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an arbitrary product of unitary gauge groups) are possible. Amongst other features, the

program is able to: (i) check whether an input list of Lagrangian operators (of a given

dimension in the EFT expansion) is a basis for the space of operators contributing to S-

matrix elements, once redundancies (such as Fierz-Pauli identities, integration by parts,
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from an input algorithm; (iii) carry out a change of basis. We describe applications to

the SM (where we carry out a number of non-trivial cross-checks) and extensions thereof,

and outline how the program may be of use in precision tests of the SM and in the ongo-

ing search for new physics at the LHC and elsewhere. The code and instructions can be
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1 Introduction

Non-renormalizable quantum field theories, once regarded as something of a pariah by

physicists, have become ubiquitous as a means of parameterizing, in a general way, the

low-energy effects of unknown physics residing at higher-energy scales. In a nutshell, given

a set of quantum fields representing physical degrees of freedom and a group of symmetries

acting on them, the lagrangian of such an effective field theory (EFT) contains not just

renormalizable invariant operators built out of fields and spacetime derivatives, but all

invariant operators, ordered by their relevance in terms of a low-energy expansion. The

example that is perhaps of greatest current interest to particle physicists is the use of an

EFT given by the renormalizable Standard Model (SM) plus higher-dimension operators

(henceforth, the ‘SMEFT’), to parameterize possible deviations from the SM at the Large

Hadron Collider and elsewhere.
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Whilst the idea of EFT is simple enough in principle, to use it in practice involves a

great deal of donkey work, above and beyond what is required in renormalizable quantum

field theory. There are several reasons for this. Firstly, the operators at a given order in

the low-energy expansion form a vector space whose dimension grows exponentially with

the order. Secondly, given some set of physical observables, there is a large subspace of

operators (whose dimension also grows exponentially with the order of expansion) that

are redundant, in the sense that they do not contribute to any of the observables. These

operators must be identified and dealt with, by forming a basis for the space of physical

observables. Thirdly, in fitting either to experimental data or to some overarching theory,

one must choose a basis for the space of physical operators. Different data sets and different

theories prefer different bases (as do different physicists!) and comparison between them

necessitates a change of basis.

As we shall explain in more detail in section 2, much of the required donkey work

reduces to combinatorics and linear algebra, and is easily done with a computer. To this

end, in this paper we present a computer code, DEFT, to help with the work.

In rough terms, DEFT does the following. At each given order in the EFT dimen-

sion expansion, DEFT generates all possible lagrangian terms that are invariant under the

symmetries of the inputted fields. Through a set of hard coded rules, the program then

enumerates all linear combinations of these operators which do not contribute to S-matrix

elements at said order. By finding the nullspace of these redundant directions, DEFT will

determine a subset of the original lagrangian terms which span the space of physically

distinguishable operators, thereby defining a basis. If given, by the user, any other set of

linear combinations of lagrangian terms, DEFT can check if it too forms a basis. Given two

such bases, DEFT will provide an explicit formula to convert between them. In its current

implementation, DEFT can be applied ‘out-of-the-box’ only to the SMEFT, but the methods

employed may be generalized to a number of phenomenologically relevant EFTs, which we

briefly discuss in section 4.

Experienced practitioners of EFT will easily be able to imagine the benefits of an

automated approach of this type, but let us spell a few of them out anyway.

Firstly, DEFT is able to generate a basis of operators at a given dimension that is not

only (hopefully) correct, but is also obtained relatively quickly, provided that the operator

dimension is not too large. For example, for the SMEFT with one generation of fermions

at operator dimension six, DEFT generates the list of 84 operators in figure 2 in a matter of

minutes. This is to be contrasted with the human approach, which took roughly a quarter

of a century, with more than one hiccough along the way [3, 4].

Secondly, there is a large freedom in the choice of operator basis, which DEFT enables

the user to exploit, according to his or her particular desiderata. There are two aspects

to this freedom. The first corresponds to the usual freedom to choose a basis for a vector

space. But in EFT, there is yet more freedom, which corresponds to the fact that many

operators have the same physical effects. It is often useful, in applications, to exploit this

freedom. On the one hand, for example, an experimentalist whose apparatus is only able to

detect certain types of particles, might prefer a basis description which prioritises operators

containing those particles. On the other hand, an experimentalist whose apparatus detects
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only very low energy particles might prefer a basis description with operators containing

as few derivatives as possible. Given some input algorithm encoding the user’s desiderata,

DEFT will output a corresponding basis. Even, for example, in the SMEFT at dimension 6,

the user could simply input a list of 84 operators, and ask DEFT to check that it is a basis.

Or the user could input his favourite 10 operators and ask DEFT to generate (if possible)

74 others using its default algorithm or some modification thereof.1

This freedom to choose a basis has its downsides, of course. Indeed, it seems to be an

empirical law of nature that, given an EFT that describes the low-energy limits of some

theorists’ models and which is subject to the constraints of some experimentalists’ measure-

ments, the relevant literature is likely to contain roughly as many different choices of basis

as the number of theorists and experimentalists put together! This is hardly surprising: the

former are likely to choose bases in which the particular operators their theories generate

are basis elements and the latter are likely to choose bases in which the operators they

constrain best are basis elements. For a few examples of the proliferation of such bases in

the SMEFT at d = 6, the reader is invited to consult, e.g. [5]. As a result, the community

has arrived at something of an impasse: in order to compare theory with experiment, or

indeed to just compare one experiment with another, phenomenologists must be able to

change bases. But such changes of bases are highly non-trivial, because the aforementioned

redundancies among operators must be taken into account. Indeed, thus far just one such

change of basis has been carried out (by hand) in the SMEFT at dimension 6 [6].

A third, and perhaps the most significant, benefit of DEFT is that such changes of

basis can be carried out, not quite at the touch of a button, but with comparable ease.

Given an arbitrary set of basis operators, if the user is able to express them in terms of the

redundant set of ‘monomial operators’ detailed in section 2.1, DEFT is able to convert them

into any other operator basis that the user has so expressed. As an example, we describe

the use of DEFT to carry out a change of basis in the SMEFT at dimension 6 in section 3.2.

The computation takes 20 minutes on a laptop. We hope therefore, that in removing this

impasse DEFT will prove to be useful in the current programme of comparing experimental

data with the SM via EFT.

The ability of DEFT to construct arbitrary bases and change between them gives it

something of an advantage with respect to recent analytic efforts to determine an EFT

basis using Hilbert series methods [7–11]. While these methods are extremely elegant, they

naturally require a specific type of basis, namely one in which the numbers of derivatives

appearing in operators are minimized. DEFT also enables us to perform an independent

cross-check of these methods, and provides an explicit contraction of the Lorentz and

gauge indices of the attendant operators.

The genericity of DEFT also distinguishes it from existing Python frameworks with

practical applications to (SM)EFT, into which are encoded mappings between particular

bases [5], or explicit transformation rules for the conversion between different equivalent

operators [12]. For this reason we envisage one use of DEFT to be the construction or

conversion between bespoke bases in the Standard Model or similar field theories.

1The README file gives some indication as to how bases may be input.
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The main drawback of DEFT is that it rapidly runs out of steam as the operator di-

mension grows. This is hardly surprising, since DEFT works by performing brute-force

linear-algebra manipulations in vector spaces whose dimension grows exponentially with

the operator dimension, in terms of a redundant description whose size also grows expo-

nentially. Given current computing capabilities, the ceiling corresponds to spaces with

roughly 103 physical operators. So in the one-generation SMEFT, going beyond dimension

9 is inconceivable.

The outline of the rest of the paper is as follows. In the next section, we describe

the algorithm implemented in DEFT to enumerate operators and redundancies between

them, and in section 3 we describe a number of examples and cross-checks, followed by

a brief discussion. In appendices A and B respectively, we provide more information on

the structure of the code itself, as well as our index conventions. To complement the

technical detail of section 2, we provide a more abstract discussion of the structure of the

redundancies amongst operators and the related vector spaces in appendices C and D.

2 Implementation

We proceed by describing each step of the program in turn: 1) the construction of a

(overcomplete) list of monomial operators (section 2.1); 2) the construction of the IBP

(section 2.2), Fierz (section 2.3), commutation of covariant derivatives (section 2.4), and

EOM relations (section 2.5); 3) the linear algebra necessary to construct non-redundant

bases and to convert into and between them (section 2.6).

2.1 Constructing operators

DEFT assumes that fields transform in irreps of SU(N), which are described via a combina-

tion of upper and lower indices with symmetry conditions attached. An upper index takes

values between 1 and N and transforms in the defining rep of SU(N); a lower index runs

between 1 and N and transforms in the conjugate of the defining rep. Conjugation of a

field in an irrep of SU(N) lowers upper indices and vice versa. Presently, DEFT contains

the definitions for the fundamental and anti-fundamental irreps, along with the symmetric

and traceless combinations thereof.

For our purposes, the irreps of the Lorentz group are those of SU(2)L,lor × SU(2)R,lor

— represented by the familiar undotted and dotted indices for the respective SU(2)s of the

direct product — with the distinction that, upon conjugation of a field, undotted indices

are dotted and vice versa. Table 1 contains the Lorentz and gauge representations, as well

as their explicit realisations in terms of (anti)fundamental indices, of the fields of the one

generation Standard Model.

The advantage of working with exclusively fundamental and anti-fundamental indices

is that there are only two invariant tensors: the Kronecker delta δab (with an upper and

lower index) and the Levi-Civita epsilon εabc...z or εabc...z (with either N upper or N lower

indices). We report various sign conventions in appendix B.
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Field Dimension SU(3)c SU(2)L U(1)Y SU(2)lor,L SU(2)lor,R

LL
αa 3

2 1 2 −1
2 2 1

eR
α̇ 3

2 1 1 −1 1 2

QL
αaA 3

2 3 2 1
6 2 1

uR
α̇A 3

2 3 1 1
3 1 2

dR
α̇A 3

2 3 1 −2
3 1 2

Ha 1 1 2 1
2 1 1

B(αβ) 2 1 1 0 3 1

W a
b(αβ), W

a
a(αβ) ≡ 0 2 1 3 0 3 1

GAB(αβ), G
A
A(αβ) ≡ 0 2 8 1 0 3 1

Table 1. The fields of the one generation Standard Model in component form, along with their

mass dimensions, and their representations under the SM symmetries.

To form all monomial singlet operators from an input set of fields, DEFT generates all

combinations of fields, their conjugates, and covariant derivatives acting thereon2 satisfying

a specified boolean method (usually that the mass dimension of the putative operator is less

than or equal to a given number). The list of operators is filtered for zero net U(1) charges.

The SU(N)-like indices of each operator are then partitioned by group and contracted

with all combinations of deltas and epsilons. These contractions are filtered according to

whether they respect the symmetry conditions of the fields’ indices (e.g. an epsilon tensor

cannot contract two indices which are symmetrized, and a delta tensor cannot contract an

upper and lower index which are required to be traceless).

Having generated a (over)complete set of monomial operators, we must now generate

a (over)complete set of linear combinations of the monomial operators which do not con-

tribute to scattering amplitudes. Those for the Standard Model fall into the four categories

of section 2.2–2.5.

2.2 Integration by parts

Amplitudes which are proportional to a sum of the momenta of the external legs —∑
i∈external k

µ
iMµ for external leg momenta {kµi } — are zero by overall momentum con-

servation. At the operator level, for each term Dαα̇FDββ̇G . . .Dγγ̇Dδδ̇H, we generate a

relation by moving the outermost derivative of each field, i.e.,

Dαα̇(FDββ̇G . . .Dγγ̇Dδδ̇H) = Dββ̇(Dαα̇FG . . .Dγγ̇Dδδ̇H) = . . .

= Dγγ̇(Dαα̇FDββ̇G . . .Dδδ̇H) = 0 . (2.1)

2A covariant derivative Dαα̇ has a lower SU(2)L,lor and a lower SU(2)R,lor index.
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2.3 Fierz relations

A product of one upper and one lower Levi-Civita epsilon tensor may be expressed as a

sum of products of Kronecker deltas:

εab···cε
xy···z +

∑
ξ∈SN

σ(ξ)δξ(x)a δ
ξ(y)
b . . . δξ(z)c = 0, (2.2)

summing over the permutations ξ of the N upper indices, each having parity σ(ξ) = ±1.

For N = 2, there are also Schouten identities,

εabεcd − εacεbd + εadεbc = 0, (2.3)

εabεcd − εacεbd + εadεbc = 0, (2.4)

δab εcd − δac εbd + δadεbc = 0, (2.5)

δbaε
cd − δcaεbd + δdaε

bc = 0, (2.6)

which are effectively ‘raised’ and ‘lowered’ versions of (2.2). DEFT searches for the lefthand-

most term in each operator, and generates one relation for each match.

In addition, any SU(N + k), k ∈ N relation of the form (2.2) may have its indices

restricted to run between 1 and N , yielding an SU(N) Fierz relation∑
ξ∈SN+k

σ(ξ)δξ(x)a δ
ξ(y)
b . . . δξ(z)c = 0. (2.7)

For each set of operators with the same field content having Nu upper and Nl lower SU(N)

indices, one such relation is generated for each k ≤ min(Nu, Nl)−N .

2.4 Commuting covariant derivatives

For a field Gab···xy··· which transforms under an SU(N) gauge group with upper indices a, b, . . .

and lower indices x, y, . . ., one can interchange any two of its adjacent covariant derivatives,

and the difference of the terms is a sum of field strengths:

(D . . .D)[Dαα̇, Dββ̇ ](D . . .D)Gab···xy··· = igN

(
Fαα̇ββ̇

a

t
Gtb···xy··· + Fαα̇ββ̇

b

t
Gat···xy··· + . . .

− Fαα̇ββ̇
t

x
Gab···ty··· − Fαα̇ββ̇

t

y
Gab···xt··· − . . .

)
, (2.8)

where gN and Fαα̇ββ̇
a

t
= −1

2εα̇β̇Fαβ
a
t −

1
2εαβF α̇β̇

a

t
are respectively the gauge coupling and

field strengths of the SU(N) gauge group. One relation is generated per operator per field

per adjacent pair of covariant derivatives.

2.5 Equations of motion

The dimension n part of the following two tree level graphs are equivalent, when all external

legs are on-shell and n > 4: a) a graph comprising a dimension n vertex and a dimension

4 vertex, and b) a graph comprising a single dimension n vertex with the same external

legs. This is illustrated schematically in figure 1. At the operator level, this corresponds

– 6 –
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Figure 1. Two schematic amplitudes whose dimension n parts are equal: the square and circle

denote higher and lower derivative dimension n operators.

to redundancies amongst dimension n operators arising from our freedom to make field

redefinitions [13]. The redundancies take the form

U(x)
δS4
δF (x)

= 0, (2.9)

where U(x) is a functional of some fields, which depend on spacetime coordinate x, and
δS4
δF (x) is an equation of motion (EOM) of the renormalizable theory: the functional deriva-

tive of the dimension 4 action w.r.t. a constituent field F . Note that dimU+4−dimF = n.

Higher dimension (> n) components of (2.9) have been neglected.

DEFT constructs the EOM according to the following functional derivative rules:

δ(DD . . .D)H(x)

δH(y)
= (DD . . .D)δ(4)(x− y) (2.10)

for any (scalar or fermion) matter field H;

δDαα̇H
a

δAββ̇
c

d
(x)

= igNδ
β
αδ

β̇
α̇

(
δac δ

d
bH

b − 1

N
δdcH

a

)
δ(4)(x− y) (2.11)

for a matter field Ha charged under an SU(N) gauge group, with coupling gN and vector

potential Acd;
δFαβ

a
b

δAγγ̇
c
d(x)

= εα̇β̇δac δ
d
b

(
δγβδ

γ̇

β̇
Dαα̇ − δγαδ

γ̇
α̇Dββ̇

)
δ(4)(x− y) (2.12)

for the field strength F ab of the SU(N) gauge group, vector potential Acd.

DEFT also derives the Bianchi identities of the field strengths F ab by functionally differ-

entiating the action

S′4 =

∫
d4x

(
(Fαβ)ab (Fαβ)ba − (F̄ α̇β̇)ab (F̄α̇β̇)ba

)
, (2.13)

with respect to the corresponding vector potential. Although the Bianchi identities are not

EOMs per se, they still give rise to redundancies amongst higher dimensional operators of

the form

U(x)
δS′4
δA(x)

= 0, (2.14)

and are hence included in this step simply as additional EOMs (one for each gauge group).

Then, for each monomial element of an EOM, the program searches for its embedding

in each dimension n term, calculating corresponding ‘quotients’ U(x) (2.9). For each EOM

and each possible U(x), relations are formed out of the corresponding terms, weighted by

the coefficients of the EOM.
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2.6 Reducing to a basis

Having constructed a (overcomplete) list of monomial operators, and a (overcomplete) list

of redundancy relations between them, it remains to perform the necessary linear algebra

to extract useful bases of operators and the means to convert between them. For this, DEFT

uses the Python package sympy [14].

The monomial operators are ordered into a column vector Oi, according to a specifiable

ranking function. By default, the operators are given a partial ordering to place ‘less

desirable’ operators near the top of the vector.3 Each redundancy relation is then expressed

as a row of a matrix M , such that MijOj = ~0.

Any valid basis is a set of operators Bi (i.e., a set of linear combinations of Oi) which

span the nullspace of M . DEFT constructs a default basis by placing M in reduced row

echelon form (RREF),4 and defining Bi as the set of monomial operators which do not

have a leading entry in any of the rows of the RREF matrix. Combined with the default

ordering of Oi, this acts to create Bi with as few derivatives as possible (when applied

to the Standard Model at dimension 6, for instance, the default Bi closely resemble the

operators of the Warsaw basis). The entries of the RREF matrix may be rearranged to

express all operators in terms of the basis:

Oi = RijBj (2.15)

The user may specify another putative basis B′i by manually expressing them in terms

of the monomial operators Oj , which DEFT encodes as the matrix B′i = SijOj . By printing

the components of B′i = SijRjkBk, DEFT gives expressions to convert between the two bases.

The validity of the B′i as a basis may be checked by the invertibility of the matrix SR.

3 Cross checks

3.1 Dimensions

We used the code to calculate the number of independent operators at each mass dimension

up to 8, for lagrangians containing various combinations of light fields. The results agree

with table 2, whose entries were either computed manually (d ≤ 4) or using the Hilbert

series method of [10] (d > 4).5

3Operators are compared pairwise by their number of derivatives, then the number of epsilon invariants,

then by the number of fields, with the first operator to return a higher number being placed above the

other in the column vector. If two operators compare equal by these criteria, and exactly one is (anti)self-

conjugate, then said operator is placed lower.
4A matrix is in reduced row echelon form iff. the leading coefficient (the first non-entry from the left) in

each row is a 1, each such leading coefficient is the only non-zero entry in its column, and each leading coeffi-

cient is to the right of that of the row above it. Its form is invariant under row operations on the original Mij .
5Both DEFT and table 2 count the dimension 4 operators FαβF

αβ and F̄α̇β̇F̄
α̇β̇ independently for any

field strength F .

– 8 –



J
H
E
P
0
1
(
2
0
1
9
)
1
2
8

d 1 2 3 4 5 6 7 8

{H, lL} 0 1 0 3 2 6 6 18

{φ,H, lL} 1 2 2 6 5 12 21 48

{B, eR} 0 0 0 3 0 1 0 5

{H,B,W, lL, eR} 0 1 0 10 2 23 12 179

{H,B,W,G, lL, eR, qL, uR, dR} 0 1 0 19 2 84 30 993

{H,B,W, lL, eR, q4L, u4R, d4R} 0 1 0 17 2 68 * *

{H,B,W,G4, lL, eR, q
4
L, u

4
R, d

4
R} 0 1 0 19 2 76 * *

Table 2. The number of independent operators at each mass dimension d, for various combina-

tions of fields. {H,B,W,G, lL, eR, qL, uR, dR} are those of the one generation Standard Model (cf.

table 1); φ is a real scalar singlet under the symmetries of the Standard Model. G4 and {q4L, u4R, d4R}
are respectively the gauge boson and matter fields of an SU(4) gauge group, with the same elec-

troweak charges as their SU(3) charged counterparts in the Standard Model. In the penultimate

line of the table, we treat the SU(4) as a global symmetry.

3.2 Change of basis

We define the one generation SILH basis as a one generational restriction of the operators

in tables 1, 2, and 3 of [6],6 and similarly the one generation Warsaw basis from tables 2

and 3 of [4]. DEFT generates expressions for the Wilson coefficients of the SILH basis in

terms of the equivalent Wilson coefficients of the Warsaw basis, in agreement with the one

generational restriction of the formulae of appendix A of [6], as well as an independent

manual calculation.

4 Discussion

In an auxiliary directory in the submission, we provide a list of possible monomial operators

in the one generation Standard Model, in the default ordering,7 together with the reduced

row echelon form of Mij when the columns are so ordered.

We depict the structure of the RREF matrix in figure 2, by plotting the non-trivial

values of |Rij |, as defined in (2.15). Each row of the RREF matrix effectively defines a linear

relation expressing each redundant operator in terms of the remaining basis operators; for

each row i, we plot the absolute values |Rij | on the line of the basis operator corresponding

to the index j. For each row of the figure, the style of marker is determined by the field

composition of the redundant operator ‘being eliminated’, as indicated in the legend.

Note that there are eight lines in figure 2 with no points; equivalently, there are eight

columns in the RREF matrix whose entries are all zero, corresponding to six B violating

operators and the two operators of the form HH̄G2 and HH̄Ḡ2. These eight monomial

operators are the sole monomial representatives of their respective equivalence classes of

6The operators OHl, O
′
Hl, Oll, Olu, and Ouu are absent.

7The operators are listed in descending order of number of derivatives, then number of epsilon tensors,

indices and conjugate fields.
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operators which give the same physical effects in the S-matrix, and are, therefore, always

in any basis constructed solely from monomial operators. In addition, the remaining two

B violating operators — Q3L and Q̄3L̄ — are only somewhat trivially related to operators

of the same field composition via a Fierz relation. By considering the structure of the

redundancy relations, we provide some justification for the apparent isolation of these ten

operators in appendix C.

Finally, we would like to consider the potential uses of DEFT beyond that of the Stan-

dard Model EFT. In the first step of its procedure, DEFT enumerates all lagrangian terms

consistent with the SM symmetries. It does so by representing the fields and derivatives

with upper and lower fundamental indices of SU(N), forming all invariant contractions

thereof, and filtering the results for overall zero charge under U(1) symmetries. This step

can be performed on an EFT with arbitrary field content, in which the symmetry group

is an arbitrary product of unitary groups and whose fields the user is able to encode as

irreducible combinations of upper and lower fundamental indices. Other simple conditions,

such as invariance under a Z2 symmetry, can similarly be enforced in the filtration step,

although adapting DEFT to deal with multidimensional irreps of other symmetry groups

would be significantly more involved.

In the second step, the code derives a set of redundancy relations amongst the generated

terms — those resulting from integration-by-parts, Fierz identities, replacing commutators

of covariant derivatives, Bianchi identities and equation of motion relations, the latter

formed using hard-coded rules to functionally differentiate a gauged theory of scalars and

fermions. These relations suffice to eliminate all redundancies in the case of the Standard

Model EFT, and could be easily reused on another gauge theory with linearly realised

symmetries, where these classes of relations are presumed sufficient to eliminate all redun-

dancies in the S-matrix. We note, however, that DEFT can provide no guarantee of this

sufficiency.

To give one obvious example of a useful extension, given anomalies in data suggesting

the need to add light, beyond-the-SM degrees of freedom to the SM, it would be a simple

matter to incorporate such fields into DEFT. This has already been done [2] in the case of

a SM gauge singlet scalar, hypothesized to explain a spurious anomaly in the γγ spectrum

at an invariant mass around 750 GeV. Similarly, DEFT could be adapted to use in flavour

physics, where the relevant effective lagrangian at the scale of b-quarks has SU(3) × U(1)

invariance (where U(1) corresponds to the electromagnetic gauge group) with the Higgs

boson, W,Z bosons, and top quark removed. DEFT could also be used to evaluate the

restricted set of invariants that arise in theories with some unified symmetry group, such

as the SU(4)× SU(2)× SU(2) of Pati & Salam or the SU(5) of Georgi & Glashow. With a

bit more effort, DEFT could also be applied to theories in lower dimensions, or indeed those

with Galileo, rather than Poincaré, invariance.
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Figure 2. The absolute values of the non-trivial components of Rij , defined in (2.15), for the one

generation SM. Each marker is positioned in line with the basis operator corresponding to index j,

and formatted according to the field composition of the redundant operator corresponding to index i.

We define the marginal couplings in terms of the measured coefficients of the three generation Stan-

dard Model: the Higgs quartic and gauge couplings equal those measured at the Z pole, whereas the

Yukawa couplings are set by measurements of the heaviest generation: yu = mt

v , yd = mb

v , ye = mτ

v .
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A Using the code

The code requires Python 2.7+ and the sympy [14] symbolic manipulation package.

Each monomial operator is represented by a Term instance. A Term has a list

(. fields) of Field instances and a list (. invariants) of Invariant instances, each of

which has a list (.indices) of Index instances that they respectively possess or contract.

Field instances also have a list (.Dindices) of tuples of its indices which belong to covari-

ant derivatives acting on the field; a dictionary (.U1Dict) of U(1) charges, which take on

rational values represented by frac instances, and a list (.symmetries) of Symmetry in-

stances which enforce symmetry properties of the field’s indices upon contraction with

Invariants .

A Relation is a list of Terms (.terms) and corresponding coefficients (.weights),

which are sympy expressions. sympy is used for some of the subsequent matrix manipula-

tion.8

The use of the provided methods for the generation of terms and relations, as well as

the conversion into and between bases, is documented in the unit tests, which compute the

cross checks described in section 3.

B Index conventions

For an N index group

ε12···N = −ε12···N = 1; δab =

{
1 if a = b,

0 otherwise.
(B.1)

We use the spinor index conventions of [15] with a mostly-minus metric ηµν =

diag(+1,−1,−1,−1) and totally antisymmetric tensor ε0123 = −ε0123 = +1. With the

8The row reduction, when performed symbolically with the marginal couplings of the theory as variables,

is computationally expensive. One has the option in DEFT of substituting the different marginal couplings

for prime numbers to speed up the row operations, or substituting for zeroes (i.e. working with a free

renormalizable part of the theory). Note that one should avoid replacing the couplings with floating point

values prior to the row reduction, due to the ensuing propagation of floating point inaccuracies.
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use of the tensors σµαα̇ and σ̄α̇αµ and relations (2.47)–(2.53) of [15]

σµαα̇σ̄
β̇β
µ = 2δα

βδβ̇ α̇ , (B.2)

σµαα̇σµββ̇ = 2εαβεα̇β̇ , (B.3)

σ̄µα̇ασ̄β̇βµ = 2εαβεα̇β̇ , (B.4)

[σµσ̄ν + σν σ̄µ]α
β = 2ηµνδα

β , (B.5)

[σ̄µσν + σ̄νσµ]α̇β̇ = 2ηµνδα̇β̇ , (B.6)

σµσ̄νσρ = ηµνσρ − ηµρσν + ηνρσµ + iεµνρκσκ , (B.7)

σ̄µσν σ̄ρ = ηµν σ̄ρ − ηµρσ̄νηνρσ̄µ − iεµνρκσ̄κ , (B.8)

expressions involving vector and spinor Lorentz indices may be easily converted. For ex-

pressions with a single vector index we define

Aαα̇ = σµαα̇Aµ, Dαα̇ = σµαα̇Dµ, (B.9)

whence we derive

Aµ =
1

2
σ̄α̇αµ Aαα̇, Dµ =

1

2
σ̄α̇αµ Dαα̇. (B.10)

For expressions with two vector indices, such as a field strength Fµν or its dual F̃µν , we

define

Fαα̇ββ̇ = σµαα̇σ
ν
ββ̇
Fµν , F̃αα̇ββ̇ = σµαα̇σ

ν
ββ̇
F̃µν , (B.11)

such that

Fµν =
1

4
σ̄α̇αµ σ̄β̇βν Fαα̇ββ̇ , F̃µν =

1

4
σ̄α̇αµ σ̄β̇βν F̃αα̇ββ̇ , (B.12)

where Fαα̇ββ̇ and F̃αα̇ββ̇ may be expressed in terms of Lorentz group irreps Fαβ and F̄α̇β̇ :

Fαα̇ββ̇ = −1

2
(εα̇β̇Fαβ + εαβF̄α̇β̇), F̃αα̇ββ̇ = −1

2
i(εα̇β̇Fαβ − εαβF̄α̇β̇). (B.13)

If Fµν = ∂µAν − ∂νAµ, helpful consequences of the above conventions include

Fαβ = εα̇β̇Fαα̇ββ̇ = εα̇β̇(∂αα̇Aββ̇ − ∂ββ̇Aαα̇), (B.14)

F̄α̇β̇ = εαβFαα̇ββ̇ = εαβ(∂αα̇Aββ̇ − ∂ββ̇Aαα̇). (B.15)

Note that, alternatively, one can use the tensors

(σµν)βα =
1

4
i(σµαα̇σ̄

ν α̇β − σναα̇σ̄µ α̇β) (B.16)

(σ̄µν)α̇
β̇

=
1

4
i(σ̄µ α̇ασν

αβ̇
− σ̄ν α̇ασµ

αβ̇
) (B.17)

to convert directly between different forms of the field strength:

Fαβ = 2i(σµν)γαεγβFµν ; F̄α̇β̇ = 2iεα̇γ̇(σ̄µν)γ̇
β̇
Fµν ; (B.18)

Fµν − iF̃µν = −1

2
iFαγε

γβ(σµν)αβ ; Fµν + iF̃µν = −1

2
iεα̇γ̇F̄γ̇β̇(σ̄µν)β̇α̇ . (B.19)
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A four component Dirac spinor may be expanded in terms of the components of a

left-handed, Lα, and right-handed, Rα̇, Weyl spinor, such that

Ψ =

(
Lα

Rα̇

)
=

L1

L2

R1

R2

, (B.20)

and its conjugates are

Ψ̄ =
(
R̄α L̄α̇

)
; ΨC =

(
R̄α

L̄α̇

)
. (B.21)

Gamma matrices may be similarly expanded as

γµ =

 0 σµ
αβ̇

σ̄µα̇β 0

 ; γ5 =

−δβα 0

0 δα̇
β̇

 ;
1

4
i[γµ, γν ] =

(σµν)βα 0

0 (σ̄µν)α̇
β̇

 . (B.22)

We normalize the non-Abelian vector potentials of the SM such that

(Wαα̇)ab =
1

2
W i
αα̇(σi)ab ; (Gαα̇)ab =

1

2
Giαα̇(λi)ab , (B.23)

where (λi)ab is the value of the ath row and bth column of the ith Gellmann matrix, and

similarly for the Pauli sigma matrices (σi)ab . G
i, i = 1, . . . , 8, and W i, i = 1, . . . , 3, are the

canonical gauge fields found in, for instance, the listing of the Warsaw basis [4]. With the

use of the Fierz relations,

(σi)ab (σ
i)cd = 2δadδ

c
b − δab δcd (B.24)

(λi)ab (λ
i)cd = 2δadδ

c
b −

2

3
δab δ

c
d (B.25)

we can deduce the correct normalization of the kinetic terms, e.g.,

−1

4
W i
µνW

i µν =
1

16

(
(Wαβ)ab (Wαβ)ba + (W̄ α̇β̇)ab (W̄α̇β̇)ba

)
, (B.26)

−1

4
GiµνG

i µν =
1

16

(
(Gαβ)ab (Gαβ)ba + (Ḡα̇β̇)ab (Ḡα̇β̇)ba

)
. (B.27)

C The structure of operator relations in a generic 4d EFT

Following the procedure of [16], we define two integer coordinates n and
∑
h for each

monomial EFT operator as, respectively, the number of fields and the sum of the helicities

h of the particle created by the action of each field on the vacuum.9 For fields that are

scalar φ, left- and right-handed Weyl fermions ψ and ψ̄, and left- and right-handed field

strengths F and F̄ , h = 0,+1
2 ,−

1
2 ,+1,−1 respectively. We enumerate the possible field

compositions of dimension 6 operators allowed by Lorentz symmetry and arrange them by

their coordinates in figure 3 (cf. figure 1 of [16]).

9For the purposes of calculating n and
∑

h, we treat covariant derivatives as partial derivatives.
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Consider how redundancy relations allow one to move around the table of figure 3. IBP

and Fierz relations ‘trivially’ mix operators with the same field composition, and therefore

with the same coordinates (n,
∑
h). The other two kinds can be viewed as expressing a

higher derivative operator in terms of an equivalent sum of lower derivative ones.

One, replacing a commutator of derivatives with a field strength generically yields a

combination of terms, some with an additional F , some with an F̄ (one of these may

be forbidden by Lorentz symmetry). Thus, starting with an operator with coordinates

(n,
∑
h), one ends up with operators at (n+ 1,

∑
h+ 1) and (n+ 1,

∑
h− 1).

Two, replacing the free part of an EOM with the interacting parts amounts to, dia-

grammatically, taking a graph comprising just an insertion of a higher derivative dimension

6 operator, and adding a dim 4 vertex to one of the legs on which the derivative(s) act(s)

(see figure 1). This composite, two vertex graph may have the same leading order momen-

tum piece as a simple insertion of a lower derivative dim 6 operator, when the external legs

are on shell. We may assume the fields are massless, as relevant interactions do not affect

the EOM relations.10 Thus, by (12) of [16], the coordinates (ni, (
∑
h)i) of such a composite

amplitude (and by extension the weights of the corresponding lower derivative operator)

are related to the weights of the constituent vertices (nj , (
∑
h)j) and (nk, (

∑
h)k) by:

ni = nj + nk − 2;
(∑

h
)
i

=
(∑

h
)
j

+
(∑

h
)
k
. (C.1)

The weights of possible dim 4 vertices are as follows. A gauge or Yukawa coupling is

(n,
∑
h) = (3,±1). Anything proportional to a scalar quartic is (4, 0). Therefore, the part

of an EOM relation proportional to a gauge or Yukawa coupling lies one unit right and one

unit either up or down in the table of operators, relative to the original higher derivative

operator. For the part proportional to a Higgs quartic, it lies two units to the right.

Figure 3 allows us to understand two examples of dimension 6 monomial operators in

the SM, which are not related to any others. One, an H2G2 (class F 2φ2) operator could

only be reached from an operator of class Fφ2D2. However, all such GH2D2 operators are

forbidden by gauge symmetries. Two, baryon violating operators of the form ψ4, ψ2ψ̄2,

and ψ̄4, are only reachable from operators of class Fψψ̄D and ψ2D3, as well as their

conjugates. The baryon violating operators contain three quarks, and all relations preserve

the parity of the number of quarks. However, there are no gauge invariant operators of the

form Fψψ̄D or ψ2D3 containing a single quark, leaving the baryon violating four fermion

operators unrelated to both baryon conserving operators, and also unrelated to each other.

D Vector spaces of operators and observables

Though ultimately all of the computations DEFT carries out are performed in a specific

basis or bases, we find it illuminating to consider its operations abstractly in a way that is

basis independent.

We thus define the operators of a given dimension as the gauge and Poincaré invari-

ants built out of formal combinations of fields and spacetime derivatives. We insist that

10More precisely, the effects of mass terms in the EOMs can be absorbed by redefinitions of the dim 4

coefficients in the lagrangian.
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Figure 3. A schematic ‘map’ of all dimension 6 operators allowed by Lorentz symmetry, cut in

half about its axis of symmetry
∑
h = 0 (reflected in this line are the hermitian conjugates of

the operators shown). Arrows show the movement induced by equation of motion relations and

commutation of derivative relations in the space of dim 6 operators, colour-coded to show φ EOMs

(blue), ψ EOMs (green, short dashed), F EOMs (red, long dashed), and replacing derivatives with

field strengths (grey, dash-dotted).

these be hermitian.11 Since the sum of two such operators is itself an operator, and since

multiplying an operator by a real number yields an operator, &c, the operators form a

(finite-dimensional) vector space, V over the reals.

At a given order in the expansion, the observables may be regarded as maps from V

to R, where the value of the map is given by the real number that would be obtained by

a measurement of the observable, given the theory corresponding to that operator. At

the given order, the operator contributes to the observable via interference with lower

dimension operators, and so the map is linear. Hence the observables are elements of the

dual vector space V ∗.

Not every element of V ∗ (not every linear map) can be an observable, however. For one

thing, the operators in V , which we regard as formal combinations of fields and derivatives,

may be subject to underlying mathematical identities. For example, some linear combina-

tion of operators may satisfy a Fierz or Schouten identity, or be a total derivative. As a

result (at least in perturbation theory), all observables must yield zero on those linear com-

binations of formal operators. Moreover, at least in particle physics collider experiments

11We remark that, as is common in the literature, DEFT deals with non-hermitian operators with cor-

respondingly complex coefficients. Since this confuses the counting of operators, we insist that they be

hermitian in this appendix, such that all the resulting vector spaces are isomorphic to Rn.
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(although not necessarily in other areas of physics), observables are restricted to S-matrix

observables (things which can be measured ‘at infinity’) and one may show [13] that such

observables yield zero for any operator that vanishes when the renormalizable equations

of motion hold, up to corrections that are higher order in momentum counting. Finally,

it may happen that, given our current technological limitations, some things are simply

not observable, or that we are simply not interested in them. Thus it is useful to define a

subspace U∗ ⊂ V ∗ of observables of interest.

Given U∗, it is natural to consider the space W ⊂ V of redundant operators defined as

the operators that yield zero for all observables. It then follows that U ∼= (U∗)∗ is simply

given by V −W , the quotient space obtained by identifying any two operators in V that

differ by an operator in W . U is also a vector space (though it is not a subspace of V !)

and we call it the space of physical operators. We stress (as in [1]) that the elements of

U are equivalence classes of operators in V , where the equivalence relation is defined such

that any two operators in V whose difference lies in W are considered equivalent.

We stress again that, according to our definition, U∗ excludes not only observables

that are ‘mathematically unobservable’, in the sense of being related by underlying iden-

tities that hold irrespective of what we do and do not observe, but also those that are

unobservable because of the restricted nature of the experiments that we have in mind.

We find this to be a useful concept, as the following examples illustrate.

Suppose, for example, that, much like the ancient Greeks, our experiments are purely

of the gedanken variety, such that we don’t bother to measure anything. Then U∗ = {0}
contains only the zero vector, W = V , and U = {0}, such that there are no non-trivial

physical operators.

Alternatively, suppose that we are only interested in searching for baryon number

violation by ± 1 units at dimension 6 in the SMEFT, and so restrict our attention to

experiments sensitive to processes in which baryon number is violated by ± 1 units. Then

W contains all operators in which baryon number is violated by some other number of units,

because at this order, such operators can only interfere with lower dimension processes in

the SMEFT, all of which conserve baryon number. The physical operators in U are then

those operators which violate baryon number by ± 1 units.12

Finally, suppose that we build a ‘superdupercollider’ in which all S-matrix elements

are observable. The corresponding U , which is parametrised by the bases in DEFT, contains

all operators that do not vanish under mathematical identities or when the equations of

motion hold.

12This example admits the following generalization. At a given dimension, we may consider a symmetry of

the lagrangian at lower dimensions, accidental or otherwise, and reduce operators into combinations carrying

real irreducible representations of that symmetry. (The representations are real because the operators in

the lagrangian are elements of a real vector space. Hence the need to consider processes violating baryon

number by either +1 or -1 units in the example.) Any collection of these irreps can be associated with a

corresponding subspace of observables in a similar way.
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D.1 Remarks on truncations

Since the dimension of the space of physical operators grows exponentially with the order

of the EFT expansion, it tends to quickly become unmanageably large. For example, in

the SMEFT with 1 generation of fermions, the space is 1 dimensional in d = 0 and 2

(corresponding to the vacuum energy and Higgs mass parameter, respectively, and 19,13

84, and 993 dimensional in d = 4, 6, 8 respectively [4, 10].

Given this state of affairs, it is natural to try to reduce the dimension of the space by

some kind of truncation. We have already shown how this can be done by restricting to the

space of physical observables of interest and defining a corresponding space of redundant

operators as those which do not contribute to the observables of interest. The space of

physical operators is then obtained as the quotient space.

Many authors have gone further, in restricting to a subspace of operators on the basis

of some kind of theoretical prejudice. Though it is somewhat out of the main thrust of this

paper, we feel it worthwhile to issue some parenthetical remarks regarding the pitfalls of

such an approach.

To be concrete, the typical strategy is to pick a ‘theoretically-motivated’ list of op-

erators and then to consider just the span of those operators in V in fits to data. Now,

it is certainly the case that such a span defines a subspace of V and, correspondingly, a

subspace of the space of physical operators U . Each vector in the latter subspace represents

a perfectly viable theory (at least from the EFT perspective) and so one may sensibly ask

whether the data rule it out or not. But one should be very careful in trying to assign

some physical meaning to the span of the operators as a whole. Indeed, such a meaning

can only be unambiguous if it is well-defined on U , i.e., on the equivalence classes in V .

It is perhaps easiest to illustrate the danger by means of an explicit example. Suppose,

for example, (as has been done in the literature) that one is interested in the possibility of

new physics effects in the top quark sector. Given a basis of operators for V , one could then

try to truncate by retaining only operators featuring a top quark field in that basis. But

such a truncation certainly does not correspond to the class of theories with new physics in

the top sector, because it is not well-defined on the equivalence classes of physical operators!

Indeed, it is a choice which depends arbitrarily on the basis that we choose for V . If we

change to a basis in which we replace an operator involving a top quark with an operator

not involving a top quark, then the truncated space of physical operators that we obtain

will also change.

For another example, suppose that we try to divide operators into the order at which

they can be generated in a renormalizable UV completion. So, for example, we might

consider only the operators that can be generated at tree-level. But the meaning of this is

ambiguous, because it is not, in general, well-defined on the equivalence classes. Indeed, a

number of counterexamples in the SMEFT are given in [1].

These ambiguities can be avoided by truncating directly on the equivalence classes

themselves. The problem, of course, is that the equivalence classes are rather difficult to

characterise. DEFT can be used to help with the characterization. As an example of this, in

13The number is reduced to 17 if one eliminates the operators BB̃ and WW̃ ; these are retained in DEFT.
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section 3 we provide a spanning set of unobservable directions in the SMEFT and describe

some of their properties.

We have already given one example of a manifestly consistent truncation, namely in

dividing operators into the real, irreducible representations they carry of the symmetries

(accidental or otherwise) of the lower-order lagrangian. Thus, in the SMEFT at d = 5 we

may classify the operators according to the representations of baryon and lepton family

numbers that they carry, while at d = 6 we may classify them by their baryon number and

lepton parity; for d ≥ 7 no accidental symmetries remain.

Many other possible truncations remain. Indeed, any truncation of the space of phys-

ical operators will do. But, presumably, some of these truncations are more natural than

others. For example, an inspection of the redundancy relations shows that the d = 6 oper-

ator containing fields GGHH is in a class of its own, such that it always appears in a basis.

We provide an argument for this based on the general structure of operator redundancies

described in appendix C.

Open Access. This article is distributed under the terms of the Creative Commons
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