now recall the key definitions and results

needed to explain this construction. Given a K-algebra A, we write D(A) for its derived

category and Aε = A⊗K Aop for its enveloping algebra, modules of which are precisely

A-bimodules. We denote by perA the perfect derived category of A, that is, the thick

subcategory of D(A) generated by A, and write ΩA =RHomAε(A,Aε).

Definition 2.4 [42, Def. 2.4]. Given an algebra A and idempotent e ∈ A, we say A is

bimodule internally 3-Calabi–Yau with respect to e if:

(a) p.dimAε A� 3,

(b) A ∈ perAε, and

(c) there exists a triangle A
ψ−→ ΩA[3]−→ C −→A[1] in D(Aε) such that

RHomA(C,M) = 0 =RHomAop(C,N)
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for any M ∈D(A) whose total cohomology is a finite-dimensional A/AeA-module, and

any N ∈ D(Aop) satisfying the analogous condition.

Remark 2.5. Assume that A is bimodule internally 3-Calabi–Yau with respect to e.

Then gl.dimA� 3, and there is a functorial duality

DExtiA(M,N) = Ext3−i
A (N,M)

for any finite-dimensional A/AeA-module M and any A-module N (see [42, Cor. 2.9]).

Moreover, Aop has the same properties (see [42, Rem. 2.6]).

To construct our Frobenius categories, we will use the following theorem.

Theorem 2.6 [42, Ths. 4.1 and 4.10]. Let A be an algebra, and let e ∈ A be an

idempotent. If A is Noetherian, A = A/AeA is finite-dimensional, and A is bimodule

internally 3-Calabi–Yau with respect to e, then:

(a) B = eAe is Iwanaga–Gorenstein (of injective dimension at most 3), so the category

GP(B) = {X ∈mod B : ExtiB(X,B) = 0 for all i > 0}

of Gorenstein projective B-modules is a Frobenius category.

(b) eA ∈GP(B) is cluster-tilting.

(c) There are natural isomorphisms EndB(eA)
op ∼→A and EndB(eA)

op ∼→A.

(d) The stable category GP(B) is 2-Calabi–Yau.

In many cases—in particular in our application in the proof of Theorem 1—the Frobenius

category GP(B) appearing in Theorem 2.6 is a Frobenius cluster category, as studied in

[42], and defined as follows.

Definition 2.7 (cf. [42, Def. 3.3]). A Frobenius category E is called a Frobenius cluster

category if it is Krull–Schmidt, stably 2-Calabi–Yau, and gl.dimEndE(T )
op � 3 for any

cluster-tilting object T ∈ E , of which there is at least one.

Proposition 2.8. In the context of Theorem 2.6, if A is additionally finite-dimensional,

then GP(B) is a Frobenius cluster category.

Proof. The category GP(B) is idempotent complete for any algebra B, Frobenius by

Theorem 2.6(a), and stably 2-Calabi–Yau by Theorem 2.6(d). Now, we use the extra

assumption that A is finite-dimensional. First, by [42, Prop. 3.7], the endomorphism algebra

of a cluster-tilting object in GP(B) has global dimension at most 3 provided it is Noetherian;

when A is finite-dimensional, the category GP(B) is Hom-finite, so this condition certainly

holds. Moreover, finite-dimensional algebras are semiperfect, which together with the earlier

observation that GP(B) is idempotent complete implies that it is a Krull–Schmidt category

by [37, Cor. 4.4].

Remark 2.9. As suggested by the proof, the assumption that A is finite-dimensional is

likely to be much stronger than needed for the conclusion of Proposition 2.8. For example, it

may already be true under the assumptions of Theorem 2.6 that all cluster-tilting objects in

GP(B) have Noetherian endomorphism algebra—this is true for the cluster-tilting object

eA by the theorem, but we do not currently know how to deduce it for other cluster-

tilting objects. Moreover, there are many infinite-dimensional semiperfect algebras, such as

complete path algebras of finite quivers with cycles.
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Returning to the problem of categorifying the cluster algebra ÃQ, our aim now is to

construct an algebra A satisfying the conditions of Theorem 2.6, defined as a quotient of

the complete path algebra of the quiver Q̃ used to define ÃQ.

§3. An ice quiver with potential

Consider again our initial seed s0 for A, with quiver Q, and choose a potential W on Q.

In this section, we will construct from (Q,W ) an ice quiver with potential (Q̃, F̃ ,W̃ ), and

thus a frozen Jacobian algebra J(Q̃, F̃ ,W̃ ). It is this algebra that we intend to use as the

input for the construction of a Frobenius category by Theorem 2.6; to apply this theorem,

we will require that J(Q,W ) is finite-dimensional, but we do not assume this yet.

Definition 3.1. Let (Q,W ) be a quiver with potential. We define Q̃ to be the quiver

with vertex set given by

Q̃0 =Q0	Q+
0 	Q−

0 ,

where Q+
0 = {i+ : i ∈Q0} is a set of formal symbols in bijection with Q0, and similarly for

Q−
0 = {i− : i ∈Q0}. The set of arrows is given by

Q̃1 =Q1	{αi : i ∈Q0}	{βi : i ∈Q0}	{δi : i ∈Q0}	{δa : a ∈Q1},

and the head and tail functions h,t : Q̃1 → Q̃0 are extended from those of Q by defining

hαi = i+, hβi = i, hδi = i−, hδa = (ta)−,

tαi = i, tβi = i−, tδi = i+, tδa = (ha)+.

The frozen subquiver F̃ is defined by

F̃0 =Q+
0 	Q−

0 , F̃1 = {δi : i ∈Q0}	{δa : a ∈Q1}.

Note that the head and tail of any arrow in F̃1 lie in F̃0, so these subsets describe a valid

subquiver of Q̃, which is even full. The quiver F̃ is also bipartite, meaning that every vertex

is either a source or a sink, and so it has no paths of length greater than 1; precisely, the

vertices in Q+
0 are sources in F̃ , and those in Q−

0 are sinks. As a vertex of Q̃, each i+ has

unique incoming arrow αi and each i− has unique outgoing arrow βi.

Finally, we define a potential W̃ on Q̃ by

W̃ =W +
∑
i∈Q0

βiδiαi−
∑
a∈Q1

aβtaδaαha,

and let

AQ,W = J(Q̃, F̃ ,W̃ )

be the frozen Jacobian algebra determined by (Q̃, F̃ ,W̃ ). We denote the boundary algebra

of AQ,W by BQ,W = eAQ,W e, where e=
∑

i∈Q0
(e+i +e−i ) is the frozen idempotent of AQ,W .

Note. To aid legibility, if the vertices i+ and i− appear as subscripts, we will usually

move the sign into a superscript, as in the above expression for the frozen idempotent. When

W = 0, we will typically drop it from the notation; for example, we write AQ = AQ,0. The

reader is warned that 0̃ is not the zero potential on Q̃.
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Since W̃ has a straightforward description in terms of W, so do the defining relations of

AQ,W ; these form the set R consisting of

∂aW̃ = ∂aW −βtaδaαha, ∂αiW̃ = βiδi−
∑
γ∈Q1
hγ=i

γβtγδγ , ∂βiW̃ = δiαi−
∑
γ∈Q1
tγ=i

δγαhγγ,

(3.1)

for a ∈Q1 and i ∈Q0. Having such an explicit generating set of relations will prove to be

extremely useful later in the paper.

To be able to apply Theorem 2.6, we wish to show that AQ,W is bimodule internally

3-Calabi–Yau with respect to its frozen idempotent e, in the sense of Definition 2.4. We will

do this, under a mild assumption on (Q,W ), in §4, but first we give some examples.

Example 3.2. The quiver with potential (Q,0), for Q an A2 quiver, provides the most

basic example revealing all of the combinatorial features of the construction. In this case,

we have

Q̃=

1 2

1+

1−

2−

2+

a

α1

β1 α2

β2

δ1 δ2

δa

with F̃ indicated by the boxed vertices and dashed arrows. The potential on this ice

quiver is

W̃ = β1δ1α1+β2δ2α2−aβ1δaα2.

One can check that the frozen Jacobian algebra AQ attached to these data is isomorphic

to the endomorphism algebra of a cluster-tilting object in the Frobenius cluster category

consisting of those modules for the preprojective algebra of type A4 with socle supported

at a fixed bivalent vertex [24]. For an explanation of why the categories arising in [24] are

Frobenius cluster categories, see [42, Exam. 3.11].

Example 3.3. Now, let (Q,W ) be the quiver with potential in which

Q=

31

2

c

a b

and W = cba. The Jacobian algebra is a cluster-tilted algebra of type A3, and has infinite

global dimension (like any nonhereditary cluster-tilted algebra [35, Cor. 2.1]). In this

case,
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Q̃=

31

2

2−

3+

3−1+

1−

2+

c

a b

β2

α3

β3α1

β1

α2

δc

δ3

δb

δ2

δa

δ1

with F̃ again indicated by boxed vertices and dashed arrows. The potential is

W̃ = cba+β1δ1α1+β2δ2α2+β3δ3α3−aβ1δaα2− bβ2δbα3− cβ3δcα1.

The associated frozen Jacobian algebra AQ,W also arises from a dimer model on a disk with

six marked points on its boundary [3], and is isomorphic to the endomorphism algebra of a

cluster-tilting object in Jensen–King–Su’s categorification of the cluster algebra structure

on the Grassmannian Gr62 [32]. This category is again a Frobenius cluster category (see [42,

Exam. 3.12]). Unlike the first example, this algebra is infinite-dimensional. However, it is

Noetherian, so Theorem 2.6 still applies.

Since, in Examples 3.2 and 3.3, the algebra AQ,W is the endomorphism algebra of a

cluster-tilting object in a Frobenius cluster category, it is internally 3-Calabi–Yau with

respect to its frozen idempotent—that is, it has the properties in Remark 2.5—by a result

of Keller–Reiten [35, §5.4] (see also [42, Cor. 3.10]). This foreshadows Theorem 4.14, which

states that under mild assumptions on (Q,W ), the algebra AQ,W has the (a priori stronger)

bimodule internal Calabi–Yau property from Definition 2.4.

§4. Calabi–Yau properties for frozen Jacobian algebras

In this section, we will recall from [42, §5] a bimodule complex 0 → P(A) → A → 0

for a frozen Jacobian algebra A, exactness of which implies that A is bimodule internally

3-Calabi–Yau with respect to its frozen idempotent. We show that this complex is exact

when A = AQ,W is as in Definition 3.1. Thus, these frozen Jacobian algebras satisfy the

most complicated condition in Theorem 2.6. This constitutes the main step in the proof of

Theorem 1.

Our arguments exploit the fact that the algebras we consider are pseudocompact, and so

we begin with some useful generalities on such algebras. Further background can be found

in [7], [22], [30], [47], [51], for example.

Definition 4.1. Let A be a topological K-algebra. We say that A is pseudocompact if

there is a system I = {I} of neighborhoods of 0 ∈ A consisting of (open) ideals such that

A/I is finite-dimensional for all I ∈ I and the natural map

A→ lim←−I
A/I
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is an isomorphism. The Jacobson radical of A, denoted by J, is the intersection of maximal

closed left ideals of A, and we say that A is J-adically complete if the natural map A →
lim←−n

A/Jn is an isomorphism.

Proposition 4.2. If Q is a finite quiver, the complete path algebra K〈〈Q〉〉 is pseudo-

compact and J-adically complete, where J is the Jacobson radical.

Proof. The algebra K〈〈Q〉〉 may be identified with the continuous dual of the path

coalgebra of Qop, that is, the space of continuous functionals on this coalgebra (see, e.g.,

[47, Prop. 8.1(c)]). The continuous dual of any coalgebra is pseudocompact (see [48]).

The Jacobson radical of K〈〈Q〉〉 is generated by the arrows. In particular, K〈〈Q〉〉/J2 is

finite-dimensional, since Q is a finite quiver, and so K〈〈Q〉〉 is J -adically complete by [30,

Prop. 2.7].

Proposition 4.3. Let Q be a finite quiver. Then, for any ideal I � K〈〈Q〉〉 which is

closed in the J-adic topology, for J the Jacobson radical, the quotient algebra A=K〈〈Q〉〉/I
is pseudocompact.

Proof. This statement (in a more general form) can be found in The Stacks Project

§00M92, but we give a direct argument. For each n ∈ Z, there is a short exact sequence

0 (I+Jn)/Jn K〈〈Q〉〉/Jn A/πJn 0, (4.1)

where π : K〈〈Q〉〉 → A=K〈〈Q〉〉/I is the projection. In particular, it follows that A/πJn is

finite-dimensional. Note that the ideals πJn form a system of open neighborhoods of 0 in

A, since π−1(πJn) = I+Jn is open in K〈〈Q〉〉.
The sequence (4.1) is the nth component of a short exact sequence of inverse systems,

each of which has only surjective morphisms and so satisfies (in a trivial way) the Mittag-

Leffler condition. Thus, we obtain a short exact sequence of inverse limits

0 lim←−n
(I+Jn)/Jn lim←−n

K〈〈Q〉〉/Jn lim←−n
A/πJn 0.

The left-hand term of this sequence may be naturally identified with
⋂

n�1(I+Jn), which is

the closure of I in the J -adic topology, and is thus equal to I since I is closed. Moreover, the

middle term is K〈〈Q〉〉 since this algebra is J -adically complete by Proposition 4.2. Hence,

the right-hand term is A, which is therefore pseudocompact.

Corollary 4.4. For any ice quiver with potential (Q,F,W ), the frozen Jacobian

algebra J(Q,F,W ) is pseudocompact.

Proof. By definition, J(Q,F,W ) is the quotient of K〈〈Q〉〉 by a closed ideal. Thus, the

result follows by Proposition 4.3.

We now return to the setting of ice quivers with potential. Let (Q,F,W ) be an ice quiver

with potential and write A= J(Q,F,W ). Recall that Q◦
0 =Q0 \F0 and Q◦

1 =Q1 \F1 denote

the sets of mutable vertices and unfrozen arrows of Q, respectively. For i ∈ Q0, we write

Hi for the set of arrows of Q with head i, and Ti for the set of arrows of Q with tail i.

We denote by H◦
i and T◦

i the intersection of Q◦
1 with Hi and Ti, respectively. Recall from

Remark 2.2 that the quotient S := A/J(A) of A by its Jacobson radical is a semisimple

2 See https://stacks.math.columbia.edu/tag/00M9.
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14 M. PRESSLAND

algebra, isomorphic as a left A-module to the direct sum of the vertex simple A-modules.

(This property is sometimes [30, §3.2] called pointedness.) Thus, S has a basis given by the

vertex idempotents ei for i ∈Q0. For the remainder of this section, we write ⊗=⊗S .

Introduce formal symbols ρα for each α ∈ Q1 and ωv for each v ∈ Q0, and define S -

bimodule structures on the vector spaces

V0 =
⊕
i∈Q0

Kei, V1 =
⊕
α∈Q1

Kα, V2 =
⊕
α∈Q◦

1

Kρα, V3 =
⊕
i∈Q◦

0

Kωi,

via the formulae

ei · ei · ei = ei, ehα ·α · etα = α, etα ·ρα · ehα = ρα, ei ·ωi · ei = ωi.

Next, we describe various morphisms μk of A-bimodules. Since V0
∼= S, the A-bimodule

A⊗ V0 ⊗A is canonically isomorphic to A⊗A. Composing this isomorphism with the

multiplication map for A, we obtain a map μ0 : A⊗V0⊗A→ A. Define μ1 : A⊗V1⊗A→
A⊗V0⊗A by

μ1(x⊗α⊗y) = x⊗ ehα⊗αy−xα⊗ etα⊗y.

For any path p= αm · · ·α1 of KQ, we may define

Δα(p) =
∑
αi=α

αm · · ·αi+1⊗αi⊗αi−1 · · ·α1,

and extend by linearity and continuity to obtain a map Δα : K〈〈Q〉〉→A⊗V1⊗A. We then

define μ2 : A⊗V2⊗A→A⊗V1⊗A by

μ2(x⊗ρα⊗y) =
∑
β∈Q1

xΔβ(∂αW )y.

Finally, define μ3 : A⊗V3⊗A→A⊗V2⊗A by

μ3(x⊗ωv⊗y) =
∑
α∈Tv

x⊗ρα⊗αy−
∑
β∈Hv

xβ⊗ρβ ⊗y.

Note that we have A⊗Vk ⊗A⊗A S = A⊗Vk ⊗S = A⊗Vk for 0 � k � 3. Thus, for each

1� k � 3, we obtain a map μ̄k := (μk⊗A S) : A⊗Vk →A⊗Vk−1.

Lemma 4.5. Let 1 � k � 3 and consider x⊗ v⊗ y ∈ A⊗ Vk ⊗A, where x,y ∈ A and

v ∈ Vk. Then

μk(x⊗v⊗y) = μ̄k(x⊗v)⊗y+ r,

where r ∈A⊗Vk−1⊗Jy.

Proof. This follows directly from the definition of the maps μk, recalling that the

Jacobson radical J is generated by the arrows of Q and that A/J = S.

Definition 4.6. For an ice quiver with potential (Q,F,W ) with frozen Jacobian algebra

A, denote by P(A) the complex of A-bimodules with nonzero terms

A⊗V3⊗A A⊗V2⊗A A⊗V1⊗A A⊗V0⊗A
μ3 μ2 μ1

and A⊗KQ0⊗A in degree 0. That this sequence is indeed a complex is [42, Lem. 5.5].
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By [42, Th. 5.7], if A is a frozen Jacobian algebra such that

0 P(A) A 0
μ0

(4.2)

is exact, then A is bimodule internally 3-Calabi–Yau with respect to the idempotent e =∑
i∈F0

ei. Our goal for the remainder of the section is to check exactness of (4.2) when

A=AQ,W is the algebra from Definition 3.1. The following lemma allows us to simplify this

calculation; its proof is based on [6, Prop. 7.5], but adapted to exploit pseudocompactness

of A in place of a suitable grading.

Lemma 4.7. The complex (4.2) is exact if and only if

0 P(A)⊗A S S 0
μ̄0

(4.3)

is exact.

Proof. The forward implication holds since P(A)
μ0−→A is perfect as a complex of right

A-modules, and so remains exact under −⊗AM for any M ∈ModA.

For the converse implication, we use pseudocompactness. Abbreviate μ̄k,n = μk⊗AA/Jn

(so that μ̄k,1 = μ̄k as defined above). We will show inductively that

0 P(A)⊗AA/Jn A/Jn 0
μ̄0,n

(4.4)

is exact for all n; the assumed exactness of (4.3) gives the base case n= 1 of this induction.

Then the result will follow as in the proof of Proposition 4.3 from the fact that (4.4) remains

exact under taking inverse limits, noting again that the relevant inverse systems satisfy the

Mittag-Leffler condition since all their morphisms are surjective.

That (4.4) is exact at A/Jn (and indeed, that (4.2) is exact at A) follows since μ0 is

multiplication in the unital algebra A, so we concentrate on the other terms, each of which

has the form A⊗Vk⊗A/Jn for some S -bimodule Vk, adopting the convention that Vk = 0

for k > 3.

Choose k � 0, let φ0 ∈A⊗Vk⊗A/Jn for some n� 2, and write φ′
0 for the projection of

φ0 to A⊗Vk⊗A/Jn−1. If φ0 is closed, that is, if μ̄k,n(φ0) = 0, then φ′
0 is also closed, and so

by induction there is ψ′
0 ∈A⊗Vk+1⊗A/Jn−1 with μ̄k+1,n−1(ψ

′) = φ′. Choose any ψ0 ∈A⊗
Vk+1⊗A/Jn projecting to ψ′

0. Then φ1 := φ0− μ̄k+1,n(ψ0) projects to φ′
0− μ̄k,n−1(ψ

′
0) = 0,

and hence φ1 ∈A⊗Vk⊗Jn−1/Jn. Moreover, φ1 is closed.

Now, let Y be a basis of the finite-dimensional vector space Jn−1/Jn, so that we may

write

φ1 =
∑
y∈Y

uy⊗y

for some uy ∈A⊗Vk. Since each y ∈ Jn−1/Jn and φ1 is closed, we have

0 =
∑
y∈Y

μ̄k,n(uy⊗y) =
∑
y∈Y

μ̄k(uy)⊗y

by Lemma 4.5. It then follows by linear independence of the set Y that μ̄k(uy) = 0 for

all y ∈ Y . By the assumed exactness of (4.3), there are therefore vy ∈ A⊗ Vk+1 with

μ̄k+1(vy) = uy.
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Now, let

ψ1 =
∑
y∈Y

vy⊗y ∈A⊗Vk+1⊗A/Jn.

Using Lemma 4.5 again, we may calculate

μ̄k+1,n(ψ1) =
∑
y∈Y

μ̄k+1(vy)⊗y =
∑
y∈Y

uy⊗y = φ1,

and so φ0 = μ̄k+1,n(ψ0+ψ1) is exact. Thus, each sequence (4.4), and hence the limit (4.2),

is exact as required.

Thus, it suffices for us to show that (4.3) is exact. This complex decomposes along with

S, so that its exactness is equivalent to the exactness of

0 P(A)⊗A Si Si 0
μ0⊗ASi

(4.5)

for each i ∈ Q̃0, where Si denotes the vertex simple left A-module at i. We may calculate

the terms in this complex as

A⊗KQ1⊗A⊗A Si
∼=

⊕
b∈Ti

Aehb,

A⊗KQ◦
2⊗A⊗A Si

∼=
⊕
a∈H◦

i

Aeta,

A⊗KQ◦
3⊗A⊗A Si

∼=
{
Aei, i ∈Q◦

0,

0, i ∈ F0.

(4.6)

In the first two cases, the right-hand sides are of the form
⊕

a∈XAev(a), where X is a set of

arrows, and v : X →Q0. We will denote by x �→ x⊗ [a] the inclusion Aev(a) →
⊕

a∈XAev(a)
mapping the domain to the summand indexed by a; this helps us to distinguish these various

inclusions when v is not injective. As a consequence, a general element of the direct sum is

x=
∑

a∈X xa⊗ [a] for xa ∈Aev(a).

Each arrow b∈Q1 has an associated right derivative ∂r
b : K〈〈Q〉〉→K〈〈Q〉〉, which is linear

and continuous and given by

∂r
b (α� · · ·α1) =

{
α� · · ·α2, α1 = b,

0, α1 �= b
(4.7)

on paths. Using this map, we may write

(μ2⊗A Si)(x) =
∑
b∈Ti

( ∑
a∈H◦

i

xa∂
r
b∂aW

)
⊗ [b].

Calculating μk⊗A Si for the other values of k is similar, and more straightforward.

Remark 4.8. By standard results on presentations of algebras (see, e.g., [12]), the

complex (4.2) is always exact in degrees −1, 0, and 1, and hence the same is true for each

complex (4.5). Thus, in the following argument, we need only check the exactness of (4.5)

at A⊗V3⊗Si and A⊗V2⊗Si.
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Now, let (Q,W ) be a quiver with potential, and let A=AQ,W = J(Q̃, F̃ ,W̃ ). The following

series of results will establish exactness of the complex (4.3) for A for each vertex i ∈ Q̃0,

using heavily the explicit set R of defining relations for A given in (3.1).

Lemma 4.9. Let i ∈ Q̃◦
0 =Q0. If y ∈Aei satisfies yβi = 0, then y = 0.

Proof. Let ỹ be an arbitrary lift of y to K〈〈Q̃〉〉ei. Now, assume yβi = 0, so ỹβi ∈ 〈R〉.
Since every term of ỹβi, when written in the basis of paths of Q̃, ends with the arrow βi, but

no term of any element of R has a term ending with βi, we must be able to write ỹβi = zβi

for some z ∈ 〈R〉ei. Comparing terms, we see that ỹ = z ∈ 〈R〉, and so y = 0 in A.

Proposition 4.10. For i ∈ Q̃◦
0, the map μ3⊗A Si : Aei →

⊕
a∈H◦

i

Aeta is injective.

Proof. We have (μ3⊗A Si)(y) =
∑

a∈H◦
i
−ya⊗ [a]. Since i is mutable, H◦

i = Hi contains

βi by the construction of (Q̃, F̃ ). Thus, if (μ3⊗ASi)(y) = 0, it follows that −yβi⊗ [βi] = 0,

hence yβi = 0, and so y = 0 by Lemma 4.9.

Lemma 4.11. Let i∈ Q̃◦
0. For each a∈H◦

i , pick xa ∈Aeta. If xβiδi =
∑

a∈H◦
i \{βi}xaβtaδa,

then there exists y ∈Aei such that xa = ya for each a ∈H◦
i .

Proof. Pick a lift x̃a ∈ K〈〈Q̃〉〉 of each xa. Writing p = x̃βiδi−
∑

a∈H◦
i \{βi} x̃aβtaδa, our

assumption on the xa is equivalent to p ∈ 〈R〉. Since every term of p ends with either δi or

βtaδa for some a ∈ H◦
i \{βi}, and the only element of R including terms ending with these

arrows is βiδi−
∑

a∈H◦
i \{βi}aβtaδa, we can write

p= ziδi+
∑

a∈H◦
i \{βi}

zaβtaδa+y
(
βiδi−

∑
a∈H◦

i \{βi}
aβtaδa

)
,

where zi ∈ 〈R〉e−i , za ∈ 〈R〉eta, and y ∈ K〈〈Q̃〉〉ei. Comparing terms in our two expressions

for p, we see that x̃βi = yβi+ zi and x̃a = ya− za. Since zi, za ∈ 〈R〉, when we pass to the

quotient algebra A, we see that xβi = yβi and xa = ya, as required.

Proposition 4.12. For i ∈ Q̃◦
0, we have ker(μ2⊗A Si) = im(μ3⊗A Si).

Proof. Since P(A) is a complex, it is enough to show that ker(μ2⊗ASi)⊆ im(μ3⊗ASi).

Let x=
∑

a∈H◦
i
xa⊗ [a] ∈

⊕
a∈H◦

i
Aeta. Then

(μ2⊗A Si)(x) =
∑
b∈Ti

( ∑
a∈H◦

i

xa∂
r
b∂aW̃

)
⊗ [b] ∈

⊕
b∈Ti

Aehb.

In particular, αi ∈Ti, so if x∈ ker(μ2⊗ASi), we have
(∑

a∈H◦
i
xa∂

r
αi
∂aW̃

)
⊗ [αi] = 0. Using

the explicit expressions for the relations ∂aW̃ computed in (3.1), we see that∑
a∈H◦

i

xa∂
r
αi
∂aW̃ = xβiδi−

∑
a∈H◦

i \{βi}
xaβtaδa = 0,

and so by Lemma 4.11 there exists y ∈ Aei such that xa = ya for each a. It follows that

x= (μ3⊗A Si)(y), as required.
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Proposition 4.13. If i± ∈ F̃0, then the complex

0 P(A)⊗A S±
i S±

i 0
μ0⊗AS±

i

is exact.

Proof. Since i± ∈ F̃0, our complex is zero in degree −3. By Remark 4.8, we need only

check that μ2⊗A S±
i is injective. Since H◦

i− = ∅, the complex P(A)⊗A S−
i is also zero in

degree −2, so we are left to consider μ2⊗A S+
i .

Since H◦
i+ = {αi}, we have μ2 ⊗A S+

i : Aei →
⊕

b∈Ti
+ Aehb. Let x ∈ Aei, for which we

calculate

(μ2⊗A S+
i )(x) =

∑
b∈Ti

+

x∂r
b∂αiW̃ ⊗ [b].

Assume that this is 0. Considering δi ∈Ti
+, we see that we must have 0 = x∂r

δi
∂αiW̃ = xβi.

By Lemma 4.9, it follows that x= 0, and μ2⊗A S+
i is injective as required.

Summarizing the discussion above, we are able to establish the desired internal Calabi–

Yau property for AQ,W .

Theorem 4.14. For any quiver with potential (Q,W ), the algebra AQ,W = J(Q̃, F̃ ,W̃ ) is

bimodule internally 3-Calabi–Yau with respect to the frozen idempotent e=
∑

i∈Q0
(e+i +e−i ).

Proof. Given Remark 4.8, Propositions 4.10 and 4.12 show that (4.5) is exact when i is

a mutable vertex, whereas Proposition 4.13 deals with the case that i is frozen. Thus, (4.3)

is exact and so, since AQ,W is pseudocompact by Corollary 4.4, it follows from Lemma 4.7

that (4.2) is also exact. Hence, we obtain the result by [42, Th. 5.7].

Since for A = AQ,W we have A/AeA = J(Q,W ) by construction, Theorem 2 from the

introduction is an immediate consequence. We record a further corollary, obtained by

combining Theorem 4.14 with Theorem 2.6.

Corollary 4.15. Let (Q,W ) be a Jacobi-finite quiver with potential. Assume

that A = AQ,W is Noetherian, let e =
∑

i∈Q0
(e+i + e−i ) be the frozen idempotent of

A, let B = eAe be its boundary algebra, and let T = eA. Then T is a cluster-tilting

object of the stably 2-Calabi–Yau Frobenius category GP(B), with EndB(T )
op ∼= A and

EndB(T )
op ∼= J(Q,W ). �

It is this corollary that we will use to define the Frobenius category EQ appearing in

Theorem 1 for an acyclic quiver Q ; to be able to do so, it only remains to check that

AQ is Noetherian in this case, and we will show in §5 that it is even finite-dimensional.

Unfortunately, at the moment, we lack methods for showing that AQ,W is Noetherian in

more cases (and expect that AQ,W is not Noetherian general), preventing us from extending

Theorem 1 to the case of quivers with cycles. We already observed in Example 3.3 that

AQ,W is Noetherian (but not finite-dimensional) when (Q,W ) is the 3-cycle with its natural

potential. This quiver with potential is Jacobi-finite, so Corollary 4.15 also applies in this

case.

Remark 4.16. Combinatorially, the algebra AQ,W seems to be related the dg-algebra

ΓQ,W associated with (Q,W ) by Ginzburg [25, §4.2]; the loops in cohomological degree −2

in ΓQ,W are replaced by the cycles i→ i+ → i− → i, and the degree −1 arrows are replaced

https://doi.org/10.1017/nmj.2023.6 Published online by Cambridge University Press

https://doi.org/10.1017/nmj.2023.6


A CATEGORIFICATION OF ACYCLIC PRINCIPAL COEFFICIENT CLUSTER ALGEBRAS 19

by the paths ha → ha+ → ta− → ta. Here, we use Amiot’s sign conventions [1, Def. 3.1],

which are opposite to Ginzburg’s. By a result of Van den Bergh [34, Th. A.12], the dg-

algebra ΓQ,W is bimodule 3-Calabi–Yau, and we expect this to be related to the fact that

AQ,W is bimodule internally 3-Calabi–Yau with respect to the idempotent determined by

the vertices not appearing in Ginzburg’s construction. We will show in proving Theorem

1(b) that, when Q is acyclic, the two constructions are also related via a triangle equivalence

GP(BQ) CQ = perΓQ/Db(ΓQ). (4.8)

By a result of Wu [52, Lem. 5.10], it follows from exactness of (4.2) that the relative

Ginzburg algebra Γ
˜Q, ˜F,˜W

[52, Def. 4.20] is concentrated in degree 0, its zeroth cohomology

being the algebra AQ,W . There is thus [53, Prop. 3.19] a homotopy pushout diagram

Π
˜F AQ,W

∗ ΓQ,W ,

G

taken in the category of k -linear dg-categories with Tabuada’s model structure [50], where

the functor G is the deformed relative 3-Calabi–Yau completion, with respect to W̃ , of the

natural map KF̃ →KQ̃. In particular, this makes Π
˜F the 2-Calabi–Yau completion of KF̃

(a dg version of the preprojective algebra of F̃ ). Thus, we can reconstruct the Ginzburg

dg-algebra ΓQ,W from AQ,W (plus enough additional data to recover the dg-functor G).

It is also possible to obtain the triangle equivalence (4.8) using this style of argument (see

Remark 5.4).

However, the only properties of the ice quiver with potential (Q̃, F̃ ,W̃ ) that we use here

are that Γ
˜Q, ˜F,˜W

is concentrated in degree 0, and that removing the frozen vertices recovers

(Q,W ); typically, there are many ice quivers with potential with these two properties. At

present, we do not know a natural construction of the specific frozen Jacobian algebra AQ,W

from ΓQ,W , despite the combinatorial similarity of their definitions.

§5. The acyclic case

Let (Q,W ) be a Jacobi-finite quiver with potential, so that the algebra AQ,W from

Definition 3.1 satisfies all of the assumptions of Corollary 4.15 except possibly Noetherianity.

Our goal in this section is to show that if Q is an acyclic quiver, then the algebra A=AQ =

J(Q̃, F̃ , 0̃) is even finite-dimensional, so that this result does indeed apply.

Lemma 5.1. Let Q be a finite quiver, and let p be a path in Q̃ containing at least one

arrow not in Q1, and with hp,tp∈Q0. Then p is in the kernel of the projection π : K〈〈Q̃〉〉→
A = J(Q̃, F̃ , 0̃). Moreover, if q is a path of length at least 5 containing no arrows of Q1,

then q ∈ kerπ.

Proof. Let γ be the first arrow of p in Q̃1\Q1. If γ has a predecessor in p, then this arrow

is in Q1, and so tγ ∈Q0. On the other hand, if γ is the first arrow of p, then tγ = tp∈Q0 by

assumption. By the construction of Q̃, it follows that γ = αi for some i∈Q0. Since hp∈Q0,

the path p cannot terminate with αi, so this arrow has a successor. Looking again at the

definition of Q̃, the only options are δa for some a ∈ Q1 with ha = i, or δi. We break into

two cases.
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First, assume αi is followed in p by δa for some a ∈ Q0. This again cannot be the final

arrow of p, since hp ∈Q0. The only arrow leaving hδa = i−ta is βta, so this must be the next

arrow of p. But after projection to A by π, we have βtaδaαha = ∂aW = 0 since W = 0, so

p ∈ kerπ.

In the second case, αi is followed by δi. As above, δi must be followed in p by βi, and

projecting to A yields

βiδiαi =

( ∑
a∈Q1
ha=i

aβtaδa

)
αi =

∑
a∈Q1
ha=i

aβtaδaαha = 0,

so that again p ∈ kerπ.

For the second statement, we have already shown that βtaδaαha ∈ kerπ for any a ∈ Q1

and βiδiαi ∈ kerπ for any i ∈Q0. It then follows from the bipartite property of F̃ that any

path which is not in kerπ and involves only arrows not in Q1 must be a subpath of δxαiβiδy
for some x,y ∈Q0∪Q1 and i ∈Q0 with hx = i= ty. In particular, such a path has length

at most 4.

Theorem 5.2. Let Q be an acyclic quiver. Then A= J(Q̃, F̃ , 0̃) is finite-dimensional.

Proof. We show that there are finitely many paths of Q̃ determining nonzero elements

of A. By Lemma 5.1, any path p of Q̃ determining a nonzero element of A may not have

any subpath with endpoints in Q0 and containing an arrow outside Q1. Thus, we must

have p = q2p
′q1, where q1 and q2 are (possibly empty) paths not involving arrows of Q1,

and p′ is a path in Q. Since Q is acyclic, there are only finitely many possibilities for p′. By

Lemma 5.1 again, q1 and q2 have length at most 4 for p to be nonzero in A, and so there

are again only finitely many possibilities.

We have now established everything we need in order to construct the Frobenius cluster

category required by Theorem 1, and to prove the first two parts of this theorem.

Definition 5.3. Let Q be an acyclic quiver, let AQ = J(Q̃, F̃ ,W̃ ) be the frozen Jacobian

algebra defined from Q in Definition 3.1, and let BQ = eAQe be its boundary algebra. We

define EQ =GP(BQ) to be the category of Gorenstein projective BQ-modules.

Proof of Theorem 1 (a). Since Q is an acyclic quiver, J(Q,0) =KQ is finite-dimensional.

By Theorem 5.2, the algebra AQ = J(Q̃, F̃ , 0̃) is also finite-dimensional, and hence

Noetherian.

Since the boundary algebra BQ = eAQe is finite-dimensional, Corollary 4.15 and

Proposition 2.8 combine to show that EQ = GP(BQ) is a Hom-finite Frobenius cluster

category, as required.

Proof of Theorem 1(b). We use Keller–Reiten’s recognition theorem [36, Th. 2.1]; by

Corollary 4.15, EQ is a 2-Calabi–Yau triangulated category admitting a cluster-tilting object

T = eAQ with endomorphism algebraKQ, so EQ is triangle equivalent to the cluster category

CQ as required.

We already observed after stating Corollary 4.15 that our construction applies to

(Q,W ) given by the 3-cycle with natural potential to produce a stably 2-Calabi–Yau

Frobenius cluster category EQ,W = GP(BQ,W ). We claim that the analogous statement

to Theorem 1(b) also holds here, namely that EQ,W is triangle equivalent to Amiot’s
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cluster category CQ,W . While Keller–Reiten’s recognition theorem no longer applies to

the cluster-tilting object T provided by Corollary 4.15, since its stable endomorphism

algebra is not hereditary, one can in this case find another cluster-tilting object T ′ ∈ EQ,W

with EndEQ,W
(T ′)op ∼= KQ′, for Q′ an orientation of the Dynkin diagram A3. Thus, the

recognition theorem shows that EQ,W  CQ′ , and CQ′  CQ,W either by the recognition

theorem again or by [1, Cor. 3.11].

We note that while Amiot, Reiten, and Todorov have a recognition theorem [2, Th. 3.1],

which identifies certain stable categories of Frobenius categories admitting a cluster-tilting

object with frozen Jacobian endomorphism algebra as generalized cluster categories, this

theorem does not apply to our object T when W �=0, because then (Q̃, F̃ ,W̃ ) cannot satisfy

their assumptions (H3) and (H4). Assumption (H3) requires a nonnegative degree function

on the arrows of Q̃ giving W̃ degree 1, and (H4) requires that the arrows αi, for i ∈ Q0,

all have degree 1. But if W �= 0, then (H3) forces some arrow a ∈Q1 to have degree 1, and

then (H4) implies that the potential term aβtaδaαha has degree at least 2, so (H3) does not

hold.

Remark 5.4. We could also prove Theorem 1(b) by using further results of Wu [53, Ths.

6.2 and 7.9], exploiting in particular the fact that AQ,W is quasi-isomorphic to the relative

Ginzburg dg-algebra Γ
˜Q, ˜F,˜W

(cf. Remark 4.16). This does not increase the generality of

the result, since this approach requires AQ,W to be finite-dimensional, a fact we only

establish in the acyclic case (and which is false in general). However, it seems more realistic

to generalize Wu’s results to infinite-dimensional Jacobian algebras than to remove the

acyclicity assumption from Keller–Reiten’s theorem.

§6. Mutation and the cluster character

To complete the proof of Theorem 1, we need to understand the relationship between

mutation of cluster-tilting objects in GP(BQ) and Fomin–Zelevinsky mutation of their

quivers. These operations turn out to be compatible, in a much larger class of Frobenius

cluster categories, in the sense of the following theorem.

Theorem 6.1. Let E be a Hom-finite Frobenius cluster category, and assume that there

is a cluster-tilting object T ∈ E such that EndE(T )
op ∼= J(Q,F,W ), where Q is the Gabriel

quiver of this algebra. Then:

(a) Q has no loops or 2-cycles incident with any mutable vertex, so the Iyama–Yoshino

mutation of T at any indecomposable nonprojective summand is well defined.

(b) If T ′ is obtained from T by mutation at such a summand, then EndE(T
′)op ∼=

J(Q′,F ′,W ′), where (Q′,F ′,W ′) is the mutation of (Q,F,W ) at the vertex correspond-

ing to this summand.

(c) The quiver Q′ is both the Gabriel quiver of EndE(T
′)op and, up to arrows between frozen

vertices, the Fomin–Zelevinsky mutation of Q at the appropriate vertex. In particular,

it also has no loops or 2-cycles incident with mutable vertices.

These results then extend inductively to any cluster-tilting object in the mutation class of T.

Proof. This combines [43, Th. 5.15] and [44, Prop. 3] (which corrects [43,

Prop. 5.16]).

The proof of [43, Th. 5.15] referred to in that of Theorem 6.1 is similar to an analogous

result of Buan–Iyama–Reiten–Smith for triangulated categories [9]. The definition of
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mutation for an ice quiver with potential is given in [43, Def. 4.1], and is similar to that for

ordinary quivers with potential [9, §1.2]. We also explain in [43] how to extend the definition

of Fomin–Zelevinsky mutation to ice quivers which may have arrows between their frozen

vertices. Thus, the same argument proves a stronger version of Theorem 6.1(c) in which

these arrows are still considered, but we will not use this here.

A consequence of Theorem 6.1 is that the Frobenius category EQ we attach to an acyclic

quiver has a cluster structure in the sense of Buan–Iyama–Reiten–Scott [8, §II.1], which
will allow us to use results of Fu and Keller [21] to complete the proof of Theorem 1.

Proposition 6.2. The Frobenius category EQ from Definition 5.3 has a cluster

structure.

Proof. By [8, Th. II.1.6], it is enough to check that endomorphism algebras of cluster-

tilting objects in EQ have no loops or 2-cycles in their quivers. Because EQ is a Hom-finite

Frobenius cluster category, this holds for those cluster-tilting objects in the mutation class

of T = eAQ by Theorem 6.1. But since EQ  CQ by Theorem 1(b), every cluster-tilting

object of EQ is in this mutation class [11, Th. A.1].

Proof of Theorem 1(c) and (d). Since EQ is a Hom-finite stably 2-Calabi–Yau Frobenius

category, with cluster-tilting object T = eAQ, it has a cluster character ϕT : Ob(EQ)→ ÃQ

relative to T, as defined by Fu and Keller (see [21, §3], or (9.8), for an explicit formula

for ϕT ).

Moreover, in Fu–Keller’s terminology [21, Def. 5.1], the pair (EQ,T ) is a Frobenius 2-

Calabi–Yau realization of the polarized principal coefficient cluster algebra ÃQ; this follows

from Proposition 6.2 and by using Theorem 2.6(c) to see that EndEQ
(T )op ∼= AQ has ice

quiver Q̃.

Both Theorem 1(c) and Theorem 1(d) now follow from [21, Th. 5.4(a)]. Note that

references to reachable objects in this theorem may be dropped since every indecomposable

rigid object and every cluster-tilting object in EQ is reachable by [11, Th. A.1], as in the

proof of Proposition 6.2. Note also that, unlike us, Fu and Keller do not consider the frozen

variables of ÃQ to be cluster variables, which leads them to exclude the indecomposable

projective objects from their statement. However, it is straightforward to check (see [21,

Th. 3.3(a)]) that ϕT also gives a bijection between the indecomposable projectives in EQ,
which are summands of T, and the frozen variables of ÃQ.

Just as for Theorem 1(b), the conclusions of Theorem 1(c) and (d) still hold when Q

is a 3-cycle, replacing BQ by BQ,W for W the natural potential on Q. In this case, ÃQ is

the cluster algebra of the Grassmannian G6
2, and GP(BQ,W ) is the Grassmannian cluster

category constructed by Jensen–King–Su [32] (see Example 3.3). The analogue of Theorem

6.1 holds for Grassmannian cluster categories, despite them being Hom-infinite (see [43,

Prop. 5.17] and its preceding discussion).

For a general quiver with potential (Q,W ), even assuming that AQ,W is Noetherian

so that the category EQ,W is well defined, it may still be the case that the cluster-tilting

objects in this category form several different mutation classes. However, this would not

significantly affect our arguments here: while we can only rule out loops and 2-cycles in

the mutation class of T = eAQ,W via our methods, and so we cannot show that EQ,W

has a cluster structure in the strict sense, Fu–Keller’s bijections (with the word reachable
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reinstated) are still valid in this situation. A more detailed discussion of this issue can be

found in [45, §6].

§7. An extriangulated categorification

In this section, we will prove Corollary 1, but first we need to define the extriangulated

category appearing in the statement. To keep our discussion brief, and since we only deal

with very particular examples, we will not define extriangulated categories fully here, and

instead refer the reader to [40]. The most important piece of data for us will be that of the

extension group E(X,Y ) for any two objects X and Y in the extriangulated category; in

our context, the objects of the category will be the same as those of the exact category EQ,
and we will have E(X,Y ) = Ext1EQ

(X,Y ).

Definition 7.1. Let Q be an acyclic quiver, with associated Frobenius category

EQ = GP(BQ) as in Definition 5.3. Write e− =
∑

i∈Q0
e−i , and P− = BQe

−. Define

E+
Q = EQ/[P−] to be the quotient of EQ by the ideal of morphisms factoring through an

object of addP−.

Proposition 7.2. The category E+
Q carries the structure of an extriangulated category.

Moreover, it is a Frobenius extriangulated category [40, Def. 7.1], and its stable category

E+
Q coincides with EQ, meaning in particular that it is triangulated and 2-Calabi–Yau.

Proof. Since P− is a projective–injective object of GP(BQ), the extriangulated structure

on E+
Q is induced from the exact structure on EQ as in [40, Prop. 3.30]. Since the extension

groups EE+
Q
(X,Y ) in this extriangulated category coincide with the extension groups

Ext1EQ
(X,Y ) in the exact category EQ, we see that an object is projective in E+

Q if and

only if it is projective in EQ, if and only if it is injective in EQ, and if and only if it is

injective in E+
Q . This agreement of extension groups also allows us to deduce the fact that

E+
Q has enough projective and injective objects [40, Def. 3.25] from this fact for GP(BQ),

and thus conclude that E+
Q is Frobenius. It also follows from the agreement of projective–

injective objects in E+
Q and EQ that E+

Q = EQ, the latter being a 2-Calabi–Yau triangulated

category by Corollary 4.15.

Note that if (Q,W ) is a Jacobi-finite quiver with potential such that AQ,W is Noetherian

and internally Calabi–Yau with respect to e (such as the 3-cycle with its usual potential),

so that we have a stably 2-Calabi–Yau Frobenius category EQ,W , we can define E+
Q,W =

EQ,W /[BQ,W e−]. The statement of Proposition 7.2 also holds for this category, with the

same proof.

Proof of Corollary 1. Statement (a) follows from Proposition 7.2, using Theorem 1(b)

to see that E+
Q = EQ is equivalent to the cluster category CQ.

To deduce the remaining statements from Theorem 1, first note that

Ext1EQ
(X,Y ) = EE+

Q
(X,Y ) = HomEQ

(X,Y [1])

for any X and Y in the common set of objects of the three categories EQ, E+
Q , and EQ. This

means that a set of representatives of isomorphism classes of cluster-tilting objects in EQ
is also such a set for E+

Q and for EQ. Moreover, since E+
Q and EQ have the same projective–

injective objects, a direct summand of one of these cluster-tilting objects is indecomposable

nonprojective in one of these subcategories if and only if this is the case in all three. Thus,
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two of these cluster-tilting objects are related by mutation at an indecomposable summand

in one of the categories if and only if they are related by mutation at the same summand in

all three. Consequently, the identity map is a bijection from the set of cluster-tilting objects

of EQ to the set of cluster-tilting objects of E+
Q , commuting with mutation. A more detailed

discussion of mutation of cluster-tilting objects in extriangulated categories can be found

in [15] (see also [54]).

Finally, the indecomposable rigid objects of E+
Q are, up to isomorphism, precisely the

indecomposable rigid objects of EQ which are not summands of P−.

It now follows from Theorem 1(c) and (d) that composing Fu–Keller’s cluster character

Ob(EQ)→ ÃQ with the map ÃQ →A •
Q evaluating the frozen variables x−

i at 1 provides the

required bijections. To see Corollary 1(c), note additionally that each seed of A •
Q is obtained

from one of ÃQ by removing the frozen variables x−
i and deleting the corresponding vertices

(together with any incident arrows) from the quiver. Similarly, one obtains the quiver of

EndE+
Q
(T )op from that of EndEQ

(T )op by removing the vertices corresponding to summands

of P−.

§8. Boundary algebras

Since the objects of the Frobenius category EQ in Theorem 1 are modules for the

idempotent subalgebra BQ = eAQe determined by the frozen vertices of Q̃, we wish to

describe this subalgebra more explicitly. In this section, we will give a presentation of BQ

via a quiver with relations.

Recall that the double quiver Q of a quiver Q has vertex set Q0 and arrows Q1 ∪Q∗
1,

where Q∗
1 = {α∗ : α ∈ Q1}. The head and tail maps agree with those of Q on Q1, and are

defined by hα∗ = tα and tα∗ = hα on Q∗
1. The complete preprojective algebra of Q is

ΠQ =K〈〈Q〉〉/〈
∑

α∈Q1
[α,α∗]〉

and, up to isomorphism, depends only on the underlying graph of Q. We begin with the

following general statement for frozen Jacobian algebras, which reveals some of the relations

of BQ,W for an arbitrary quiver with potential (Q,W ).

Proposition 8.1. Let (Q,F,W ) be an ice quiver with potential, let A = J(Q,F,W ),

and let B = eAe be the boundary algebra of A. Then there is an algebra homomorphism

π : ΠF →B given by π(ei) = ei for i ∈ F0, and π(α) = α, π(α∗) = ∂αW for α ∈ F1.

Proof. It suffices to check that π(
∑

α∈F1
[α,α∗]) = 0, that is,

∑
α∈F1

[α,∂αW ] = 0. By

construction, for any i ∈Q0, we have∑
α∈Hv

α∂αW −
∑
β∈Tv

∂βWβ = 0

in K〈〈Q〉〉. Projecting to A and summing over vertices, we see that

0 =
∑
α∈Q1

[α,∂αW ] =
∑
α∈Q◦

1

[α,∂αW ]+
∑
α∈F1

[α,∂αW ] =
∑
α∈F1

[α,∂αW ],

where the final equality holds since ∂αW = 0 in A whenever α ∈Q◦
1.
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Remark 8.2. Familiarity with the constructions of [8, 24, 32] may make it tempting

to conjecture that the map π in Proposition 8.1 is surjective, at least when J(Q,F,W ) is

bimodule internally 3-Calabi–Yau, but this is in fact rarely the case. Indeed, we will see

in this section that π fails to be surjective for our frozen Jacobian algebras J(Q̃, F̃ ,W̃ )

whenever Q is acyclic with a path of length 2 (see Example 8.4).

We now turn to our description of BQ, beginning with what will turn out to be its Gabriel

quiver.

Definition 8.3. Let Q be an acyclic quiver, and consider the frozen subquiver F̃ of Q̃,

which has vertex set F̃0 = {i+, i− : i ∈Q0} and arrows

δi : i
+ → i−, δa : ha

+ → ta−

for each i ∈Q0 and a ∈Q1. We define a quiver ΛQ by adjoining to F̃ an arrow

δ∗p : tp
− → hp+

for each path p of Q. Since Q is acyclic, it has finitely many paths, and so ΛQ is a finite

quiver.

If p= ei is the trivial path at i ∈Q0, we write δ∗p = δ∗i to avoid a double subscript. The

double quiver of F̃ appears as the subquiver of ΛQ obtained by excluding the arrows δ∗p for

p of length 2 or more; the notation for the arrows of ΛQ is chosen to be consistent with

that used earlier for the arrows of this double quiver.

Example 8.4. Let

Q= 1 2 3
a b

be a linearly oriented quiver of type A3. Then ΛQ is the following quiver.

ΛQ =
1+ 1− 2+ 2− 3+ 3−

δ1

δ∗1 δ∗a

δa δ2

δ∗2 δ∗b

δb δ3

δ∗3

δ∗ba

Definition 8.5. Let Q be a quiver. A zigzag in Q is a triple (q,a,p), where p and q

are paths in Q, and a ∈Q1 is an arrow such that hp= ha and tq = ta. Thus, if a : v → w is

an arrow of Q, a zigzag involving a is some configuration

w v
a

p

q

where the dotted arrows denote paths. We call the zigzag strict if p �= ap′ for any path p′

and q �= q′a for any path q′, but do not exclude these possibilities in general. If z = (q,a,p)

is a zigzag, then we define hz = hq and tz = tp.
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We now write down elements of K〈〈ΛQ〉〉 that will turn out to be a set of generating

relations for BQ, having three flavors, as follows:

(R1) For each path p of Q, let

r1(p) = δ∗pδtp−
∑
a∈Q1
ha=tp

δ∗paδa.

(R2) For each path p of Q, let

r2(p) = δhpδ
∗
p −

∑
a∈Q1
ta=hp

δaδ
∗
ap.

(R3) For each zigzag (q,a,p) of Q, let

r3(q,a,p) = δ∗qδaδ
∗
p.

We write I for the ideal of K〈〈ΛQ〉〉 generated by the union of these three sets of relations.

This generating set is usually not minimal, as for certain zigzags (q,a,p), the relation

r3(q,a,p) may already lie in the ideal generated by relations of the forms r1 and r2. For

example, if a ∈Q1 is an arrow such that i= ta is not incident with any other arrows of Q,

then

r1(a) = δ∗aδi, r2(ei) = δiδ
∗
i − δaδ

∗
a,

so in K〈〈ΛQ〉〉/〈r1(a), r2(ei)〉 we already have

r3(a,a,a) = δ∗aδaδ
∗
a = δ∗aδiδ

∗
i = 0.

One can check that if (q,a,p) is a strict zigzag, then r3(q,a,p) is not redundant, but this

condition is not necessary; if Q is a linearly oriented quiver of type A4 and a is the middle

arrow, then the nonstrict zigzag (a,a,a) yields an irredundant relation.

Remark 8.6. When p= ei is a vertex idempotent, the relations r1(ei) and r2(ei) reduce

to the preprojective relations on the double quiver of F̃ , of the form predicted by Proposition

8.1. Each arrow a ∈Q1 is part of the trivial strict zigzag (eta,a,eha), and so contributes an

irredundant relation r3(eta,a,eha) = δ∗taδaδ
∗
ha.

Let Φ: K〈〈ΛQ〉〉 → AQ be the map given by the identity on the vertices of ΛQ and the

arrows δi and δa for i ∈Q0 and a ∈Q1; this makes sense as these are subsets of the vertices

and arrows of Q̃. On the remaining arrows δ∗p of ΛQ, we define Φ(δ∗p) = αhppβtp.

Proposition 8.7. The map Φ above induces a well-defined map Φ: K〈〈ΛQ〉〉/I →BQ.

Proof. Since Φ sends every vertex or arrow of ΛQ to the image in AQ of a path in Q̃

with frozen head and tail, it takes values in BQ. It remains to check that it is zero on each

of the generating relations of I, which we do by explicit calculation. Let p be a path in Q.

Then
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Φ(r1(p)) = αhppβtpδtp−
∑
a∈Q1
ha=tp

αhppaβtaδa = αhpp(∂αtpW̃ ) = 0,

Φ(r2(p)) = δhpαhppβtp−
∑
a∈Q1
ta=hp

δaαhaapβtp = (∂βhp
W̃ )pβtp = 0.

If (q,a,p) is a zigzag, then

Φ(r3(q,a,p)) = αhrqβtaδaαhapβtp = 0,

since 0 = ∂aW̃ = ∂aW −βtaδaαha =−βtaδaαha by acyclicity of Q.

Theorem 8.8. Let Q be an acyclic quiver. Then the map Φ: K〈〈ΛQ〉〉/I → BQ, where

Φ, ΛQ, and I are all defined as above, is an isomorphism.

Proof. We begin by showing surjectivity. As in the proof of Theorem 5.2, we may use

Lemma 5.1 to see that any path in Q̃ determining a nonzero element of A has the form

p= q1p
′q2 where q1 and q2 contain no arrows of Q1, and p′ is a path of Q. If p has frozen

head and tail, then q1 and q2 must be nonzero, so we even have

p= q′1αhp′p′βtp′q′2 = q′1Φ(δ
∗
p′)q′2.

Now, q′1 and q′2 are, like p, paths of Q̃ with frozen head and tail, but with the additional

property that they include no arrows of Q1. Let q be such a path. If q contains the arrow

βi for some i ∈Q0, then this arrow must have a successor in q, since its head is unfrozen.

Moreover, this successor must be αi, since this is the only arrow outside of Q1 that may

follow βi. Similarly, any occurrence of αi in q must be preceded by βi. It follows that q

is either a vertex idempotent e±i = Φ(e±i ), or is formed by composing paths of the form

δi = Φ(δi) for i ∈ Q0, δa = Φ(δa) for a ∈ Q1, or αiβi = Φ(δ∗i ) for i ∈ Q0, and so is in the

image of Φ. We conclude that the projection to AQ of any path in Q̃ with frozen head and

tail lies in the image of Φ. Since these projections span BQ, we see that Φ is surjective.

From now on, we abbreviate B = BQ. To complete the proof, we will use [9, Prop. 3.3],

which in this context states that Φ is an isomorphism if and only if

⊕
p path in Q

tp=i

Be+hp Be−i ⊕
( ⊕

a∈Q1
ha=i

Be−ta

)
rad Be+i 0

f (·δi,·δa)
(8.1)

and( ⊕
p path in Q

tp=i

Be−hp

)
⊕
( ⊕

z zig-zag
tz=i

Be+hz

) ⊕
p path in Q

tp=i

Be+hp rad Be−i 0
g ·Φ(δ∗p)

(8.2)

are exact sequences for all i ∈Q0. Here, the left-most maps in each sequence are obtained

from our generators for the ideal I by right-differentiation (4.7) and the application of Φ,

as prescribed in [9], so they act on components by
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f(ye+hp) = yΦ(δ∗p)⊗ [i]−
∑
a∈Q1
ha=i

yΦ(δ∗pa)⊗ [a],

g(ye−hp) = yδhp⊗ [p]−
∑
a∈Q1
ta=hp

yδa⊗ [ap],

g(ye+hz) = yΦ(δ∗q )δa⊗ [p], where z = (q,a,p).

(8.3)

Here, we have dealt with the ambiguity about which summand contains each term as in §4,
denoting elements of

⊕
a∈XBev(a) by

∑
a∈X xa⊗ [a], with xa ∈Bev(x) and xa⊗ [a] denoting

its inclusion into the summand of
⊕

a∈XBev(a) indexed by a. We adopt the convention here

that the summand Be−i appearing in the middle term of (8.1) is indexed by the vertex i.

Since Φ is well defined and surjective, sequences (8.1) and (8.2) are complexes and exact

at radBe+i and radBe−i , respectively, so we need only check exactness at the middle term

in each case. We proceed as in §4, using the explicit set R of relations for AQ from (3.1),

and begin with (8.1). Let xi ∈ eK〈〈Q̃〉〉e−i and xa ∈ eK〈〈Q̃〉〉e−ta for each a ∈Q1 with ha= i,

determining the element

x= xi⊗ [i]+
∑
a∈Q1
ha=i

xa⊗ [a]

of the middle term of (8.1). Assume that x is a cycle for this complex, that is,

xiδi+
∑
a∈Q1
ha=i

xaδa ∈ 〈R〉.

Since the only generating relation for AQ with terms ending in δi or δa for a ∈ Q1 with

ha= i is ∂αiW , it follows that in K〈〈Q̃〉〉 we have

xiδi+
∑
a∈Q1
ha=i

xaδa = ziδi+
∑
a∈Q1
ha=i

zaδa+y∂αiW

= ziδi+
∑
a∈Q1
ha=i

zaδa+y

(
βiδi−

∑
a∈Q1
ha=i

aβtaδa

)

for zi, za ∈ 〈R〉 and y ∈ K〈〈Q̃〉〉ei. Comparing terms, we see that xi = zi + yβi and xa =

za−yaβta. Since hxi and hxa are frozen, but hβj is unfrozen for all j ∈Q0, we must have

y =
∑

p path in Q
tp=i

ypαhpp

for some yp ∈Be+hp. Projecting to B, we have

xi =
∑

p path in Q
tp=i

ypΦ(δ
∗
p), xa =

∑
p path inQ

tp=i

−ypΦ(δ
∗
pa).
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Thus,

y =
∑

p path in Q
tp=i

yp⊗p

satisfies f(y) = x, and so sequence (8.1) is exact.

Now, we turn to (8.2). For each path p in Q with tp= i, pick xp ∈ eK〈〈Q̃〉〉e+hp, and assume

that ∑
p path in Q

tq=i

xpαhppβi ∈ 〈R〉,

so that

x=
∑

p path in Q
tp=i

xp⊗ [p]

is a cycle in the middle term of (8.2). By comparison with the generating relations, we see

that we may write∑
p path in Q

tp=i

xpαhppβi

=
∑

p path in Q
tp=i

(
zpαhppβi+yp

(
δhpαhp−

∑
b∈Q1
tb=hp

δbαhbb

)
pβi−

∑
a∈Q1
ha=hp

ya,p(βtaδaαha)pβi

)

for some zp ∈ 〈R〉, yp ∈ K〈〈Q̃〉〉e−hp and ya,p ∈ eK〈〈Q̃〉〉eta. Each path p in the sum is either

the trivial path ei or of the form p= br for some arrow b and path r. By comparing terms,

we deduce that after projection to B we have

xi = yiδi−
∑
a∈Q1
ha=i

ya,eiβtaδa, xbr = ybrδhb−yrδb−
∑
a∈Q1
ha=hb

ya,brβtaδa.

Since ya,p ∈ eK〈〈Q̃〉〉eta, we must have

ya,p =
∑

q path in Q
tq=ta

yq,a,pαhqq

for some yq,a,p ∈ eKQ̃e+hq. The triple z = (q,a,p) occurring in a subscript here satisfies

ha = hq and ta = tp, so it is a zigzag. One may then calculate explicitly using (8.3) that

the yp and yz = yq,a,p give a preimage

y =
∑

p path in Q
tp=i

yp⊗ [p]+
∑

z zig-zag
tz=i

yz ⊗ [z]

of x under g.

We close this section with the following curious property of the category EQ =GP(BQ).

Recall that Sub(X), for X ∈modBQ, denotes the full subcategory of modBQ on objects

M admitting a monomorphism M →Xn for some n.
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Proposition 8.9. Write P+ =
⊕

i∈Q0
BQe

+
k . If Q is acyclic and has no isolated

vertices, then GP(BQ)⊆ Sub(P+).

Proof. Write B =BQ. Since GP(B) is a Frobenius category with injective objects those

in addB, it suffices to show that B ∈ Sub(P+), or that Be±i ∈ Sub(P+) for each i. Since

this is true of Be+i by definition of P+, it remains to show that Be−i ∈ Sub(P+) for each

i ∈Q0. Since Q has no isolated vertices, i cannot be both a source and a sink.

First, assume that i is not a source in Q. Then the map Be−i → Be+i given by right

multiplication by δi is injective, as follows. If x ∈Be−i satisfies xδi = 0 in Be+i , then lifting

to K〈〈ΛQ〉〉 and using the explicit generating set of I, we have

xδi = zδi+
∑

p path in Q
tp=i

yp

(
δ∗pδi−

∑
a∈Q1
ha=i

δ∗paδa

)

for some z ∈ I and yp ∈ eK〈〈ΛQ〉〉e+hp. Since i is not a source, the sum over arrows on the

right-hand side is nonempty. By comparing coefficients, we see that yp = 0 for all p, and

hence x= z = 0 in A.

Now, assume that i is not a sink. Pick a ∈ Q1 with ta = i. Then the map Be−i → Be+ha
given by right multiplication by δa is injective as follows. If x ∈ Be−i satisfies xδa = 0 in

Be+ha, then lifting to K〈〈ΛQ〉〉 and using our explicit relations, we have

xδa = z+
∑

p path in Q
tp=ha

yp

(
δ∗pδha−

∑
b∈Q1
hb=ha

δ∗paδa

)
,

for z ∈ I, and it follows by comparing coefficients that yp = 0 for all p, so x= 0.

Example 10.2 shows that we may have EQ � Sub(P+). The assumption on isolated

vertices is necessary, since such a vertex i of Q results in a direct summand of EQ equivalent

to mod Π for Π the preprojective algebra of type A2, with indecomposable objects S±
i and

P±
i , and S−

i ,P−
i /∈ Sub(P+) = Sub(P+

i ).

§9. g-vectors, indices, and dimension vectors

In this section, we show how representation-theoretic information about the category EQ
from Theorem 1 can be used to recover information about the principal coefficient cluster

algebra A •
Q. These are not new results (unsurprisingly, since this cluster algebra is very

well-studied), but the style of proofs is different and demonstrates how the categorification

given here can be used. Our results are also not restricted to the acyclic case, but hold

whenever an appropriate Frobenius categorification can be constructed, for example, in the

context of Corollary 4.15.

Let (Q,W ) be a Jacobi-finite quiver with potential such that the frozen Jacobian algebra

A = AQ,W is Noetherian; for example, one can take Q to be an acyclic quiver. Then,

by Corollary 4.15, the category E = GP(eAe) is a stably 2-Calabi–Yau category with a

cluster-tilting object T = eA, and there are compatible isomorphisms EndE(T )
op ∼= A and

EndE(T )
op ∼= J(Q,W ). We keep the abbreviated notation A, T, and E for the rest of the

section.

The isomorphism EndE(T )
op ∼= A allows us to write the indecomposable summands of

T as Ti, for i ∈ Q0, where Ti corresponds to Aei under the isomorphism. We write P±
i
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instead of T±
i , noting that these are the indecomposable projective–injective objects of E ,

and write P± =
⊕

i∈Q0
P±
i , which is compatible with the notation in §8. We abbreviate

F =HomE(T,–) and G=Ext1E(T,–), these being functors E →mod A via the isomorphism

EndE(T )
op ∼= A. Finally, we write [M :N ] for the multiplicity of N as an indecomposable

summand of M (for M and N objects in any category in which this makes sense).

Lemma 9.1. Let X ∈ E. Then the minimal projective resolution

0 P 3 P 2 P 1 P 0 GX 0 (9.1)

of GX has the property that, for each j ∈Q0,

[P k :Ae+j ] =

{
dimK(ejGX), k = 1,

0, otherwise,

[P k :Ae−j ] =

{
dimK(ejGX), k = 2,

0, otherwise.

Proof. Note that eGX = Ext1E(P
+ ⊕ P−,X) = 0, so the composition series of GX

includes only the simple modules Si for i ∈Q0 a mutable vertex. In this case, the sequence

(4.5), which is exact by Propositions 4.10 and 4.12, is a projective resolution of the simple

A-module Si. We write this resolution as

0 P 3
i P 2

i P 1
i P 0

i Si 0 (9.2)

for projective A-modules P k
i which can be described explicitly using (4.6). In particular,

one sees using this description that the only appearances of the projective A-modules Ae±j
in (9.2) are one copy of Ae+i in P 1

i , and one copy of Ae−i in P 2
i .

By the horseshoe lemma, we can thus construct a (possibly nonminimal) projective

resolution of GX in which the degree k term P̂ k is a direct sum of the P k
i over composition

factors Si of GX. As a consequence, this resolution includes dimK(ejGX) copies of Ae+j ,

all summands of P̂ 1, and dimK(ejGX) copies of Ae−j , all summands of P̂ 2. Since each Ae±j
appears in only one homological degree in this resolution, it cannot be part of an acyclic

summand, and so it appears with the same multiplicity and degree in the minimal projective

resolution (9.1) of GX, as required.

Recall that any X ∈ E fits into an exact sequence

0 KX RX X 0 (9.3)

with KX ,RX ∈ addT . Indeed, this holds for any Frobenius cluster category and cluster-

tilting object, and the choice of sequence (9.3) is equivalent to the choice of the map

RX →X, subject to the condition that this map is a right addT -approximation. Dually, X

fits into an exact sequence

0 X LX CX 0 (9.4)

with LX ,CX ∈ addT , with the choice of sequence being equivalent to the choice of left

addT -approximation X → LX . We say that the sequence (9.3) is minimal if the map
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RX →X is a minimal right addT -approximation of X, or equivalently if no nonzero

component of the map KX →RX is an isomorphism, and define minimality for (9.4) dually.

Lemma 9.2. For any X ∈ E, choose minimal sequences of the forms (9.3) and (9.4),

and let i ∈Q0. Then

[KX : P±
i ] = [CX : P±

i ] = 0,

[RX : P+
i ] = [LX : P−

i ] = 0,

[RX : P−
i ] = [LX : P+

i ] = dimK(eiGX).

Proof. The first line of equalities follows immediately from minimality, using that P±
i is

projective–injective. For the remaining equalities, recall that F restricts to an equivalence

addT
∼→ projA by the Yoneda lemma. Applying F to (9.3) yields the exact sequence

0 FKX FRX FX 0, (9.5)

which is a projective resolution of FX. Applying F to (9.3) yields

0 FX FLX FCX GX 0,

and taking the cup product with (9.5) yields

0 FKX FRX FLX FCX GX 0, (9.6)

which is a projective resolution of GX. Furthermore, since the addT -approximations

RX →X and X →LX were chosen to be minimal, the projective resolutions (9.5) and (9.6)

are also minimal. Noting that [RX : P±
i ] = [FRX : FP±

i ] and [LX : P±
i ] = [FLX : FP±

i ], and

that FP±
i =Ae±i by Corollary 4.15, the result follows from Lemma 9.1.

These observations will allow us to compute the g-vectors of any cluster algebra arising

from a seed with principal part Q in terms of in terms of the category E = EQ. We define

g-vectors via a grading on the principal coefficient cluster algebra A •
Q, as in [20, §6]. Write

the initial cluster variables of this cluster algebra as xi and x+
i for i ∈Q0, where the x

+
i are

frozen. We then give these variables ZQ0-degrees

degxi = εi, degx+
i = bi,

where εi is the ith standard basis vector (named to avoid confusion with idempotents) and

bi is the ith row of the exchange matrix b of Q. We extend this to the initial cluster variables

of ÃQ by setting degx−
i = 0. This assignment puts a grading on the Laurent polynomial

ring in variables xi, x
+
i , and x−

i , and thus on its subalgebra ÃQ; note that the specialization

x−
i = 1, which restricts to a map ÃQ → A •

Q, preserves degrees. We refer to the degree of

any homogeneous element of the Laurent polynomial ring in xi and x+
i as the g-vector of

the element.

All cluster variables of ÃQ are homogeneous in the above grading; by work of Grabowski

[26, Prop. 3.2], this follows from the matrix identity

(
−b 1n −1n

)⎛⎝1n
b

0n

⎞⎠ , (9.7)
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where 1n is the n×n identity matrix and 0n is the n×n zero matrix, by observing that

the first matrix in the product is the transposed exchange matrix of the initial seed of

ÃQ, and the second has rows given by the degrees of the cluster variables in this seed.

Thus, the cluster variables of A •
Q are also homogeneous and hence have well-defined

g-vectors.

Given any seed s with principal part Q, the mutable cluster variables of A •
Q are in natural

bijection with those of the cluster algebra As with initial seed s, and so we define the g-

vector of a cluster variable in As to be the g-vector of the corresponding cluster variable in

A •
Q. This applies in particular to the coefficient-free cluster algebra AQ.

The main results of this section involve the Fu–Keller cluster character ϕT as in [21] and

§6. While we are only assuming that A = EndE(T )
op is Noetherian, and not necessarily

finite-dimensional, this is sufficient for the cluster character to be well defined (cf. [27, §3]
and [45, §6]).

Theorem 9.3. Assume that A = AQ,W is Noetherian, and consider the corresponding

Frobenius category E = EQ,W and cluster-tilting object T = eA. Let X ∈ E, and choose a

minimal short exact sequence of the form (9.3). Write

RX = P ⊕
⊕
i∈Q0

T ri
i , KX =

⊕
i∈Q0

T ki
i ,

where P ∈ E is projective and Ti = eAei. Then ϕT (X) is homogeneous, and its g-vector is∑
i∈Q0

(ri−ki)εi.

Proof. We first observe that KX has no projective summands, since this would violate

minimality, and so RX and KX have expressions of the required form. The element

G=
∑
i∈Q0

[Si]⊗εi+
∑
i∈Q0

[S+
i ]⊗ bi ∈K0(fdA)⊗ZQ0 ,

where Sj denotes the simple A-module at vertex j ∈ Q̃0, is a grading of E in the sense

of [27, Def. 3.7]; this follows again from the matrix identity (9.7), as in [27, Rem. 3.9(ii)].

We write this grading of E as degG. It then follows from [27, Prop. 3.11(i)] that ϕT (X) is

homogeneous and its g-vector is equal to degG(X).

Now, by [27, Prop. 3.11(ii)], we have

degG(X) = degG(RX)−degG(KX).

By construction, we have

degG(RX) = degG(P )+
∑
i∈Q0

ridegG(Ti) = degG(P )+
∑
i∈Q0

riεi,

degG(KX) =
∑
i∈Q0

kidegG(Ti) =
∑
i∈Q0

kiεi,

so that

degG(X) = degG(P )+
∑
i∈Q0

(ri−ki)εi.

But, by Lemma 9.2, we have P ∈ addP−, so degG(P ) = 0 and the result follows.
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Remark 9.4. The quantity
∑

i∈Q0
(ri−ki)εi is by definition (cf. [41, §2.1]) the index

of X with respect to T. Thus, Theorem 9.3 recovers the well-known result [21, Prop. 4.3]

that the g-vector is categorified by the index, at least for those cluster algebras admitting

appropriate additive categorifications (e.g., those defined by acyclic quivers).

We may use similar methods to show how the cluster character ϕT on E may be computed

solely in terms of the representation theory of the stable category E , and of the finite-

dimensional algebra J(Q,W ). This is the first point at which we use an explicit formula for

ϕT , and so we recall this from [21].

Recall that we are assuming EndE(T )
op ∼= A = AQ,W is Noetherian. A consequence of

Theorem 4.14 is that gl.dimA� 3, and so the Euler form

〈M,N〉=
3∑

i=0

(−1)idimExtiA(M,N)

is well defined when M ∈modA is finitely generated and N ∈modA is finite-dimensional.

Since A has finite global dimension, the value of 〈M,N〉 depends only on the dimension

vector of the finite-dimensional module N by the horseshoe lemma, and so we may write

〈M,d〉 := 〈M,N〉 for an arbitrary A-module N with dimension vector d ∈ Z
˜Q0 . Theorem

4.14 also implies that 〈M,N〉=−〈N,M〉 if both modules are finite-dimensional and eN =0,

so we may analogously define 〈d,M〉 for d ∈ Z
˜Q0 supported only on the set Q0 of mutable

vertices and M a finite-dimensional A-module.

Recall further that we write F =Hom(T,–) and G=Ext1(T,–). Now, Fu–Keller’s cluster

character for X ∈ E can be written

ϕT (X) = xĝX
∑

d∈ZQ0

λdx
v̂d , (9.8)

with notation as follows. The vector ĝX ∈ Z
˜Q0 has ith coordinate 〈FX,Si〉, where FX =

HomE(T,X) as above and Si denotes the simple A-module at vertex i ∈ Q̃0. Similarly,

the vector v̂d ∈ Z
˜Q0 has ith coordinate 〈d,Si〉 = −〈Si,d〉. We use the standard monomial

notation xu :=
∏

i∈ ˜Q0
xui
i for u∈Z

˜Q0 . Finally, λd ∈Z is the Euler characteristic of the quiver

Grassmannian of d -dimensional submodules of the A-module GX =Ext1E(T,X). Note that

GX is a finite-dimensional EndE(T )
op ∼= J(Q,W )-module, hence the restriction to d ∈ ZQ0

in the summation. Thus, λd can be nonzero only for the finite set of d ∈ ZQ0 satisfying

0� d� dimGX coordinatewise.

For eachX ∈E and d∈Z
˜Q0 , let gX ,vd ∈ZQ0 be the restrictions of ĝX and v̂d, respectively,

to the mutable vertices Q0. Furthermore, write

ϕT (X) = ϕT (X)|x±
i =1. (9.9)

By [21, Th. 3.3(b)], this function coincides with Palu’s cluster character [41] for the stable

category E , evaluated on the shifted object ΣX. Consequently, the data of gX , vd and λd

may be computed entirely from E and the algebra J(Q,W ).

The next result shows that this is in fact also true of the extended vectors ĝX and v̂d,

and hence of the cluster character ϕT (X). To state it, we extend our monomial notation to

write (x+)u =
∏

i∈Q0
(x+

i )
ui when u ∈ ZQ0 , and define (x−)u similarly. We treat ZQ0 as a

https://doi.org/10.1017/nmj.2023.6 Published online by Cambridge University Press

https://doi.org/10.1017/nmj.2023.6


A CATEGORIFICATION OF ACYCLIC PRINCIPAL COEFFICIENT CLUSTER ALGEBRAS 35

subset of Z
˜Q0 in the natural way, so that a monomial xu for u ∈ ZQ0 lies in the same ring

as a monomial xv for v ∈ Z
˜Q0 (cf., e.g., (9.11)).

Theorem 9.5. Assume that AQ,W is Noetherian, and let E = EQ,W with cluster-tilting

object T = eAQ,W . Then, for any X ∈ E, the cluster character of X with respect to T is

ϕT (X) = xgX
∑

d∈ZQ0

λdx
vd(x+)d(x−)dim(GX)−d, (9.10)

for gX , vd, and λd as above.

Proof. Bearing in mind the identity (9.9) (cf. [21, Th. 3.3(b)]), it is sufficient to compute

the power of x±
i appearing in each term of the formula (9.8) for ϕT (X).

First, we deal with the leading term xĝX . For i ∈ Q0, the i±-component of ĝX is by

definition 〈FX,S±
i 〉. This can be computed using the projective resolution (9.5) of FX,

which shows that

〈FX,S±
i 〉= dimHomA(FRX ,S±

i )−dimHomA(FKX ,S±
i )

= [RX : P±
i ]− [KX : P±

i ]

for RX ,KX ∈ addT as in (9.3); the second equality uses that dimHomA(FRX ,S±
i ) counts

the multiplicity of the projective FP±
i as a summand of the projective FRX (and similarly

for KX), and also the Yoneda lemma as in the proof of Lemma 9.2. We may then use this

lemma to see that

〈FX,S+
i 〉= 0,

〈FX,S−
i 〉= dimK(eiGX),

so that

xĝX = xgX (x−)dimK(GX). (9.11)

We calculate xv̂d , for d ∈ Z
˜Q0 , similarly. The i±-component is

〈d,S±
i 〉=

∑
j∈Q0

dj〈Sj ,S
±
i 〉.

Now, arguing as for ĝX , we may use (9.2) to compute that

〈Sj ,S
+
i 〉=

{
1, i= j,

0, otherwise,

〈Sj ,S
−
i 〉=

{
−1, i= j,

0, otherwise.

It then follows that

xv̂d = xvd(x+)d(x−)−d, (9.12)

and we obtain the desired result by substituting (9.11) and (9.12) back into (9.8).
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Remark 9.6. Using the interpretation of λd as the Euler characteristic of a quiver

Grassmannian, the nonzero terms of the sum in (9.10) are indexed by (dimension vectors

of) submodules of the J(Q,W )-module GX. In the term indexed by such a submodule N,

the exponent of x+ is dim(N), and that of x− is dim(GX/N).

Corollary 9.7. The bijection between rigid indecomposable objects of E+
Q and cluster

variables of the principal coefficient cluster algebra A •
Q, as in Corollary 1(b), is given by

X �→ ϕT
+(X) where

ϕT
+(X) = xgX

∑
d∈ZQ0

λdx
vd(x+)d.

Proof. As in the proof of Corollary 1, the bijection is given by specializing Fu–Keller’s

cluster character on EQ (where X is also an object) at x−
i = 1 for all i ∈Q0. The result is

then immediate from Theorem 9.5.

Remark 9.8. The right-hand side of (9.10) is precisely the cluster character with

coefficients considered by Borges and Pierin [5, Def. 3.1] for the cluster category of a Dynkin

quiver. As a consequence, their expression satisfies the cluster character multiplication

formula (see, e.g., [13, Th. 2]), even after extending the setting to cluster categories of

arbitrary acyclic quivers.

§10. Examples

Example 10.1. Let Q be an A2 quiver, so, as computed in Example 3.2,

(Q̃, F̃ ) =

1 2

1+

1−

2−

2+

a

α1

β1 α2

β2

δ1 δ2

δa

and W̃ = β1δ1α1+β2δ2α2−aβ1δaα2. Then AQ = J(Q̃, F̃ ,W̃ ), and its boundary algebra is

BQ
∼=K〈〈ΛQ〉〉/I for

ΛQ = 1 2 3 4

α

α∗

β

β∗

γ

γ∗

and I = 〈α∗α, αα∗ − β∗β, ββ∗ − γ∗γ, γγ∗, βα, γβ, α∗β∗γ∗〉. Here, we have relabeled

the vertices by identifying the ordered sets (1+,1−,2+,2−) and (1,2,3,4). The Auslander–

Reiten quiver of GP(B) is shown in Figure 1, where we identify the left and right sides

of the picture so that the quiver is drawn on a Möbius band. To calculate the objects of

GP(BQ), it is useful to observe that, in this example, BQ is 1-Iwanaga–Gorenstein, and

so GP(BQ) = Sub(BQ). The stable category GP(BQ) is the cluster category of type A2, as
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2 4
1 3
2

3
2 4

1 3
2

2

3
2

1
2

4
3

2

1 3
2

4
1 3
2

2
1 3
2

2 4
1 3
2

Figure 1.

The Auslander–Reiten quiver of GP(BQ) for Q of type A2.

expected. The cluster-tilting object

T = 3
2 ⊕ 1 3

2 ⊕BQ

of GP(BQ) has endomorphism algebra AQ, and corresponds to the initial seed of the cluster

algebra with polarized principal coefficients associated with our initial A2 quiver Q.

Example 10.2. Let Q be a linearly oriented quiver of type A3. We may then compute

(Q̃, F̃ ) =
1 2 3

1+

1− 2+ 2−

3−

3+

a b

α1

β1
α2 β2

α3

β3

δ1

δ2

δ3

δa δb

Relabeling vertices similarly to Example 10.1, the boundary algebra BQ has quiver

ΛQ =
1 2 3 4 5 6

as computed before in Example 8.4. Explicit relations can be written down as in §8, but
here we will simply give radical filtrations for the projective modules. Note that despite the

geographical separation of 2 and 5 in these filtrations, the arrow 2 → 5 always acts as a

vector space isomorphism from the one-dimensional subspace of e2BQ indicated by a 2 in

the filtration to the one-dimensional subspace of e5BQ indicated by a 5 in the row below,

when this configuration occurs.

P1 = 1
2 P2 =

2
1 3 5
2 4

P3 =
3

2 4
1 3 5
2 4

P4 =
4

3 5
2 4

P5 =
5

4 6
3 5

2 4
P6 =

6
5

4
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4
1 3 5
2 4

2 4 6
1 33 55
22 44

2 4
1 3 5
2 4

5
4 6

3 5
2 4

2

3
2 4

1 3 5
2 4

5
4

1
2

3 5
2 4

6
5

4

1 3 5
2 4

4
3 5

2 4

6
3 5

2 4

2
1 3 5
2 4

4 6
1 33 55
22 44

2 4 6
1 33 55
22 44

4
1 3 5
2 4

Figure 2.

The Auslander–Reiten quiver of GP(BQ) for Q linearly oriented of type A3. In addition to the usual mesh

relations coming from Auslander–Reiten sequences, the length 2 path from P2 to P5 represents the zero

map.

In this case, the Gorenstein dimension of BQ is 2; the indecomposable projective P2 has

injective dimension 2, whereas all others have injective dimension 1. The Auslander–Reiten

quiver of GP(BQ) is shown, again on a Möbius band, in Figure 2.

The initial cluster-tilting object from Corollary 4.15 is

T = 1 3 5
2 4 ⊕ 3 5

2 4 ⊕ 5
4 ⊕BQ.

Example 10.3. Applying our construction to the quiver with potential (Q,W ) from

Example 3.3 in whichQ is a 3-cycle (which we may do, since while A is not finite-dimensional

in this case, it is still Noetherian) yields, as observed in Example 3.3, the Grassmannian

cluster category for the Grassmannian Gr62 [32]. This is a Hom-infinite category, and the

Gorenstein projective B -modules are all infinite-dimensional. Representing these modules

by Plücker labels as in [32], the Auslander–Reiten quiver of GP(BQ,W ) is shown, on the

now familiar Möbius band, in Figure 3.

In this case, the quiver of the endomorphism algebra of the object

13⊕15⊕35⊕BQ,W

is Q̃, as is the quiver of the (isomorphic) endomorphism algebra of 24⊕26⊕46⊕BQ,W . We

note that the stable category GP(BQ,W ) is equivalent to the cluster category CQ,W  CQ′

where Q′ is any orientation of the Dynkin diagram A3. Thus, all of the conclusions of

Theorem 1 (replacing EQ by EQ,W and CQ by CQ,W ) still hold in this case, despite the

failure of acyclicity.
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13

46

23

14

56

24

15

34

25

16

35

26

45

36

12

13

46

Figure 3.

The Auslander–Reiten quiver of GP(BQ,W ), where (Q,W ) is a 3-cycle and its usual potential, shown as

the Grassmannian cluster category CM(B2,6).
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