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1 Introduction

Treating the Standard Model as an Effective Field Theory (EFT) is an invaluable way to
characterize the potential impact of new physics on observables. Generally, there are two
EFT approaches to extending the Standard Model, distinguished by the linearly realized
gauge symmetry: taking the gauge symmetry of the EFT to be SU(3)C × SU(2)L × U(1)Y
results in the Standard Model EFT (SMEFT) [1–3], while taking only SU(3)C × U(1)em
yields the Higgs EFT (HEFT)1 [4–6]. In the former description, electroweak symmetry is
then broken by the vacuum expectation value of the electroweak doublet H , correlating the
interactions of the physical Higgs h and the Goldstones πi that become the longitudinal
modes of the W and Z. In the latter, no relation is assumed between h and the πi, which

1Alternately, the Higgs-Electroweak Chiral Lagrangian (EWChL).
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nonlinearly realize the SU(2)L ×U(1)Y gauge symmetry. The parameter space of SMEFT
is a subset of HEFT [7], implying a grading of effective theories expressed in terms of
HEFT: “reducible HEFTs” that can be equally well expressed in terms of SMEFT via field
redefinitions, and “irreducible HEFTs” that cannot. (In what follows, to economize our
language we will simply refer to “reducible HEFT” as SMEFT, since the two only differ
by the choice of parameterization, and “irreducible HEFT” as HEFT.) To the extent that
EFT extensions of the Standard Model now play a central role in the interpretation of
experimental data, understanding the essential differences between HEFT and SMEFT
— and the physical implications of theories whose low-energy limit can only be described
by the former — is of paramount importance. Since field redefinitions can blur apparent
distinctions at the level of the Lagrangian, invariant criteria are required to draw meaningful
distinctions between the two EFT frameworks.

At least three distinct approaches have been taken in distinguishing HEFT from SMEFT.
The first involves unitarity: as the full electroweak gauge symmetry SU(2)L × U(1)Y is
nonlinearly realized in HEFT (with the decay constant set by the electroweak symmetry
breaking scale v), from Naive Dimensional Analysis [8–10] one expects these EFTs to
violate unitarity at the scale ∼ 4πv. In SMEFT, on the other hand, SU(2)L × U(1)Y is
linearly realized, and the scale of unitarity violation can be parametrically separated from
v. The second approach involves analyticity of the Lagrangian expressed in terms of the
electroweak doublet H: in [11] (see also [12]) it was argued that HEFT arises whenever
the scalar potential for H is non-analytic at H = 0, provided such non-analyticities cannot
be removed by a field redefinition. The third approach, introduced in [7, 13] and further
developed in [14], involves geometry: by treating the Higgs and Goldstone bosons as the
coordinates on a Riemannian manifold, invariant properties of the EFT geometry can be
used to distinguish between HEFT and SMEFT. In particular, the scalar manifold of
a SMEFT possesses a fixed point of electroweak symmetry at which a set of curvature
invariants are all finite. Moreover, in order for SMEFT to be of practical use for calculating
scattering amplitudes about our physical vacuum, expansions of these curvature invariants
about the fixed point need to converge at our physical vacuum.

One would expect the three approaches to be related. Indeed, the relations between
analyticity ↔ unitarity and analyticity ↔ geometry have been established. In [11]
analyticity was connected to unitarity by demonstrating that non-analyticities in the
Lagrangian for H at the point H = 0 gave rise to unitarity violation in the inelastic
scattering of two Goldstones into any number of Higgs bosons by the scale 4πv, with only
logarithmic sensitivity to the dimensionless coefficient of the non-analytic term. A related
perspective was presented in [15, 16], which identified the m→ n scattering processes with
the greatest sensitivity to unitarity violation associated with HEFT. Similarly, analyticity
was connected to geometry in [14], where we showed that the analyticity criteria for SMEFT
could be rephrased in a field redefinition-invariant manner in terms of curvature criteria on
the EFT manifold.

However, the connection between unitarity and geometry has remained obscure. It
has long been known that scattering amplitudes probe the local geometry of the scalar
manifold [7, 17–19]; for example, the leading-in-energy terms in 2-to-2 scattering amplitudes
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involving Higgses h and Goldstone bosons πi are proportional to sectional curvatures
evaluated at our vacuum [7]. This suggests a clear connection between unitarity and
geometry, but presents something of a puzzle: if scattering amplitudes probe the geometry
at our vacuum, how can they possibly tell us about the properties of a far-away fixed
point on the scalar manifold, which the geometric approach tells us is key to distinguishing
between HEFT and SMEFT?

In this paper, we connect the geometry of the scalar manifold to the scales of unitarity
violation in HEFT and SMEFT, and more broadly explore the connection between scattering
amplitudes and geometry in these theories. Intuitively, although the leading-in-energy terms
in 2-to-2 scattering amplitudes depend on sectional curvatures evaluated at our vacuum, the
leading-in-energy terms in higher-point amplitudes depend on derivatives of the sectional
curvatures with respect to h, such that sufficiently high-point amplitudes begin to recon-
struct the geometry away from our vacuum. This completes the web of connections between
approaches to the HEFT/SMEFT dichotomy based on unitarity, analyticity, and geometry,
and fully illuminates the sense in which observables probe the geometry of an EFT.

The basic idea connecting geometry and unitarity is as follows: if one complexifies
the physical Higgs excitation h, then the existence of a non-analyticity of the effective
action on the complex h-plane implies a finite value for the radius of convergence v? of
the Taylor expansion of any HEFT curvature invariants in h about h = 0, the physical
vacuum. Amplitudes for Higgs/Goldstone scattering can be written in terms of these
curvature invariants, where the leading effect of adding another Higgs to a given amplitude
is to add an h derivative to the curvature invariants appearing therein. Therefore, by the
Cauchy-Hadamard theorem, the growth of the amplitude with the number of Higgses is
determined by v?, the (smallest) radius of convergence of the involved curvature invariants.
This in turn determines the scale of unitarity violation to be ∼ 4πv?.

So far, the discussion applies to both SMEFT and HEFT. To make the distinction
clearer, note that if the non-analyticities are close enough to the physical vacuum — when
v? . v— then a SMEFT expansion performed at the electroweak symmetric point 〈|H|2〉 = 0
cannot possibly encompass the physical vacuum where 〈|H|2〉 = 1

2v
2. This indicates that

HEFT is required as an EFT description around the physical vacuum. Then the above
argument also tells us that unitarity violation happens at the TeV scale: 4πv? . 4πv. This
general result is verified by a series of example UV theories that we know must be matched
onto HEFT. Furthermore, by summing over different Higgs multiplicities and placing a
unitarity bound on an inelastic cross section, the scale of unitarity violation is then only
logarithmically sensitive to the couplings in the UV theory, as was first pointed out in [11].

In a bit more detail, the logical flow that leads to the main result of this paper is
as follows:

1. EFTs, such as SMEFT and HEFT, have a limited regime of validity. One manifestation
of this fact is that there will exist amplitudes A(E) computed within the EFT that
are unbounded functions of the energy E. Enforcing that the theory is unitary implies
a constraint |A| . 1, which results in a finite energy range E ≤ Λ in which the EFT
is valid. This scale of unitarity violation Λ provides an upper bound on the scale at
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which new physics is expected to emerge in order to maintain unitarity within a more
fundamental description.

2. We are interested in finding the process(es) that yield the lowest Λ, so that we can be
sure that we are not pushing the EFT into regions where it does not provide a valid
description. Within HEFT, we will identify a series of amplitudes An(E) that also
grow as n is increased. The lowest value of Λ is therefore determined by the speed
with which An grows as n is increased.

3. One such class of amplitudes is An(E) = A(πiπjhn−2), where πi are the electroweak
Goldstone bosons, and h is the Higgs boson. When written using a geometric language,
An is determined by the nth covariant derivatives of the potential and the (n− 4)th
covariant derivatives of the Riemann tensor, e.g. see eqs. (2.22) and (3.19). These
can be further written into successive partial derivatives of curvature invariants,
e.g. see eqs. (3.22), (3.26) and (3.27).

4. This allows us to apply the Cauchy-Hadamard theorem, which relates the growth of
the nth derivative of a (single variable) complex function to that function’s radius
of convergence. This tells us that the growth of An can be determined by finding
the convergence radius of the geometric quantities that define HEFT when they are
viewed as functions on the complex-h plane.

5. This provides a precise connection between the scale of unitarity violation and the
curvature criteria governing when HEFT is required. Taking the physical vacuum
as the origin, the curvature criteria of [14] tells us that HEFT has non-analyticities
at or very close to the electroweak symmetric point on the manifold. Therefore,
HEFT violates unitarity at Λ ∼ 4πv, with only a logarithmic sensitivity to the
coupling constants.

Our results are closely related to the arguments given in refs. [11, 15], which established
a connection between the Higgs trilinear correction δh3 and the scale of unitarity violation.
The perspective presented here has the advantage of being manifestly basis-independent
thanks to the use of geometric invariants (and covariant derivatives thereof) in constructing
the relevant scattering amplitudes. Both this work and [11, 15, 16] highlight an important
feature of unitarity violation in HEFT, namely that 2-to-2 amplitudes generally do not
provide the lowest bound on the scale of unitarity violation. Rather, the strongest bounds
come from higher-multiplicity amplitudes. This result has a satisfying interpretation in
terms of the geometry of the scalar manifold: while 2-to-2 amplitudes probe sectional
curvatures at our vacuum, only higher-point amplitudes begin to reconstruct the curvature
elsewhere on the manifold.

Understanding the necessary energy growth of diverse amplitudes in HEFT brings
another question into sharper focus: how might we decisively exclude (or discover) HEFT?
Equivalently, can we experimentally prove that electroweak symmetry is linearly realized
by the known fundamental particles? Although this is frequently assumed in the present
era, it is far from proven. In fact, it is remarkably easy for an ultraviolet theory respecting

– 4 –



J
H
E
P
1
2
(
2
0
2
1
)
0
0
3

SU(2)L × U(1)Y to give rise to an infrared EFT in which the symmetry is only nonlinearly
realized. For example, there are a plethora of perturbative extensions of the Standard
Model consistent with all current data that would require HEFT to describe their low-
energy imprint on the Higgs sector [20]. As long as this is the case, HEFT clearly remains
viable and relevant to the characterization of electroweak physics. While excluding all such
perturbative examples would represent considerable progress towards ruling out HEFT, it
would still leave the door open for exotic or strongly coupled scenarios. A more satisfying
and comprehensive verdict may come from probing the high-energy behavior of scattering
amplitudes in the electroweak sector. On one hand, it is increasingly clear that probing
2-to-2 amplitudes at energies of order ∼ 4πv is insufficient to settle the question. On the
other hand, it is likely (perhaps with some reasonable physical assumptions) that probing
a sufficiently comprehensive set of 2-to-few amplitudes at the same energies could prove
decisive. The question has the rare appeal of being interesting whether or not future
measurements continue to agree with Standard Model predictions, providing a compelling
target for the LHC and future colliders.

Although we do not attempt to answer this question here, the connections we build
between amplitudes and the geometry of the scalar manifold may prove useful to the
endeavor. More broadly, the general results we present for HEFT amplitudes expressed
in geometric language may be of much wider utility. They build on previous studies
applying geometric techniques to the study of non-linear sigma models [17, 21–24] as well
as HEFT [7, 19], SMEFT [25], and their extensions [13]. We anticipate that our results
will be of use for general studies of the predictions of HEFT (beyond the simple question
of the scale where unitarity is violated), and may serve as a bridge between Lagrangian
parameterizations and purely on-shell approaches [26–28].

The rest of this paper is organized as follows: in section 2, we review the geometric
formulation of generic scalar field theory amplitudes. Then in section 3, we specialize to
the case of HEFT, and provide general amplitudes for Goldstone/Higgs boson scattering.
This allows us to apply these coordinate independent results in section 4 to derive a general
connection between the radius of convergence and unitarity violation. We then apply this
formalism to three concrete UV models in section 5 to show that HEFT indeed violates
unitarity at a scale . 4πv. Finally, section 6 contains our conclusions, while some technical
details are relegated to a set of appendices.

2 Geometrizing amplitudes

In this section, we review the connection between tree-level amplitudes that result from the
generic scalar EFT Lagrangian

L = 1
2gαβ

(~φ )∂µφα∂µφβ − V (~φ )+O
(
∂4) , (2.1)

and the geometry of the scalar manifold. Specifically, we will show that amplitudes derived
from the theory defined by eq. (2.1) may be written in terms of covariant derivatives of
the Riemann curvature tensor and the potential V . When expressed in this form, the
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(non-derivative) field redefinition invariance of the S-matrix is manifest. Our primary goal
will be to show how choosing a special basis allows amplitudes to be efficiently constructed.
This makes it straightforward to see how amplitudes are related to the geometric invariants,
in such a way that elucidates their kinematic properties.

2.1 Preliminaries

The real fields ~φ may be viewed as coordinates on a smooth target space manifold M , which
are indexed α, β, . . . ∈ {1, 2, . . . , dimM}. We will focus on coordinate redefinitions ~φ→ ~χ

of the form
~φ = ~φ(~χ) , (2.2)

where ~φ is a smooth function of ~χ, admitting a Taylor expansion in powers of χ coordinates.2
Under eq. (2.2), the components of the Lagrangian in eq. (2.1) transform as a scalar and
symmetric 2-form on the manifold respectively:

Vnew(~χ) = V
(~φ(~χ)

)
, (2.3a)

gnew αβ(~χ) = ∂φγ(~χ)
∂χα

∂φδ(~χ)
∂χβ

gγδ
(~φ(~χ)

)
. (2.3b)

In a unitary field theory, gαβ must be positive definite, and so it can be interpreted as
a Riemannian metric on the field space manifold, thereby also imbuing it with a notion
of curvature.

By way of metric and curvature conventions, for a given tensor Tα1...αm we will write
the components of partial derivatives as indices following commas, and the components of
covariant derivatives as indices following semi-colons, thus

Tα1...αm,β1...βn ≡
∂

∂φβn
. . .

∂

∂φβ1
Tα1...αm , (2.4a)

Tα1...αm;β1...βn ≡
∇
∇φβn

. . .
∇
∇φβ1

Tα1...αm . (2.4b)

Covariant derivatives evaluate to

Tα1...αm;β = Tα1...αm,β −
m∑
i=1

Tα1...α̂iρ...αmΓραiβ , (2.5)

where the string α1 . . . α̂iρ . . . αm denotes the string α1 . . . αm with αi replaced by ρ, and
the metric connection can be computed using

Γραβ = gργΓγαβ = gργ
1
2 (gγα,β + gγβ,α − gαβ,γ) , (2.6)

The components of the Riemann curvature tensor are written

Rαβµν = gρν
(
Γραµ,β − Γρβµ,α + ΓσαµΓρβσ − ΓσβµΓρασ

)
, (2.7)

2This is a subset of the full allowed field redefinition freedom; we neglect the freedom to add local
functionals of the new fields that contain derivatives, e.g. φα = φα(~χ) + ξαβγ(~χ)∂χβ∂χγ . This would generate
terms in the Lagrangian beyond two derivative order, which is outside the scope assumed in the theory
defined by eq. (2.1).
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and the Ricci scalar curvature is

R = gαµgβνRαβµν . (2.8)

We will also use round brackets to denote symmetrization of groups of indices;

T(α1...αm) = 1
m!

∑
σ∈Sm

Tσ{α1...αm} , (2.9)

is a normalized sum over permutations σ{α1 . . . αm} of the indices.
Returning to the Lagrangian in eq. (2.1), without loss of generality, we take the physical

vacuum to lie at the origin φα = 0, so that the potential is extremized there:3

V ,β = 0 . (2.10)

Bars denote quantities evaluated at the origin.

2.2 Amplitudes

Tree-level amplitudes may be constructed by Taylor expanding the metric and potential
about the vacuum

L = 1
2

∞∑
n=0

1
n! gαβ,γ1...γn

(
∂µφ

α)(∂µφβ)φγ1 . . . φγn −
∞∑
n=0

1
n! V ,γ1...γn φ

γ1 . . . φγn . (2.11)

We further take V ,αβ and gαβ to be diagonal. Their ratio then gives the masses of the fields

V ,αβ = gαβm
2
α . (2.12)

Then eq. (2.11) yields the momentum space Feynman rules

βα = igαβ

p2 −m2
α

, (2.13a)

1, α1

2, α2

n, αn

= −iV ,α1...αn − i
∑

1≤i<j≤n
pi · pj gαiαj ,α1...α̂i...α̂j ...αn

= −iV ,α1...αn − i
∑

1≤i<j≤n

(1
2sij −

1
2p

2
i −

1
2p

2
j

)
gαiαj ,α1...α̂i...α̂j ...αn

= −iV ,α1...αn − i
∑

1≤i<j≤n

1
2sij gαiαj ,α1...α̂i...α̂j ...αn

+ i
∑

1≤i≤n
(n− 1)m2

i gαi(α1, ...α̂i...αn)

+ i
∑

1≤i≤n
(n− 1)

(
p2
i −m2

i

)
gαi(α1, ...α̂i...αn) , (2.13b)

3We use ‘vacuum’ and ‘origin’ interchangeably from here forward.
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where all momenta are taken to be ingoing, and α1 . . . α̂i . . . α̂j . . . αn should be interpreted
as the string α1 . . . αn with the hatted αi, αj omitted.

The S-matrix is invariant under field redefinitions of the type in eq. (2.2), i.e., coordinate
changes. This is realized at the level of individual amplitudes: they are covariant under
coordinate changes, up to the external wavefunction renormalization factors that depend
non-trivially on gαβ. Namely, amplitudes assemble into products of kinematic factors,
and covariant derivatives4 of the potential and Riemann curvature tensor. To see this
manifest covariance, we can analyze the simplest two examples: three-point and four-point
amplitudes.

Three-point amplitude. The three point amplitude is given by [19]5

 ∏
µ=α,βγ

g
1/2
µµ

A3 = 1, α

2, β

3, γ

A

= V ,αβγ + p1 · p2 gαβ,γ + p2 · p3 gβγ,α + p3 · p1 gγα,β

= V ,αβγ + 1
2m

2
α

(
gβγ,α − gαβ,γ − gγα,β

)
+ 1

2m
2
β

(
gγα,β − gβγ,α − gαβ,γ

)
+ 1

2m
2
γ

(
gαβ,γ − gγα,β − gβγ,α

)
= V ,αβγ −m2

αΓαβγ −m2
βΓβγα −m2

γΓγαβ
= V ,αβγ − 3V ,ρ(αΓρβγ)

= V ;(αβγ) . (2.14)

This assembles into a symmetric covariant derivative of the potential, once the kinematic
and geometric identities

p1 · p2 = 1
2
(
p2

3 − p2
1 − p2

2

)
, (2.15a)

Γαβγ = 1
2 (gαβ,γ + gγα,β − gβγ,α) , (2.15b)

and their permutations have been utilized.

Four-point amplitude. This same strategy applies to higher point amplitudes as well,
although the results are of course more complicated. For concreteness, we provide the

4The covariant derivative is defined with respect to the metric connection. There are no gauge interactions
in the models studied here.

5We use a convention where −iA = residue factors× Feynman rules, the Feynman rules being defined in
eqs. (2.13a) and (2.13b). This yields an extra minus sign as compared to typical conventions.

– 8 –



J
H
E
P
1
2
(
2
0
2
1
)
0
0
3

general 4-point amplitude, which is given by [19]

( 4∏
i=1

g
1/2
αiαi

)
A4 =

1, α12, α2

3, α3 4, α4

A

= V ,α1α2α3α4 +
[1

4p1 · p2 gα1α2,α3α4 + perms(1234)
]

+
{[
V ;(α1α2α5) −

(
s12 −m2

α5

)
gα5ρΓ

ρ
α1α2

]
gα5α6

s12 −m2
α5

×
[
V ;(α3α4α6) −

(
s12 −m2

α6

)
gα6λΓλα3α4

]
+ cycs (234)

}
, (2.16)

where “perms” (“cycs”) denotes (cyclic) permutations. The terms in the second line are
from the contact contribution, and the terms inside the curly braces result from the sum
over the three channels (captured by the cycs(234)) that result from connecting two 3-point
vertices with one propagator. The α5 and α6 species indices correspond to the propagator
and thus are summed over, and we used the (off-shell) 3-point vertex

1, α1

2, α2

3, α3

A = V ;(α1α2α3) −
[(
p2

1 −m2
α1

)
gα1λΓλα2α3 + cycs (123)

]
, (2.17)

see eq. (2.13b) above. We can simplify this expression by organizing the terms in eq. (2.16):

( 4∏
i=1

g
1/2
αiαi

)
A4 = 1

24

[
V ,α1α2α3α4 − 6Γρα1α2V ;(ρα3α4) + 3

(
s12 −m2

α1 −m
2
α2

)
gα1α2,α3α4

+ 3
(
s12 −m2

α5

)
gα5ρΓ

ρ
α1α2Γα5

α3α4

+ 3V ;(α1α2α5)
gα5α6

s12 −m2
α5

V ;(α3α4α6) + perms(1234)
]

= 1
24

[
V ,α1α2α3α4 − 6Γρα1α2V ;(ρα3α4) − 3Γρα1α2Γλα3α4V ,ρλ

− 6m2
α1gα1α2,α3α4 + 3s12

(
gα1α2,α3α4 + gρλΓρα1α2Γλα3α4

)
+ 3V ;(α1α2α5)

gα5α6

s12 −m2
α5

V ;(α3α4α6) + perms(1234)
]
. (2.18)
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To get the second line above, we have separated the sij dependence from the mass dependence
and have utilized m2

αgαβ = V ,αβ . Finally, we can use the relations

24V ;(α1α2α3α4) = V ,α1α2α3α4 − 6Γρα1α2V ;(ρα3α4) − 3Γρα1α2Γλα3α4V ,ρλ

− 4m2
α1gα1α2,α3α4 + 2m2

α3gα1α2,α3α4

+ 4m2
α1gρλΓρα1α2Γλα3α4 + perms(1234) , (2.19a)

2s12Rα1(α3α4)α2 + perms(1234) = 3s12
(
gα1α2,α3α4 + gρλΓρα1α2Γλα3α4

)
− 2

(
m2
α1 +m2

α3

)
gα1α2,α3α4

− 4m2
α1gρλΓρα1α2Γλα3α4 + perms(1234) , (2.19b)

to arrive at( 4∏
i=1

g
1/2
αiαi

)
A4 = 1

24

[
V ;(α1α2α3α4) + 2s12Rα1(α3α4)α2

+ 3V ;(α1α2α5)
gα5α6

s12 −m2
α5

V ;(α3α4α6) + perms(1234)
]

= V ;(α1α2α3α4) + 2
3
(
s12Rα1(α3α4)α2 + s13Rα1(α2α4)α3 + s14Rα1(α2α3)α4

)
+ factorizable pieces . (2.20)

Again, we see that the amplitude can be expressed entirely in terms of covariant derivatives
of the potential and Riemann tensor, and propagator factors. In particular, no explicit
factors of the Christoffel symbols Γ appear. As we will see next, this is a general feature of
the tree-level amplitudes, and is due to the fact that we can always go to the basis specified
by normal coordinates (see appendix A).

n-point amplitude. To construct the general n-point amplitude, the brute force approach
to simplifying the calculation we used for the two examples above is untenable. Therefore,
we will leverage our ability to transform the Lagrangian to a specific basis, a field redefinition
to “normal coordinates,” since partial derivatives of the potential and metric take a simpler
form in terms of covariant quantities. In normal coordinates, the following are true

gα(β1, ...βn)|normal
coords

= 0 , (2.21a)

V ,γ1...γn |normal
coords

= V ;(γ1...γn) , (2.21b)

gαβ,γ1...γn |normal
coords

= 2 n− 1
n+ 1 Rα(γ1γ2|β;|γ3...γn) +O

(
R2) , (2.21c)

where indices inside the vertical bars “| · · · |” are excluded from the symmetrization. We
refer the reader to appendix A for derivation details.

eq. (2.21a) implies that the last two parts of the Feynman vertices in eq. (2.13b) vanish
in normal coordinates. This means vertices are invariant under momentum deformations
that take the external legs off-shell, but leave the Mandelstam invariants unchanged. Each
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Feynman graph built from these normal coordinate vertices will therefore have distinct
kinematics, with kinematic poles corresponding to each propagator denominator; for contrast,
see the cancellation of kinematic poles when using generic coordinates in eq. (2.16).

Using eqs. (2.21b) and (2.21c) for the remaining vertex terms then allows us to write(
n∏
i=1

g
1/2
αiαi

)
An =V ;(α1...αn) +

∑
1≤i<j≤n

sij
(
n−3
n−1

) [
Rαi(α1α2|αj ;|α3...α̂i...α̂j ...αn) +O

(
R2)]

+ factorizable pieces , (2.22)

which, being a manifestly covariant amplitude, is true in any basis. Kinematically, the
factorizable pieces are rational functions of Mandelstam invariants with non-trivial denomi-
nators; they have geometric coefficients built out of contractions of covariant derivatives of
V and the Riemann tensor.

We emphasize that the wavefunction renormalization factors on the l.h.s. of eq. (2.22)
appear to account for the diagonal but non-canonical kinetic term. The repeated indices on
the l.h.s. are not summed. The product of the amplitude and these factors results in the
manifestly covariant r.h.s.

3 Geometrizing HEFT

Now that we have explored the general approach to expressing amplitudes in terms of
geometric quantities, we will turn to our main application. Specifically, from here forward
we will study the EFT that describes the scalar sector of the Standard Model in the broken
phase, the Higgs Effective Field Theory (HEFT), under the simplifying assumption of exact
custodial symmetry. In this section, we review the formulation of HEFT and explicitly
construct some of its amplitudes using eq. (2.22).

3.1 HEFT manifold

The custodially symmetric HEFT Lagrangian is a co-set construction O(4)/O(3) relevant
for a custodially symmetric model of electroweak symmetry breaking. It can be written in
terms of coordinates

~φ = (h, π1, π2, π3) , (3.1)

where h is the Higgs boson and ~π are the three Goldstone modes [7, 13]. The most general
HEFT Lagrangian including up to two derivatives is given by

L = 1
2K(h)2 (∂h)2 + 1

2 (vF (h))2 (∂~n)2 − V (h) +O
(
∂4) , (3.2)

where ~n is the dimensionless non-linearly constrained field that contains the Goldstones:

v ~n =


π1
π2
π3√

v2 − ~π · ~π

 , where ~π · ~π =
3∑
i=1

(πi)2 . (3.3)
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The Lagrangian has the most general form compatible with invariance under the custodial
symmetry transformation

h→ h , and ~n→ O · ~n , (3.4)

where O ∈ O(4). The components of the metric as determined by eq. (3.2) are

ghh = (K(h))2 , (3.5a)

gπiπj = (F (h))2
[
δij + πiπj

v2 − ~π · ~π

]
, (3.5b)

ghπi = 0 . (3.5c)

Here and throughout, we use Latin indices i, j, k, . . . ∈ {1, 2, 3} to distinguish the three
fields πi. We can then use eq. (3.5) to derive the metric connection

Γhhh = K ′

K
, (3.6a)

Γhπiπj = − F ′

FK2 gπiπj , (3.6b)

Γπiπjh = Γπihπj = F ′

F
δij , (3.6c)

Γπiπjπk = πi

(vF )2 gπjπk . (3.6d)

Additionally, we will sometimes avail ourselves of the freedom to canonically normalize the
Higgs coordinate via the field redefinition

h = Q(h) =
∫ h

0
dh̃K(h̃) , (3.7)

resulting in the Lagrangian

L = 1
2 (∂h)2 + 1

2
(
vF̃ (h)

)2
(∂~n)2 − Ṽ (h) +O

(
∂4) . (3.8)

General formulae may be reduced to this specific case via the substitution{
h,K, F, V

}
7→

{
h, 1, F̃ , Ṽ

}
, (3.9)

where F̃ = F ◦Q−1 and Ṽ = V ◦Q−1.
Owing to the O(4) symmetry, the HEFT manifold6 has only two independent sectional

curvatures, Kh and Kπ. These are related to the components of the Riemann curvature
tensor by

Rπihhπj = −ghhgπiπj Kh , (3.10a)
Rπiπkπlπj =

(
gπiπlgπkπj − gπiπjgπkπl

)
Kπ , (3.10b)

6The HEFT manifold is locally the product space of a line segment, parameterized by h, and a 3-sphere,
parameterized by πi [13].
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where the sectional curvatures are functions of the HEFT form factors:

Kh = − 1
K2

[
F ′′

F
− K ′

K

F ′

F

]
, (3.11a)

Kπ = 1
(vF )2

[
1− (vF ′)2

K2

]
. (3.11b)

The Ricci scalar can then be determined by the sectional curvatures:

R = 6
(
Kh +Kπ

)
. (3.12)

The Laplacian of a scalar quantity is given by

∇2V =
( 1
K
∂h

)2
V + 3 F ′

FK

( 1
K
∂h

)
V . (3.13)

This provides the relevant formalism to characterize the geometry of the HEFT manifold.
In the next section, we will use these relations to write the general geometrized amplitudes
given above in eq. (2.22) in terms of HEFT specific curvature invariants.

3.2 HEFT amplitudes

In eq. (2.22) above, we derived an expression for the leading non-factorizable contribution
to the tree-level amplitude for n-particle scattering that was expressed in terms of covariant
derivatives of the potential and Riemann curvature tensor. In this section, we will assume
that we are working with HEFT, which will allow us to simplify these expressions to derive
a useful form of A(πiπjhn−2) and A(πiπjπkπlhn−4) in terms of covariant derivatives of V
and the sectional curvatures Kh and Kπ.

To begin, we make the simple observation that if

V;β1...βn 6= 0 and Rα1α2α3α4;β1...βn 6= 0 , (3.14)

then an even number of the indices must be πi coordinates, as follows from the symmetries
of eq. (3.2). Moreover, quantities with even numbers of π indices are expressible as products
of the π metric and derivatives of K and F form factors.

Note also the symmetries of the curvature tensor:7

Rα1α2α3α4;β1...βn ≡ R[α1α2]α3α4;β1...βn ≡ Rα1α2[α3α4];β1...βn ≡ Rα3α4α1α2;β1...βn , (3.15)

which imply, for instance, that at most two of the indices α1, α2, α3, α4 may be h coordinates.
In what follows, we will use the above properties along with kinematic restrictions to simplify
the general formula in eq. (2.22).

7These follow iteratively from the symmetries of the undifferentiated tensor, which are preserved under
covariant differentiation, e.g.

Rα1α2α3α4;β = Rα1α2α3α4,β −Rρα2α3α4 Γρβα1
−Rα1ρα3α4 Γρβα2

−Rα1α2ρα4 Γρβα3
−Rα1α2α3ρΓ

ρ
βα4

,

= −
(
Rα2α1α3α4,β −Rα2ρα3α4 Γρβα1

−Rρα1α3α4 Γρβα2
−Rα2α1ρα4 Γρβα3

−Rα2α1α3ρΓ
ρ
βα4

)
,

= R[α1α2]α3α4;β .
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3.2.1 Amplitude for 2 Goldstones and n− 2 Higgses

We begin with the n-point amplitude with 2 Goldstones and n− 2 Higgses, A
(
πiπjh

n−2).
We label the respective pion momenta by p1 and p2, and that of the Higgses as p3 through
pn. Then eq. (2.22) implies

g
1/2
πiπig

1/2
πjπjg

n−2
2

hh A
(
πiπjh

n−2
)

=V ;(πiπjhn−2)

+
(
n−3
n−1

)[
Rπi(hh|πj ;|hn−4) s12+Rπi(πjh|h;|hn−4)

∑
3≤k≤n

s1k

+Rπj(πih|h;|hn−4)
∑

3≤k≤n
s2k+Rh(πiπj |h;|hn−4)

∑
3≤k<l≤n

skl

]
+O

(
R2)+factorizable pieces , (3.16)

where all quantities are evaluated at the origin, and there is no sum on the repeated indices
of the l.h.s.

Using the symmetries of the Riemann curvature tensor

Rπi(hh|πj ;|hn−4) = Rπihhπj ;hn−4 , (3.17a)

Rπi(πjh|h;|hn−4) = − 1
n− 2Rπihhπj ;hn−4 , (3.17b)

Rh(πiπj |h;|hn−4) = 2
(n− 2)(n− 3)Rπihhπj ;hn−4 , (3.17c)

as well as the kinematic identities (noting that the pions are massless; the Higgses have
mass mh) ∑

3≤k≤n

(
s1k + s2k

)
= −2s12 + 2(n− 2)m2

h , (3.18a)

∑
3≤k<l≤n

skl = s12 + (n− 2)(n− 4)m2
h , (3.18b)

we find

g
1/2
πiπig

1/2
πjπjg

n−2
2

hh A
(
πiπjh

n−2
)

=V ;(πiπjhn−2) +Rπihhπj ;hn−4

(
s12 −

2m2
h

n− 1

)
+O

(
R2)+ factorizable pieces . (3.19)

We now construct an explicit expression for the n index quantity Rπihhπj ;hn−4 in terms
of derivatives of the sectional curvature Kh taken with respect to the canonically normalized
coordinate h. We begin by noting that Rπihhπj ;hn−4 satisfies the recursion relation(
Rπihhπj ;hn−4

)
;h

=
(
∂h − (n− 2)Γhhh

)
Rπihhπj ;hn−4 − ΓπkπihRπkhhπj ;hn−4 − ΓπkπjhRπihhπk;hn−4

=
(
∂h − 2F

′

F
− (n− 2)K

′

K

)
Rπihhπj ;hn−4

= F 2Kn−2 ∂h

(Rπihhπj ;hn−4

F 2Kn−2

)
= F 2Kn−1 ∂h

(Rπihhπj ;hn−4

F 2Kn−2

)
, (3.20)
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where we have used the Christoffel symbols of eq. (3.6), and the appearance of h in the last
line relies on 1

K ∂h = ∂h. Repeated application of this recursion relation yields

Rπihhπj ;hn−4

F 2Kn−2 = ∂n−4
h

(
Rπihhπj
F 2K2

)
= −

gπiπj
F 2 ∂n−4

h Kh . (3.21)

When evaluated at the origin, this reduces to

Rπihhπj ;hn−4

F (0)2K(0)n−2 = −δij ∂n−4
h Kh

∣∣
h=0 . (3.22)

To treat the potential piece, we use the fact that the commutator of covariant derivatives is
proportional to the Riemann curvature tensor. This allows us to unsymmetrize the indices
of the potential piece

V ;(πiπjhn−2) = V ;πiπjhn−2 +O
(
V R

)
, (3.23)

at the expense of neglecting terms that are proportional to products of covariant derivatives
of the potential and Riemann curvature tensors. An analogous recursion relation,(

V;πiπjhn−2

)
;h

=
(
∂h − 2F

′

F
− (n− 2)K

′

K

)
V;πiπjhn−2

= F 2Kn−2 ∂h

(V;πiπjhn−2

F 2Kn−2

)
= F 2Kn−1 ∂h

(V;πiπjhn−2

F 2Kn−2

)
, (3.24)

gives
V;πiπjhn−2

F 2Kn−2 = ∂n−2
h

(
V;πiπj
F 2

)
=
gπiπj
3F 2 ∂

n−2
h

(
∇2V − ∂2

hV
)
, (3.25)

which reduces at the origin to

V ;πiπjhn−2

F (0)2K(0)n−2 = 1
3 δij ∂

n−2
h

(
∇2V − ∂2

hV
) ∣∣

h=0 . (3.26)

Dividing through by the wavefunction renormalization factors, the amplitude in eq. (3.19)
therefore takes the form

A
(
πiπjh

n−2
)

= 1
3 δij ∂

n−2
h

(
∇2V − ∂2

hV
) ∣∣

h=0 −
(
s12 −

2m2
h

n− 1

)
δij
(
∂n−4

h Kh
) ∣∣

h=0

+O
(
V R, R2)+ factorizable pieces . (3.27)

We see that the leading contribution to the amplitude with 2 Goldstones and n−2 Higgses in
the high energy limit can be determined from successive partial derivatives of the potential
V , its Laplacian ∇2V , and the sectional curvature Kh. In the next section, we will leverage
this result to determine the scale of unitarity violation.

3.2.2 Amplitude for 4 Goldstones and n− 4 Higgses

Four-Goldstone amplitudes can be calculated in a similar way, albeit the details are a bit
more tedious. In particular, neglecting pieces of the size O

(
V R, R2) again allows us to

treat covariant derivatives as commuting objects when acting on potential and curvature
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components. With some further help of the second Bianchi identity (which one can also
check using the explicit forms of Kh and Kπ in eq. (3.11)):

3Rα1α2[α3α4;α5] = Rα1α2α3α4;α5 +Rα1α2α4α5;α3 +Rα1α2α5α3;α4 = 0

⇒ 2F
′

F
(Kh −Kπ) = ∂hKπ , (3.28)

we can eventually write everything in terms of successive partial derivatives ∂h acting on V ,
∇2V , ∇4V , Kh, ∇2Kh, and Kπ:

A
(
πiπjπkπlh

n−4) = 1
15 (δijδkl + δikδjl + δilδjk) ∂n−4

h

(
∇4V − 2∂2

h∇2V + ∂4
hV
) ∣∣

h=0

− 1
9 (δijδkl + δikδjl + δilδjk)

[
s1234 −

12(n− 4)m2
h

(n− 1)(n− 2)

]
∂n−6

h

(
∇2Kh − ∂2

hKh
) ∣∣

h=0

+
{1

6 (δijδkl + δikδjl + δilδjk) s1234

− 1
2
[
δijδkl (s12 + s34) + δikδjl (s13 + s24) + δilδjk (s14 + s23)

]}
∂n−4

h Kπ
∣∣
h=0

+O
(
V R, R2)+ factorizable pieces , (3.29)

where sij...k = (pi + pj + . . .+ pk)2. We see that this amplitude includes a new element as
compared to eq. (3.27), in that it explicitly depends on (derivatives of) Kπ. Furthermore,
note that terms involving Kh in the second line only appear for n ≥ 6. Although we will
not utilize this result explicitly in what follows, we will occasionally find it useful in our
discussion of concrete models to note the role of Kπ in the connection between the unitarity
cutoff and the analyticity properties of the sectional curvatures. A full analysis exploring
the consequences of eq. (3.29) for the scale of unitarity violation is left for future work.

4 Unitarity violation from the radius of convergence

In this section, we will show that the radius of convergence v? of the sectional curvature
Kh can be translated into the scale of unitarity violation for SMEFT or HEFT. Although
we will work in terms of the HEFT parameterization of eq. (3.2), our conclusions hold
for both “reducible HEFTs” (which can be written as SMEFTs) and “irreducible HEFTs”
(which cannot). Our argument leverages the Cauchy-Hadamard theorem, which provides a
connection between the radius of convergence of a function and the growth of its derivatives.
Then using eq. (3.27), our formula that gives the HEFT amplitude for 2 Goldstone + (n−2)
Higgs scattering in terms of derivatives of Kh and V , we can derive a scale of unitarity
violation in terms of v?.

This might seem like an overly mathematical reframing of standard results regarding
unitarity violation of EFTs. However, if we know the functional form of Kh, the radius
of convergence can also be determined by the location of the closest non-analyticity of
the Kh function in the complex h plane. As we proved in [14], the presence of such a
non-analyticity sufficiently close to our vacuum tells us that we can not faithfully match
a perturbative UV BSM theory onto SMEFT, and the larger HEFT parameterization is
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required, see section 5 below for examples. This is the final ingredient that ties our story
together: if we must use HEFT, there will be a singularity on the scalar manifold at a
distance v? where v? ∼ v, which in turn sets the scale of unitarity violation by way of
the radius of convergence. Through the examples of weakly coupled UV completions in
section 5, we will see that these non-analyticities of Kh are avatars of states which have
been integrated out when constructing the EFT (e.g. the ‘Loryons’ [20]), and which are
responsible for restoring unitarity for the amplitudes as calculated by the UV theory.

The rest of this section is devoted to demonstrating how, in the limit that the number
of h indices is taken to be large, eq. (3.22) can be used to relate the size of Rπihhπj ;hn−4 to
the radius of convergence of Kh in the complex plane of h. This radius of convergence v?
sets the scale of perturbative unitarity violation by way of the amplitudes of section 3.2, as
we will show presently.

4.1 Cauchy-Hadamard theorem

The Cauchy-Hadamard theorem links the convergence radius of a Taylor expansion with
the growth rate of the expansion coefficients. More concretely, consider a single complex
variable function f(z). If it is analytic at a point z0, it has a Taylor expansion

f(z) =
∞∑
n=0

cn(z − z0)n . (4.1)

The Cauchy-Hadamard theorem states that the convergence radius z? of this Taylor expan-
sion is given by the limit superior:

1
z?

= lim sup
n→∞

|cn|1/n . (4.2)

A benchmark example is the following Taylor expansion at the origin

1
1− az =

∞∑
n=0

anzn , (4.3)

whose convergence radius should be z? = 1/a by eq. (4.2), agreeing with what we would
infer from the location of the pole. Basically, the faster the expansion coefficients cn grow,
the smaller the convergence radius will be, and the closer the non-analyticity will be to z0.
On the other hand, if a function has no non-analyticity across the whole complex plane,
the Taylor expansion coefficient cn must fall faster than an exponential to make the r.h.s.
of eq. (4.2) vanish. A simple example of this kind is

ez =
∞∑
n=0

1
n!z

n , (4.4)

where the expansion coefficients cn = 1/n! fall factorially.
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4.2 Energy growth of HEFT amplitudes

Applying the Cauchy-Hadamard theorem to the function Kh(h), we can link the limiting
size of its derivatives in terms of its radius of convergence, v? about the origin h = 0.
Dividing through by Kh ≡ Kh|h=0 to render the function dimensionless, we have

lim sup
n→∞

( 1
n!
|∂nhKh|
|Kh|

)1/n ∣∣∣∣
h=0

= 1
v?
. (4.5)

In light of the above, we introduce the quantity an:

( 1
n!
|∂nhKh|
|Kh|

)1/n ∣∣∣∣
h=0

= 1
anv?

, (4.6)

which satisfies8

lim inf
n→∞

an = 1, but generally lim inf
n→∞

(an)n 6= 1 . (4.7)

In practice, an is sufficiently close to 1 for n of ‘a few’; see the examples of section 5 and
the plots of an given in figure 6.

eq. (4.6) is redolent of power counting schemes in HEFT [29], wherein adding a Higgs
leg to an amplitude adds a factor 1/v?. We stress here that v? is not the same as v, the
quantity which fixes GF once the remaining SM field content is incorporated into the
Lagrangian eq. (3.2). This will be apparent from the examples of section 5.

Recent works [11, 15, 16] have shown how BSM deviations from the Standard Model
that are poorly described by a truncated SMEFT expansion must have perturbative unitarity
cutoffs no higher than the TeV scale; in particular, [11, 15] link the failure of the SMEFT
expansion to the presence of non-analyticities in the Lagrangian at H = 0, which in turn
cause inevitable unitarity violation at the TeV scale.

Below, we reprise these arguments by applying generic perturbative unitarity limits to
the amplitude written in eq. (3.27), making use of the geometric formulation of amplitudes
to write the steps in terms of expressly field redefinition invariant quantities. Combined
with knowledge of the amplitudes’ limiting size in eq. (4.6), we derive a unitarity cutoff
at the scale 4πv? for any BSM theory. In section 5, we pair this result with a geometric
classification of theories which may be poorly described by SMEFT, from our previous
work [14]. As we show by example, theories that are well described by SMEFT may have
v? � v, whereas theories that are not must have v? ∼ v.

Following the insight of [11], we now consider the unitarity cutoff resulting from the
amplitude A

(
π2 → hn

)
; however, in the interests of simplicity we focus on the effects of the

two derivative terms, as opposed to the potential, whose effects we discuss later. Ignoring
the O (V ) and O

(
R2) terms, eq. (3.27) has trivial momentum dependence, and can be

8For our purposes, the presence of ‘sup’ (superior) and ‘inf’ (inferior) in the above simply means that
the limits may only be an arbitrary good approximation for some large n, not all large n, above a certain
number, and will not be consequential in deriving the unitarity bounds.
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rewritten in terms of a correctly normalized s-wave matrix element M̂ using eq. (B.8):

1 >
∣∣M̂βα

∣∣2 = Vol2
2!

Voln
n! |A(πiπj → hn)|2

= 1
2(8π)2n!(n− 1)!(n− 2)!

(
E

4π

)2(n−2)
Fn

(
nm2

h

E

)

× E4
(

1− 2m2
h

(n+ 1)E2

)2 (
δij |∂n−2

h Kh|2
) ∣∣

h=0 , (4.8)

where the inequality follows from the perturbative unitarity constraint given in eq. (B.7).
Recall that E is the center of mass energy. In eq. (4.8), we have also defined a factor
Fn
(nmh

E

)
to be the ratio of the phase space volume of n Higgs particles (each having mass

mh) to the phase space volume of n massless particles, see eq. (B.10). Its argument is
normalized such that Fn(0) = 1 and Fn(1) = 0; in figure 1 (left) we plot Fn for n = 2, . . . , 9.

Finally, we rearrange the matrix element to get

1 > |M̂βα|2 =
( 1
an−2

)2(n−2) ( 1
bn

)2n 1
n!

(
E

4πv?

)2n
δij
∣∣∣v2
? Kh

∣∣∣2 , (4.9)

where an−2 encodes the scale of multiple derivatives of the sectional curvature and is defined
in eq. (4.6), and bn absorbs the remaining phase space factors:( 1

bn

)2n
= (4π)2

8(n− 1)

(
1− 2m2

h

(n+ 1)E2

)2

Fn

(
nm2

h

E

)
. (4.10)

We plot bn(E) for n = 2, . . . , 9 in figure 1 (right).
Let us now consider the unitarity cutoff resulting from eq. (4.9). Setting i = j, with

the use of Stirling’s approximation to express the factorial as an approximate power (which
is why Euler’s constant e appears), we place an upper bound on the center-of-mass energy
at which the EFT amplitude is valid

E < 4πv? × (an−2)
n−2
n × bn ×

∣∣∣v2
? Kh

∣∣∣−1/n
×
√
n

e
. (4.11)

This is the central equation that we will use to compute the unitarity cutoff numerically for
various examples. Let us summarize the key features of its factors one-by-one:

• The factor 4πv? serves as our intuitive estimate of the unitarity cutoff scale. We
expect the other factors to be close to 1 for n of ‘a few’.

• The factor (an−2)
n−2
n stems from the quantity an−2 defined in eq. (4.6), which char-

acterizes the growth of
(
∂n−2

h Kh
) ∣∣

h=0 involved in the two-Goldstone amplitude (see
eq. (3.27)). By the Cauchy-Hadamard theorem (see eq. (4.7)), an−2 will tend to 1 for
large n. In practice, it is sufficiently close to 1 for n of ‘a few’; see the examples of
section 5 and the plots of an given in figure 6.

• The factor bn as defined in eq. (4.10) is a collection of various kinematic factors. It is
a very mild monotonically decreasing function of E, and figure 1 (right) shows that
in the TeV region of interest — and for single digit n — it is approximately 1 or less.
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Figure 1. Left: the ratio of the volume of n-body Higgs phase space (each with mass mh) to
n-massless-body phase space, where E is the center-of-mass energy. The phase space volumes are
calculated using a Cython implementation [30] of the RAMBO algorithm [31]. Right: the derived
factor bn(E), eq. (4.10), for TeV scale center-of-mass energies. Note that the bn factors are essentially
flat in E and order one, and thus do not parametrically alter the unitarity cutoffs eq. (4.11).

• The factor
∣∣∣v2
? Kh

∣∣∣−1/n
originates from the normalization factor

∣∣∣v2
? Kh

∣∣∣ for the curvature
piece

(
∂n−2

h Kh
) ∣∣

h=0 involved in the amplitude. There are two scenarios for this factor.
The “weakly curved” scenario happens when

∣∣∣v2
? Kh

∣∣∣ � 1. In this case, the factor∣∣∣v2
? Kh

∣∣∣−1/n
reduces significantly as n increases, motivating us to go to higher values

of n for a more stringent unitarity cutoff. We are mostly interested in this scenario.
On the other hand, a sizable

∣∣∣v2
? Kh

∣∣∣ ∼ 1 signatures the “strongly curved” scenario.
In this case, we could use the n = 2 form of eq. (4.8) to derive a unitarity cutoff of
E < 4π

∣∣∣Kh∣∣∣−1/2
from the undifferentiated sectional curvature [7], which would be at

least as stringent as the bounds resulting from higher values of n.

Putting all of this together, we have derived a unitarity bound of the following form:

E < 4πv? ×
√
n

e
∼ 4πv? , for n ∼ O(few) . (4.12)

As demonstrated in [11], we can further strengthen the bound, as well as reduce its
dependence on the

∣∣∣v2
? Kh

∣∣∣ factor, by summing over different final states per eq. (B.6).
Retaining the approximation an ∼ bn ∼ 1 in eq. (4.9), we get

1 >
∑
n

|M̂βα|2 ∼
∑
n

1
n!

(
E

4πv?

)2n
δij
∣∣∣v2
? Kh

∣∣∣2 ∼ δij ∣∣∣v2
? Kh

∣∣∣2 exp
[(

E

4πv?

)2
]
. (4.13)

This implies that the unitarity cutoff E ∼ 4πv? only depends logarithmically on the
couplings and other dependences that determine the prefactor.
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In the “weakly curved” regime
∣∣∣v2
? Kh

∣∣∣ � 1, and n ∼ O(a few), let us consider the
terms we are neglecting in eq. (4.8). One such class is higher order terms in R, arising from
O(R2) pieces in the amplitude eq. (3.27), either from the contact term or the factorizable
pieces with non-trivial kinematics. Both of them appear with a factor

A(πiπj → hn) ⊃
∑
m

Rπihhπk;(h)n−4−m gπkπl Rπlhhπj ;(h)m

F 2Kn
× kinematic factors

=
∑
m

δij
(
∂n−4−m

h Kh
)

(∂mh Kh)
∣∣
h=0 × kinematic factors

∼ δij

(
v2
? Kh

)2

vn?

∑
m

(n− 4−m)!
(an−4−m)n−4−m

m!
(am)m × kinematic factors , (4.14)

where we used the limiting behaviour of derivatives of the sectional curvature given in
eq. (4.6). Parametrically, the above is suppressed by

∣∣∣v2
? Kh

∣∣∣ < 1 relative to the O(R) piece
in the amplitude. However, the O(R2) terms are combinatorially more numerous than the
O(R) piece; the value of n above which they numerically dominate bounds the validity of
our perturbative calculations.9 By contrast, in the “strongly curved” regime

∣∣∣v2
? Kh

∣∣∣ ∼ 1,
the Rn+1 are not negligible and instead have the same parametric size as the ∂2nR term
considered in the bulk of this work.

We generically expect from studying weakly coupled UV completions (see the explicit
examples of section 5) that the potential terms in the amplitude have non-analyticities at
the same points in the complex plane of h as the curvature terms, and therefore have the
same radius of convergence v? about our vacuum. This is because the resulting zero- and
two-derivative terms in the EFT are simple functions of the Higgs-dependent mass m2(h)
of the states that are integrated out, and these functions have singularities exactly when
m2(h) = 0 [14].10 Moreover, the zero- and two-derivative terms have different parametric
dependence on the couplings of any UV completion, and their linear combination in the
n-Higgs amplitude should not cancel the factorial growth, n!/vn? , exhibited by each of the
terms individually. Although it would mildly change the energy dependence of the r.h.s. of
eq. (4.9), the inclusion of the potential terms should not significantly change the energy
cutoff bound presented in eq. (4.12).

As always, we remain agnostic about the effects on the amplitude of the four-and-higher
derivative terms in the Lagrangian. In principle, they may be encoded as four-and-higher
index tensors on the field-space manifold, whose normal coordinate expansions will map
onto O(s2) and higher dependent contact terms in the amplitudes. From our explorations

9Using eq. (A.18), the O(R2) contribution from the contact terms can be calculated exactly:

A(πiπj → hn) ⊃
n−2∑
k=2

(
n

k

)
k − 1
k + 1

n− k − 1
n− k + 1

(n− k)2 + k2 + n(n+ 2)
2n(n− 1) s δij

(
∂n−4−m

h Kh
)

(∂mh Kh)
∣∣
h=0

.

We have checked numerically for n ≤ 9 that, when projected into an s-wave state, the above terms are all
larger than their counterpart O(R2) term arising from factorizable tree graphs, namely those with Goldstones
in the t-channel.

10This property should extend to higher derivative terms in the EFT that we do not consider in this work.
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of perturbative matching examples, we also expect these tensors to have singularities at
the same points in field space as the potential and metric. A full understanding of these
terms and their effect on the amplitudes requires a better understanding of the freedom to
include derivatives in field redefinitions, which we leave for future work.

We see that, at tree level, the energy bound inferred from the four-point amplitude
scales as ∼ 4πK−1/2

h , which can differ from that of the n-point which scales as ∼ 4πv?; in
examples of models in the “weakly curved” regime given in section 5, the bound inferred
using the four-point amplitude alone is parametrically weaker. However, certain four-point
amplitudes will always “know” about the 4πv? cutoff at loop level. Through the optical
theorem eq. (B.5), if eq. (4.13) violates perturbative bounds, then the imaginary part of
A(ππ → ππ) must as well.

5 HEFT violates unitarity at 4πv

In the previous section, we derived a unitarity cutoff of 4πv? for any HEFT Lagrangian,
where the radius of convergence v? is the distance (in the complex plane of h) between the
vacuum and a non-analyticity in a curvature invariant. In this section, we study a series of
example UV completions to elucidate the physical properties of such a pole by revealing
how it arises from integrating out UV states that unitarize the amplitudes.

In previous work [14], we identified two classes of UV completion where HEFT was
required to describe the IR. One, UV completions containing states that get most of their
mass from electroweak symmetry breaking; we will call this type of particle a “Loryon,”
following [20]. Two, those containing electroweak charged UV states that provide extra
sources of electroweak symmetry breaking, such that the vacuum configuration breaks
electroweak symmetry, even when the Higgs vev is turned off. In both cases, the low-energy
dynamics of the scalar sector is not well-described by SMEFT, in the sense that the resulting
effective action does not admit a convergent expansion — a local EFT — in terms of fields
linearly realizing electroweak symmetry, such as the Higgs doublet H.

Below, we consider representative examples of each class of UV completion and show
how, in theories that are poorly described by SMEFT, the scale v? must be order the
electroweak scale v ∼ G−1/2

F . The unitarity cutoff of such theories, as well as the masses of
the UV states that unitarize them, cannot be made arbitrarily high; they must appear at
the TeV scale or below. This connects the geometric classification of [14] back to recent
results on the TeV-scale cutoffs of non-SMEFT-like theories [11, 15].

5.1 Tree-level Loryon

Our first example generates non-trivial matching coefficients at tree-level, by integrating
out a singlet scalar Loryon S. This is the same model discussed in [14, §6.1]. The UV
Lagrangian is determined by writing down all renormalizable interactions between S and
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H, assuming that S transforms under a Z2 symmetry:

LUV = |∂H|2 + 1
2 (∂S)2 − VUV , (5.1a)

VUV = −µ2
H |H|2 + λH |H|4 + 1

2
(
m2 + κ|H|2

)
S2 + 1

4 λSS
4 . (5.1b)

For the potential to be bounded from below, we require λH , λS > 0 and 4λHλS > κ2. We
also need µ2

H > 0 so that the minimum of VUV break electroweak symmetry. In addition,
we assume that m2 < 0 and κ < 0 (such that S has a non-zero vev) in order to obtain a
non-trivial tree-level EFT. To derive the matching, we simply solve for Sc, the solution
to the classical equation of motion for the Loryon, plug it into the UV Lagrangian, and
expand. In [14, §6.1], it was shown that requiring that the solution intersects the global
minimum of the UV theory yields

Sc =
(
m2 + κ|H|2

−λS

)1/2
+O

(
∂2) , (5.2)

resulting in an EFT of the HEFT form given in eq. (3.2) with explicit form factors

K(h) =
√

1 + δ
κ(v + h)2

2m2 + κ(v + h)2 , vF (h) = v + h , (5.3a)

V (h) = −1
2 µ

2
H (v + h)2 + 1

4 λH(v + h)4 − 1
16λS

[
2m2 + κ(v + h)2

]2
, (5.3b)

with

δ ≡ − κ

2λS
> 0 and v ≡

√
µ2
H −m2δ

λH + κ
2 δ

, (5.4)

where the latter ensures that the global minimum of the EFT potential occurs at h = 0.
Using eq. (3.11), we can calculate the relevant curvature invariants of the EFT manifold

Kh = 2m2κδ[
2m2 + κ(1 + δ)(v + h)2]2 , (5.5a)

Kπ = κδ

2m2 + κ(1 + δ)(v + h)2 , (5.5b)

∇2V − ∂2
hV = 3

(
λH + 1

2κδ
)
h(2v + h) 2m2 + κ(v + h)2

2m2 + κ(1 + δ)(v + h)2 . (5.5c)

The three invariants have poles in the complex h plane at11

h? = −v ± i
√

2m2

κ (1 + δ) . (5.6)

In order to use this result to determine the unitarity cutoff, we need to transform to the
canonically normalized Higgs coordinate h = Q(h) defined in eq. (3.7). Note that K(h)

11In the limit m2 = 0 (the BSM singlet is exactly massless before electroweak symmetry breaking), only
Kπ retains a non-analyticity; the residues of the poles in the other two invariants would vanish. Thus, only
amplitudes with at least four external Goldstones would grow with energy when m2 = 0, see eq. (3.29).
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−m2/v2 −κ/2 λS v?/v v2
? Kh v2

? Kπ
A 4π 4π 8π 1 0.1 0.3

B 0.1 4π 8π 1 0.003 0.5

C 0.1 0.1 2 2 0.02 0.05

D 106 0.1 2 3000 0.04 0.04

Table 1. Four benchmark parameter points for exploring the tree-level Loryon model.
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Figure 2. The unitarity cutoff E normalized by 4πv? derived from the process of two Goldstones
scattering into n Higgs bosons as computed using eq. (4.11), for the four benchmark parameters
given in table 1.

remains analytic inside the disk of the radius |h?| centered at the origin h = 0. So Q−1(h)
remains analytic up to the points h? = Q(h?), which then are the non-analyticities in
Kh/π(h) = Kh/π(Q−1(h)) that are closest to the origin h = 0. Therefore, the radius of
convergence of the sectional curvatures in the complex plane of h is

v? =
∣∣Q(h?)∣∣ , (5.7)

using either root from eq. (5.6).
Having identified the radius of convergence v?, we can then compute the unitarity cutoff

E with eq. (4.11). Recall from eq. (4.12) that we expect E to converge to ∼ 4πv? for n of
order a few. If true, it confirms our intuition that the scale of unitarity violation can be
taken arbitrarily large in the “SMEFT limit.” When taking m2/v2 →∞ with κ and δ fixed,
eq. (5.6) implies that distance to the pole h? grows as m2/v2. In this region of parameter
space, the singlet is getting the minority of its mass from electroweak symmetry breaking.
The unitarity cutoff E ∼ 4πv? � 4πv, and the SMEFT expansion of the EFT Lagrangian
converges rapidly at our vacuum.
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To explicitly verify eq. (4.12), and also to explore the regions of parameter space were
HEFT is required, we turn to numerics. The primary result of this section is provided
in figure 2, where we show the behavior of the unitarity cutoff E as we vary the number of
Higgs bosons in the final state n for the four benchmark parameter choices given in table 1.
This is obtained by computing each factor in eq. (4.11) numerically. In particular, the
values of an for a few choices of n, defined in eq. (4.6), are plotted in figure 6 for the four
benchmark parameter choices given in table 1. We see from figure 2 that eq. (4.12) indeed
holds for all four of these benchmarks. Some additional features of each of these benchmark
points are:

• Point A. From table 1 we see that the sectional curvature Kh is close to O(1) in units
of v?. This implies that this HEFT is in the “strongly curved” regime. Therefore, the
unitarity bound is essentially saturated for n = 2.

• Point B. The mass parameter for the Loryon in this example is taken to be much
smaller than the mass it acquires from electroweak symmetry breaking. As v2

?Kh � 1,
this provides a “weakly curved” example of HEFT in the h-πi plane, with v? ' v,
even though the parameters of the UV theory are large. In this case, the unitarity
bound saturates for n & 5. Note, however, that in the πi-πj plane, the manifold is
‘strongly curved” (v2

? Kπ ∼ 0.5) so this behavior is not manifest in the four-Goldstone
amplitudes.

• Point C. This provides an example where the UV theory parameters are in the
perturbative regime, and the HEFT description is “weakly curved.” As compared
to Point B, the value of v? is higher by a factor of ∼ 2, and the unitarity bound is
saturated for n & 3 due to v2

? Kh being an order of magnitude larger.

• Point D. This point illustrates the decoupling limit, i.e., m2 is taken to be large, so
that the model can be matched onto SMEFT. The scale of unitarity violation v? is
becoming large, and the unitarity bound is converging for n & 8.

This completes our numerical study of this model. Before moving on to the loop-level
example in section 5.2, we will briefly discuss the role of the Loryon in restoring the apparent
unitarity violation derived by studying HEFT alone.

5.1.1 Who restores unitarity?

Given some simplifying assumptions about the UV parameters, we can analytically explore
the connection between v? and the mass of the BSM singlet state we have integrated out.
This will make it clear that “integrating in” this state yields unitary scattering amplitudes
in the UV theory. We take the parameter δ ≡ −κ/(2λS) to be small, and specifically work
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in the limit that it goes to zero.12 In this case, we have

h? = −v ± i

√
2m2

κ
+O(δ) , (5.8a)

K(h) = 1 +O(δ) =⇒ Q(h) = h+O(δ) , (5.8b)

v2
? =

∣∣Q(h?)∣∣2 =
∣∣h?∣∣2 +O(δ) = v2 + 2m2

κ
+O(δ) , (5.8c)

Therefore, the locations of the non-analyticity (given by eq. (5.8a)) are in one-to-one
correspondence with the points on the manifold where the singlet S in the UV theory
becomes massless:13

∂2VUV
∂S2

∣∣∣∣
S=Sc

= m2 + κ |H|2 + 3λSS2
c = −2m2 − κ (v + h)2 , (5.9)

where VUV is given in eq. (5.1b), and Sc is given in eq. (5.2). Defining the fraction of the
mass squared that the singlet gets from electroweak symmetry breaking14

f ≡
1
2κv

2

m2 + 1
2κv

2 , (5.10)

we can rewrite the radius of convergence of the sectional curvatures about the origin given
in eq. (5.8c):

v2
? = v2

f
. (5.11)

If the singlet gets the majority of its mass from electroweak symmetry breaking, then
f > 1/2 and v? ∼ v.

If the UV theory is given by eq. (5.1), then the amplitudes A (πiπj → hn) considered
here are ultimately unitarized by the inclusion of these singlet states as propagating degrees
of freedom. The threshold for producing a on-shell singlet states is E ≥

(
−2m2 − κv2)1/2 =

(−κ)1/2v?. Noting that there is also a unitarity bound on the coupling κ . 4π, as can be
computed within the UV theory, we see that this threshold is at or below the unitarity
cutoff scale 4πv?.

This leads us to the intuitive situation illustrated in figure 3, where we have sketched
the complex h plane. The electroweak preserving vacuum is located at the point <h = −v,
and h? is the location of the non-analytic point (a pole in this example). This pole sets
the radius of convergence for the two EFT expansions, where SMEFT (HEFT) is centered
about the point where electroweak symmetry is restored (the physical vacuum). If SMEFT

12Note that if we take δ = 0 precisely, this would correspond to λS →∞, which invalidates this perturbative
analysis. Including finite δ does not change the qualitative nature of this argument.

13There is one limiting case that is not covered by this analysis, namely if one takes κ→ 0 and m2 → 0
with m2/κ fixed. The Loryon becomes massless in this limit, but the analysis here makes it seem that the
scale of unitarity violation is still ∼ 4πv. This apparent issue would be resolved by including the contribution
from the four derivative terms in the analysis.

14We emphasize that f is a dimensionless fraction here, not to be confused with the scale of global
symmetry breaking that appears in composite Higgs models.

– 26 –



J
H
E
P
1
2
(
2
0
2
1
)
0
0
3

<h

=h

−v

√
2m2

κ
?

h? |h
? | = v√

f

SMEFT

HEFT

Figure 3. An illustration of the complex h plane for the tree-level Loryon model in the limit δ → 0.
The location of the non-analyticity in the sectional curvatures Kh, Kπ, and the potential terms is
denoted by h?, see eq. (5.8a). The location of this non-analyticity sets the radius of convergence for
the Taylor expansions of the sectional curvatures about the physical vacuum h = 0 (HEFT, shown
in blue) and about the electroweak preserving vacuum h = −v (SMEFT, shown in orange). When
the singlet gets the majority of its mass from electroweak symmetry breaking, then f > 1/2 and the
SMEFT expansion does not converge at the origin. This implies that SMEFT cannot describe the
UV model observables arbitrarily well.

is to provide a convergent expansion about the physical vacuum, then the origin h = 0 must
lie within the expansion’s circle of convergence; this only occurs if f < 1/2. For contrast,
the situation shown in figure 3 is the case when f > 1/2, the SMEFT expansion does not
converge at the physical vacuum (the orange circle does not enclose the origin). This implies
that one must use HEFT to describe this UV model at low energies, with a corresponding
unitarity cutoff set by 4πv? ∼ 4π|h?| ∼ 4πv.

5.2 One-loop Loryon

Next, we consider the IR limit of the Z2 symmetric phase of the singlet model defined
in eq. (5.1). Specifically, we are working in the parameter space where m2 > 0 and κ > 0,
such that the tree-level solution Sc = 0 is at the global minimum of the theory. Tree-level
matching does not yield any deviations from the Standard Model, and so we focus on
matching this UV theory onto an EFT at one-loop order. This is the same model discussed
in [14, §6.2].

We use functional methods to integrate out fluctuations around the trivial tree-level
solution to obtain the one-loop effective action, which results in the form factors

K(h) =
√

1 + κ

96π2
κ(v + h)2

2m2 + κ(v + h)2 , (5.12a)

vF (h) = v + h . (5.12b)

In addition to these two form factors, one must also compute the one-loop contributions to
Veff, which yields the familiar Coleman-Weinberg potential for the light fields; the explicit
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expression is given in [14, §6.2]. We note that the kinetic term form factors above have
the same functional form as in eq. (5.3). We find the same sectional curvatures for this
EFT manifold as in eq. (5.5) if we make the substitution δ 7→ κ/(96π2), together with a
potential term:

Kh = m2κ2

48π2[2m2 + κ
(
1 + κ

96π2
)
(v + h)2]2 , (5.13a)

Kπ = κ2

96π2[2m2 + κ
(
1 + κ

96π2
)
(v + h)2] , (5.13b)

∇2V − ∂2
hV = 3 2m2 + κ(v + h)2

2m2 + κ(1 + κ
96π2 )(v + h)2

{
− µ2

H + λH(v + h)2

− κ

64π2

[
2m2 + κ(v + h)2

](
ln µ2

m2 + 1
2κ(v + h)2 + 1

)}
. (5.13c)

The above curvature invariants have poles in the complex-h plane at

h? = −v ± i
√√√√ 2m2

κ
(
1 + κ

96π2

) . (5.14)

Since only the κ coupling is relevant to the one-loop matching, the shape of the EFT manifold
is fully determined at this order by the two UV parameters, m2 and κ.15 Taking m2/v2 � 1
yields the “SMEFT limit” in exactly the same way as described in section 5.1 above.

For completeness, we have provided four numerical benchmark points for this model in
table 2. The associated an plots are given in figure 6, and the unitarity cutoff as a function
of the number of final state Higgs bosons n is given in figure 4. The reasons for choosing
each benchmark are identical to section 5.1, and so we will succinctly summarize their
behavior here.

• Point A. This shows HEFT is in the “strongly curved” regime, and the unitarity
bound is essentially already saturated for n = 2.

• Point B. This is a “weakly curved” example of HEFT with v2
?Kh � 1 and v? ' v;

the unitarity bound saturates for n & 5. Note that its other sectional curvature
v2
? Kπ ∼ 0.3 is much larger, meaning that it is “strongly curved” in the πi-πj plane,

which will be reflected by the behavior of four-Goldstone amplitudes.

• Point C. This is another “weakly curved” HEFT example, where now both the mass
parameter and the coupling to the Higgs are taken to be smaller.

• Point D. This point illustrates the decoupling limit, i.e., m2 is taken to be large, so
that the model can be matched onto SMEFT. The scale of unitarity violation v? is
becoming large, as can be seen from table 2.

15In the symmetric phase, the UV parameter λS only enters at two-loop order.
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m2/v2 κ/2 v?/v v2
? Kh v2

? Kπ
A (4π)2 (4π)2 2 0.2 0.4

B 1 (4π)2 1 1× 10−3 0.3

C 1 1 1 1× 10−3 2× 10−3

D 106 1 1000 2× 10−3 2× 10−3

Table 2. Four benchmark parameter points for exploring the one-loop Loryon model.
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Figure 4. The unitarity cutoff E normalized by 4πv? derived from the process of two Goldstones
scattering into n Higgs bosons as computed using eq. (4.11), for the four benchmark parameters
given in table 2.

This completes our discussion of the behavior of a model whose leading matching
coefficients are determined at one-loop order. Unsurprisingly, we find essentially the same
physics as in the tree-level Loryon model discussed in the previous section. In the next
section, we present our final case study: a model with an additional source of spontaneous
electroweak symmetry breaking.

5.3 BSM symmetry breaking

Up to this point, we have explored two phases of a model that involves a BSM state which
does not participate in electroweak symmetry breaking. We saw that in the regions of
parameter space where this Loryon received more than half of its mass from the Higgs vev
such that the model must be matched onto HEFT, the scale of unitarity violation was
∼ 4πv. Our goal here is to explore the other class of model that requires HEFT discussed
in [14], one that involves additional sources of electroweak symmetry breaking.

Due to the inherent complexities for models involving fields with symmetry breaking
vevs, we will choose to simplify this analysis by studying the Two Abelian Higgs model
discussed in [14, §7.1]. This serves as a toy model for the situation in which fields that
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are associated with extra sources of symmetry breaking are integrated out. We introduce
two complex scalars, HA and HB , which have respective charges +2 and +1 under a global
SO(2) symmetry, which acts as a proxy for the custodial O(4) symmetry of the SM scalar
sector. The UV Lagrangian is given by

LUV = |∂HA|2 + |∂HB|2 − VUV , (5.15a)
VUV = m2

A |HA|2 +m2
B |HB|2 + λA |HA|4 + λB |HB|4 + 2κ|HA|2|HB|2

+
[
µHA

(
H∗B

)2 + h.c.
]
. (5.15b)

For the potential to be bounded from below, we require λA, λB > 0 and λAλB > κ2.
Our goal is to integrate out HA. To this end, it is convenient to parametrize the fields

in the “unitary basis” [14]:

HB = 1√
2
reiπ = 1√

2
(v + h)eiπ , (5.16a)

HA =
√

2 f

r2 e
iβH2

B = 1√
2
f eiβ+2iπ . (5.16b)

Note that we have made the identification r ≡ v+h such that the light scalar field modulus
square is |HB|2 = 1

2r
2 = 1

2(v + h)2, analogous to our four-component Higgs studied in the
previous two examples.

In order to obtain the tree-level EFT Lagrangian, we need to solve for the solutions to
the equations of motion for β and f :

βc = − argµ+ π , (5.17a)

fc =
(
q + ∆1/2

)1/3
+
(
q −∆1/2

)1/3
, (5.17b)

where π is the Archimedes’ constant, π = 3.14159 . . ., not to be confused with the field π
introduced in eq. (5.16), and

∆(r) = q2 + p3 , (5.18a)

p(r) = m2
A + κr2

3λA
, (5.18b)

q(r) = |µ|r2
√

8λA
. (5.18c)

Note that when interpreting eq. (5.17b), we take the cube roots to be on the principal
branch, such that fc is real (and positive) for all real r. This guarantees that the resulting
EFT includes the global minimum of the UV theory.

In terms of fc, the EFT Lagrangian is16

LEFT = 1
2
[
1 + (f ′c)2

]
(∂r)2 + 1

2
(
r2 + 4f2

c

)
(∂π)2 − VEFT , (5.19)

16Note that there is no Kπ sectional curvature in this model, since the symmetry group is SO(2).
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m2
A/v

2 m2
B/v

2 µ/v λA λB κ v?/v v2
? Kh

A −0.43 −0.43 0.29 0.7 0.7 0.1 1.3 0.26

B −0.069 −0.69 0.035 7 0.7 0.01 1.0 0.018

Table 3. Two benchmark parameter points for exploring the Two Abelian Higgs model.

where a prime denotes the differentiation with respect to r. The resulting sectional curvature
of the 2D EFT manifold (charted by r and π) is

Kh = −4 (fc − rf ′c)2 (1 + (f ′c)2)+ f ′′c (4fc − rf ′c)
(
r2 + 4f2

c
)(

r2 + 4f2
c
)2(1 + (f ′c)2)2 . (5.20)

From this formula, we see that the function Kh defined in the complex r = v + h plane can
only have non-analyticities when

1. 1 + (f ′c)2 = 0,

2. r2 + 4f2
c = 0,

3. fc is itself non-analytic.

A thorough exploration of how each of these conditions manifests on the parameter
space is beyond the scope of this work. In order to simply show that the lessons we learned
from the above studies hold in the case when there is BSM symmetry breaking, we appeal
to numerics. In particular, we have provided two benchmark parameter points in table 3,
and the associated an values are given in figure 6. For both benchmarks, the non-analyticity
in Kh that is closest to the vacuum occurs when 1 + (f ′c)2 = 0. We use this to compute the
radius of convergence v? = |Q(h?)| numerically from its location. The resulting unitarity
cutoff is depicted in figure 5 for these two benchmark points, both with v? ' v.

• Point A. This shows HEFT is in the “strongly curved” regime, and the unitarity
bound is essentially already saturated for n = 2.

• Point B: This is a “weakly curved” example of HEFT with v? ' v, and the unitarity
bound saturates for n & 5.

This example demonstrates that when one is matching a UV model that includes
additional sources of spontaneous symmetry breaking onto HEFT, the unitarity bound is
. 4πv as anticipated. Although this analysis was performed on a toy model, the same
conclusions are expected to hold for more realistic examples such as the Two Higgs Doublet
Model or the Triplet Higgs extension of the Standard Model, which were both discussed
in [14].

6 Conclusions

How can we probe the geometry of an Effective Field Theory? In this work, we have
explored the sense in which scattering amplitudes measure the geometry of the scalar
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Figure 5. The unitarity cutoff E normalized by 4πv? derived from the process of two Goldstones
scattering into n Higgs bosons as computed using eq. (4.11), for the two benchmark parameters
given in table 3.

manifold in EFTs of the Higgs sector. We began by obtaining general expressions for
n-point amplitudes involving the Higgs scalar h and Goldstone bosons πi in terms of the
sectional curvatures, scalar potential, and covariant derivatives thereof. Focusing on the
high-energy behavior of these amplitudes, we linked the geometric classification of HEFT
and SMEFT to more familiar unitarity-based arguments, connecting the presence of non-
analyticities in curvature invariants to the scale of unitarity violation. In particular, we
demonstrated that when these non-analyticities are sufficiently close to a putative fixed
point — such that HEFT is required by geometric criteria — the scale of unitarity violation
in sufficiently high-multiplicity amplitudes is . 4πv.

This provides the missing link among classifications of HEFT based respectively on
unitarity, analyticity, and geometry. The key observation is that, whereas 2-to-2 amplitudes
only measure the curvature of the scalar manifold at our vacuum, higher-point amplitudes
begin to reconstruct the curvature further afield. This resonates with recent results on
probing the scale of unitarity violation with higher-point amplitudes in HEFT [11, 15, 16].
In addition to presenting general arguments linking geometry, analyticity, and unitarity,
we applied these arguments in the context of several concrete BSM examples where the
non-analyticities are directly associated with additional degrees of freedom. Beyond the
applications to unitarity and geometry pursued here, our basis-independent expressions
for scalar scattering amplitudes in terms of geometric invariants may prove more broadly
useful to studies of SMEFT and HEFT, particularly as a bridge between Lagrangian
parameterizations and purely on-shell formulations [26–28]. It is also necessary to include
fermions and vectors, for which there exist prescriptions for encoding their EFT Lagrangians
as covariant objects on target manifolds (see, e.g., [19, 32]). It will be fascinating to study
how the normal coordinate expansions of such objects map onto the contact terms in
amplitudes, analogous to the scalar case presented here.
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We emphasize that the amplitudes studied in our work only probe the geometry of
the scalar manifold in a local sense, by reconstructing the Taylor expansion of sectional
curvatures about our vacuum. While this provides enough information about far-away points
on the manifold (such as the possible fixed point) to connect geometry and unitarity, it cannot
capture global properties. Doing so presumably involves non-perturbative phenomena, and
remains an interesting open question for future study. Similarly, we emphasize that the
presented connection to non-decoupling UV physics has relied on the study of UV models
that can be perturbatively matched onto the EFT, yielding functional forms in the EFT
Lagrangian with nearby singularities. However, the non-decoupling behavior of HEFT
extends beyond perturbation theory: ref. [33] presents semi-classical arguments that the
unitarity cutoff of manifolds lacking an electroweak-symmetry-preserving fixed point cannot
be arbitrarily high (irregardless of any singularities in the sectional curvatures).

In a companion work [20], we have initiated a complementary program to systematically
characterize perturbative BSM models with new particles (the “Loryons”) that must be
matched onto HEFT. Since at least some of the BSM states in these models must have
mass . 4πv ' 3 TeV, it makes sense to ask what constraints (both direct and indirect)
exist for these models. As we will show in [20], there are models with open parameter
space that provide concrete targets for searches for both direct production of the Loryons
and indirect effects on the electroweak sector as modeled using HEFT. This presents an
exciting opportunity to explore BSM physics that could have a dramatic impact on our
understanding of phenomena at the electroweak scale.

Ultimately, this and other work exploring EFT extensions of the Standard Model are
all in service of finding new observable phenomena that can be searched for at the LHC
or other experiments, while also providing a framework for interpreting null results. The
robust result of this work is that theories whose low-energy physics is described by HEFT
must violate unitarity at a scale . 4πv ' 3 TeV, but not necessarily in 2-to-2 processes at
leading momentum order. By combining direct searches and electroweak precision data
with the high-energy behavior of high-multiplicity final states, the LHC and proposed future
colliders are in a position to discover or exclude HEFT. In the event of null results, the
precise combination of measurements required to exclude HEFT remains an open question,
but one for which a geometric approach is likely to prove fruitful. Even the exclusion
of HEFT in the absence of deviations from the Standard Model would be a remarkable
result, as it would demonstrate that the known particles alone linearly realize electroweak
symmetry — a property that is often assumed but remains experimentally unverified. This
provides added motivation for the high-luminosity LHC program, as well as proposed future
colliders probing the Standard Model at the weak scale and beyond.
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A Normal coordinates

Once we have expressed our amplitudes in terms of curvature invariants, they are manifestly
invariant under field redefinitions specified in eq. (2.2). Therefore, a useful strategy is to
work in an advantageous coordinate system at intermediate steps in order to simplify the
derivation. To this end, we will work with (Riemann) normal coordinates, which have
the defining property that they specify an “inertial frame” locally. Normal coordinates
transform contravariantly under the class of field redefinitions specified in eq. (2.2). This
implies that when the Lagrangian is expressed in this basis, the individual Wilson coefficients
(partial derivatives of the metric and potential) are composed of covariant derivatives of the
potential and Riemann curvature tensor [17]. In this appendix, we provide a brief summary
of these facts.

To introduce the normal coordinates, let us begin by working with a generic set of
coordinates ~φ. Without loss of generality, we set the origin ~φ = ~0 at the physical vacuum.
Assume the field manifold is smooth in the neighborhood of the origin, so an arbitrary
nearby point ~φ can be reached by following a unique geodesic starting from the origin,17
which we parameterize by λ and denote by ~φgeo(λ):

d2φαgeo
dλ2 + Γαβγ

(
~φgeo(λ)

) dφβgeo
dλ

dφγgeo
dλ = 0 , (A.1)

with

~φgeo(0) = ~0 , and ~φgeo(1) = ~φ . (A.2)

Each selected point ~φ will give us a specific solution ~φgeo(λ), and we can use the unique
vector ~η tangent to this geodesic solution at the origin to represent ~φ:

~φ −→ ~η ≡ d~φgeo
dλ (0) . (A.3)

This vector ~η is the (Riemann) normal coordinate.
Using the normal coordinate ~η, the solution to eq. (A.1) can be constructed order-by-

order in λ:
φαgeo(λ) = λ ηα −

∞∑
n=2

1
n! λ

n Γα(β1...βn) η
β1 . . . ηβn , (A.4)

and hence we obtain the explicit map from the normal coordinates ~η to the generic
coordinate ~φ:

φα = φαgeo(1) = ηα −
∞∑
n=2

1
n! Γα(β1...βn) η

β1 · · · ηβn . (A.5)

17Note that this need only be true in the neighborhood of the origin. Generally, the whole manifold may
not be geodesically complete.
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In the above, we used the generalized Christoffel symbols Γαβ1...βn
(~φ), which are defined

recursively from the standard Christoffel symbol by covariant differentiation of the lower
indices only

Γαβ1···βnγ ≡ Γαβ1···βn,γ −
n∑
j=1

ΓργβjΓ
α
β1...β̂jρ...βn

. (A.6)

We also used the bar notation to denote quantities evaluated at the origin

Γαβ1···βn ≡ Γαβ1···βn
(~φ = ~0

)
. (A.7)

We pause here to note an important property of normal coordinates: rescaling ~η can
be interpreted as rescaling λ in eq. (A.4), so it simply moves the point along the same
geodesic. Therefore all the points on a same geodesic must lie along a straight line when
written in normal coordinates; this is a feature by design. In other words, the geodesic
equation in eq. (A.1) must be trivialized when written in the normal coordinates. One
useful implication of this is immediately clear from eq. (A.5): assume that the coordinates
~φ were already normal coordinates, then in order for eq. (A.5) to hold, we have

Γα(β1···βn)|normal
coords

= 0 ∀n ≥ 2 . (A.8)

This is a powerful constraint that has many simplifying consequences, providing various
advantages to using normal coordinates. For example, taking the n = 2 case, we find

Γαβ1β2 |normal
coords

= Γα(β1β2)|normal
coords

= 0 . (A.9)

This also implies

2 Γαβ1β2 |normal
coords

= 2 gαλ Γλβ1β2 |normal
coords

=
(
gαβ1,β2 + gαβ2,β1 − gβ1β2,α

)
|normal
coords

= 0 . (A.10)

Symmetrizing all the indices in eq. (A.10) gives us

g(αβ1,β2)|normal
coords

= 0 ⇒
(
gαβ1,β2 + gαβ2,β1 + gβ1β2,α

)
|normal
coords

= 0 . (A.11)

Combining this with eq. (A.10), we see that any first order partial derivative of the metric
evaluated at the origin must vanish:

gαβ1,β2 |normal
coords

= 0 . (A.12)

Using eq. (A.8) beyond the lowest order, one can derive a series of similar simplification
features in normal coordinates. Let us summarize a few of them that are relevant for our
discussions in this paper. For the Christoffel symbols, one can show that

Γα(β1···βn,βn+1···βn+k)|normal
coords

= 0 ∀ n ≥ 2 and k ≥ 0 , (A.13a)

Γα(β1β2,β3···βk+2)|normal
coords

= 0 ∀ k ≥ 0 . (A.13b)
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Note that the k = 0 case of eq. (A.13a), i.e., no partial derivatives appended, is just eq. (A.8).
Similarly, eq. (A.13b) is a partial-derivative appended case of eq. (A.10). Partial-derivative
appended metric components also vanish, once the indices are partially symmetrized:

gα(β1,β2···βk+2)|normal
coords

= g(β1β2,β3···βk+2)α|normal
coords

= 0 ∀ k ≥ 0 . (A.14)

These of course also imply that the component vanishes upon full symmetrization of indices

g(αβ1,β2···βk+2)|normal
coords

= 0 . (A.15)

Note that in the k = 0 case, the second equation in eq. (A.14) results in eq. (A.12). We will
derive eqs. (A.13) and (A.14) in appendix A.1.

When a generic Lagrangian in eq. (2.11) is written in normal coordinates, the Wilson
coefficients, i.e., the partial derivatives of the metric and the potential, also take a simpler
form, in the way that they connect to covariant quantities. Partial derivatives of the potential
just become symmetrized covariant derivatives (which we will also prove in appendix A.1):

V ,γ1···γn |normal
coords

= V ;(γ1···γn) . (A.16)

Partial derivatives of the metric (without symmetrizing indices) are more involved. For the
first few orders, one can explicitly check that the following hold

gαβ,γ1 |normal
coords

= 0 , (A.17a)

gαβ,γ1γ2 |normal
coords

= 2
3 Rα(γ1γ2)β , (A.17b)

gαβ,γ1γ2γ3 |normal
coords

= Rα(γ1γ2|β;|γ3) , (A.17c)

gαβ,γ1γ2γ3γ4 |normal
coords

= 6
5 Rα(γ1γ2|β;|γ3γ4) + 16

15 Rα(γ1γ2|ρR
ρ
|γ3γ4)β . (A.17d)

The general expression for the nth partial derivative of the metric in normal coordinates
may be constructed recursively [34, 35], and they turn out to satisfy

gαβ,γ1...γn |normal
coords

= 2 n− 1
n+ 1 Rα(γ1γ2|β;|γ3...γn)

+
n−2∑
k=2

(
n

k

)
k − 1
k + 1

n− k − 1
n− k + 1

(n− k)2 + k2 + n(n+ 2)
n(n+ 1)

×Rα(γ1γ2|ρ;|γ3...γkR
ρ
γk+1γk+2|β;|...γn)

+O
(
R3) . (A.18)

A.1 Derivations

In this subsection, we derive eqs. (A.13), (A.14) and (A.16) from eq. (A.8). We will drop
the specification

“|normal
coords

” (A.19)
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to improve the readability of the expressions. All expressions are understood to be in
normal coordinates unless otherwise noted.

Let us begin with deriving eq. (A.13a). As mentioned before, the k = 0 case is
understood to be just the same as eq. (A.8). The k = 1 case is fairly straightforward to see.
Using the definition in eq. (A.6), we find

Γαβ1···βnβn+1 = Γαβ1···βn,βn+1 −
n∑
j=1

Γρβn+1βj
Γα
β1···ρβ̂j ···βn

. (A.20)

Evaluating it at the origin and symmetrize all the βi indices, we obtain

Γα(β1···βnβn+1) = Γα(β1···βn,βn+1) −
n∑
j=1

Γρ(βn+1βjΓ
α
β1···|ρβ̂j |···βn) . (A.21)

In this equation, the term on the l.h.s. vanishes due to eq. (A.8), namely the k = 0 case of
eq. (A.13a). On the r.h.s., the second term also vanishes because its first factor, Γρβn+1βj , is
also covered by the k = 0 case of eq. (A.13a). Therefore, we conclude that the first term on
the r.h.s. must also vanish:

Γα(β1···βn,βn+1) = 0 . (A.22)

The above procedure “k = 0 ⇒ k = 1” generalizes to higher k cases as well and
eq. (A.13a) can be proved by such an inductive procedure. To do so, let us now assume
that eq. (A.13a) holds for all 0 ≤ k ≤ r already, and then we will show that it must also
hold for k = r + 1. We start with the r partial derivatives on the l.h.s.:

Γαβ1···βn+1,βn+2···βn+r+1 = ∂βn+2 · · · ∂βn+r+1Γαβ1···βnβn+1

= ∂βn+2 · · · ∂βn+r+1

Γαβ1···βn,βn+1 −
n∑
j=1

Γρβn+1βj
Γα
β1···ρβ̂j ···βn


= Γαβ1···βn,βn+1···βn+r+1 −

n∑
j=1

∂βn+2 · · · ∂βn+r+1

(
Γρβn+1βj

Γα
β1···ρβ̂j ···βn

)
. (A.23)

The first term on the r.h.s. has r+ 1 partial derivatives, which is the term of interest. In the
second term, the r partial derivatives need to be allocated onto the two Christoffel symbols,
and in any of the resulting terms the first factor Γρβn+1βj

can potentially get 0 ≤ m ≤ r

derivatives. The point is that upon symmetrizing all the βi indices and evaluating at the
origin, they all vanish by our induction assumption, and so will the term on the l.h.s.
Therefore, the first term on the r.h.s. must also vanish:

Γα(β1···βn,βn+1···βn+r+1) = 0 . (A.24)

This completes our induction step and therefore proves eq. (A.13a).
Now with eq. (A.13a), we can easily derive eq. (A.13b). The relation

Γαβ1β2 = gαλ Γλβ1β2 , (A.25)

gives us
Γαβ1β2,β3···βk+2 = ∂β3 · · · ∂βk+2

(
gαλ Γλβ1β2

)
. (A.26)
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Again, we need to allocate the k partial derivatives onto the two factors in the parentheses.
But in any of the resulting terms, we will have a factor of the Christoffel symbol Γλβ1β2

with
some number of partial derivatives appended. This factor vanishes once we symmetrize
all the βi indices and evaluate it at the origin, because of (the n = 2 case of) eq. (A.13a).
Therefore, we obtain eq. (A.13b).

Now we can derive eq. (A.14). The relation

2 Γαβ1β2 = gαβ1,β2 + gαβ2,β1 − gβ1β2,α , (A.27)

obviously leads us to

2 Γαβ1β2,β3···βk+2 = gαβ1,β2β3···βk+2 + gαβ2,β1β3···βk+2 − gβ1β2,β3···βk+2α . (A.28)

Symmetrizing all the βi indices and evaluating it at the origin, we find

2 Γα(β1β2,β3···βk+2) = 2 gα(β1,β2β3···βk+2) − g(β1β2,β3···βk+2)α . (A.29)

The l.h.s. vanishes by eq. (A.13b), which implies that

2 gα(β1,β2β3···βk+2) − g(β1β2,β3···βk+2)α = 0 . (A.30)

Note that the k = 0 case of this is nothing but eq. (A.10). Following the same logic from
eq. (A.10) to eq. (A.12), we first symmetrize all the indices in eq. (A.30) to obtain

g(αβ1,β2β3···βk+2) = 0 . (A.31)

On the other hand, upon expansion this quantity yields

0 = g(αβ1,β2β3···βk+2) = 1
k + 3

[
2 gα(β1,β2β3···βk+2) + (k + 1) g(β1β2,β3···βk+2)α

]
. (A.32)

Combining this with eq. (A.30), we get eq. (A.14).
Finally, let us derive eq. (A.16). For any n + 1 (n ≥ 0) covariant derivatives of the

potential, i.e., V;β1···βn+1 , let us consider its rth (r ≥ 0) partial derivatives:

V;β1···βn+1,βn+2···βn+r+1 = ∂βn+2 · · · ∂βn+r+1V;β1···βn+1

= ∂βn+2 · · · ∂βn+r+1

V;β1···βn,βn+1 −
n∑
j=1

Γρβn+1βj
V;β1···ρβ̂j ···βn


= V;β1···βn,βn+1···βn+r+1 −

n∑
j=1

∂βn+2 · · · ∂βn+r+1

(
Γρβn+1βj

V;β1···ρβ̂j ···βn

)
. (A.33)

Similar to eq. (A.23), the second term above vanishes once we symmetrize all the βi indices
and evaluate it at the origin, because of (the n = 2 case of) eq. (A.13a). Therefore, we find

V ;(β1···βn+1,βn+2···βn+r+1) = V ;(β1···βn,βn+1···βn+r+1) . (A.34)

This says that one can move the position of the comma towards the semicolon. Using this
feature repeatedly, we can move the comma all the way:

V ;(β1···βn+1,βn+2···βn+r+1) = V ;(β1,β2···βn+r+1) = V ,β1···βn+r+1 , (A.35)
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where the second equation comes from the fact

V;β1 = V,β1 ⇒ V;β1,β2···βn+r+1 = V,β1···βn+r+1 . (A.36)

Obviously, the r = 0 case of eq. (A.35) is just eq. (A.16).

B Perturbative unitarity bounds

In this appendix, we review a formalism for deriving perturbative unitarity cutoffs from
generic n-point amplitudes expounded in [16].

We write the S-matrix as
S = I − i T , (B.1)

and bracket it with incoming and outgoing multiparticle scattering states |P, α〉 and 〈Q, β|,
where P,Q label the total momentum and α, β label all the other quantum numbers, such
as angular momentum and particle species. To factor out overall momentum conservation,
the states are normalized such that

〈Q, β|P, α〉 = (2π)4δ(4)(Q− P )δβα . (B.2)

Then, defining

〈Q, β|S|P, α〉 = (2π)4δ(4)(Q− P )Ŝβα , (B.3a)
〈Q, β|T |P, α〉 = (2π)4δ(4)(Q− P )M̂βα , (B.3b)

the S-matrix is rewritten
Ŝβα = δβα − iM̂βα . (B.4)

The unitarity of Ŝβα follows from the unitarity of the S-matrix, and leads to the optical
theorem18

0 =
∑
β

|Ŝβα|2 − 1 = 2=M̂αα +
∑
β

|M̂βα|2 , (B.5)

where the∑β is a sum over all states. Separating out the elastic process bounds the inelastic
scattering ∑

β 6=α
|M̂βα|2 =

∑
β 6=α
|Ŝβα|2 = 1− |Ŝαα|2 ≤ 1 . (B.6)

This also implies an upper bound for any individual term

|M̂βα|2 ≤ 1 ∀ β 6= α . (B.7)

In the following, we choose to project incoming and outgoing states onto their s-wave
components, by averaging over incoming and outgoing phase space. Let α describe the
s-wave component of an incoming x-particle state, which partitions x = x1 + . . . + xr
into r distinguishable particle species. Similarly, let β be an outgoing s-wave state of

18Note that =M̂αα ≤ 0 with our convention of T in eq. (B.1).
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y = y1 + . . . + ys particles, comprising s distinguishable species. Then, in terms of the
canonically normalized amplitude A,19

M̂βα =

 1
(∏r

i=1 xi!)
(∏s

j=1 yj !
)

VolxVoly

 1
2 ∫

dLIPSx
∫

dLIPSyA . (B.8)

The prefactor is fixed by the normalization condition in eq. (B.2), and is written in terms
of the n-body phase space volume

Voln ≡
∫

dLIPSn =
∫ ( n∏

i=1

d3pi
(2π)3 2p0

i

)
(2π)4δ(4)

(
P −

n∑
i=1

pi

)
. (B.9)

In the case of all massless particles, the phase space volume evaluates to [31],

Voln = 1
8π(n− 1)!(n− 2)!

(
E

4π

)2(n−2)
, (B.10)

where E =
√
P 2 is the center-of-mass energy.

C Convergence rate of sectional curvatures

As discussed in section 4.2, the Cauchy-Hadamard theorem motivates us to relate the
growth of derivatives of the sectional curvature to its radius of convergence by a quantity
an we defined in eq. (4.6). As n → ∞, this quantity is expected to approach unity; see
eq. (4.7). In this appendix, we provide numerical evidence that this is the case, by plotting

an =
(
vn?
n!
|∂nhKh|
|Kh|

)− 1/n ∣∣∣∣
h=0

, (C.1)

ãn =
(
vn?
n!
|∂nhKπ|
|Kπ|

)− 1/n ∣∣∣∣
h=0

, (C.2)

as a function of n for the example model benchmarks introduced in section 5, see figure 6.

19Canonically normalized means constructed using single particle states |p〉 satisfying 〈q|p〉 = (2π)3δ(3)(~p−
~q) 2p0.
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Figure 6. These plots provide an and ãn (eqs. (C.1) and (C.2)) as a function of n for the benchmark
points studied in section 5. Note that a1(ã1) and a3(ã3) are outside the plot range for points D.
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