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Abstract 

Grapheme-colour synaesthetes experience an anomalous form of perception in 

which graphemes systematically induce specific colour concurrents in their mind’s 

eye (“associator” type). Although grapheme-colour synaesthesia has been well 

characterised behaviourally, its neural mechanisms remain largely unresolved. There 

are currently several competing models, which can primarily be distinguished 

according to the anatomical and temporal predictions of synaesthesia-inducing neural 

activity. The first main model (Cross-Activation/ Cascaded Cross-Tuning and its 

variants) posits early recruitment of occipital colour areas in the initial feed-forward 

sweep of brain activity. The second (Disinhibited Feedback) posits: (i) later 

involvement of a multisensory convergence zone (for example, in parietal cortices) 

after graphemes have been processed in their entirety; and (ii) subsequent feedback to 

early visual areas (i.e., occipital colour areas). In this study, we examine both the 

timing and anatomical correlates of associator grapheme-colour synaesthetes (n=6) 

using MEG. Using innovative and unbiased analysis methods with little a priori 

assumptions, we applied Independent Component Analysis (ICA) on a single-subject 

level to identify the dominant patterns of activity corresponding to the induced, 

synaesthetic percept. We observed evoked activity that significantly dissociates 

between synaesthesia-inducing and non-inducing graphemes at approximately 190 ms 

following grapheme presentation. This effect is present in grapheme-colour 
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synaesthetes, but not in matched controls, and exhibits an occipito-parietal topology 

localised consistently within individuals to extrastriate visual cortices and superior 

parietal lobes. Due to the observed timing of this evoked activity and its localisation, 

our results support a model predicting relatively late synaesthesia-inducing activity, 

more akin to the Disinhibited Feedback model.  
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1. Introduction 
 
 In synaesthesia, stimulation of one sensory modality triggers a perceptual or 

cognitive experience in another sensory modality.  One of the most prominent and 

best-studied forms of synaesthesia is grapheme-colour synaesthesia, in which 

graphemes elicit specific colour percepts either in external space (termed “projector” 

synaesthesia) or in the mind’s eye (“associator” synaesthesia). These additional colour 

experiences are elicited automatically, involuntarily, and systematically in response to 

specific graphemes (i.e., in unique grapheme-colour pairs). Despite the perceptual 

reality of these induced percepts, they are not generally confused with components of 

the external world. This suggests that induced synaesthetic colours are not equivalent 

to real colour perception and may thus involve a distinct network of brain areas other 

than those implicated in real colour perception.  

The neural correlates of grapheme-colour synaesthesia remain largely 

unresolved. There are several proposed models describing its underlying neural 

mechanisms (Lalwani & Brang, 2019; Hubbard, Brang, & Ramachandran, 2011). 

These models (e.g., Disinhibited Feedback, Cross-Activation, Two-Stage, Stochastic 

Resonance) primarily diverge on the predicted brain areas involved and the timing of 

induced synaesthetic activity. Many studies exploring different aspects of the 

synaesthetic experience using fMRI have enlightened our understanding of its 

anatomical underpinnings, but overall have yielded conflicting and often ambiguous 

results. The brain areas commonly reported as supporting the synaesthetic experience 
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(i.e., not only the induced percept but also other associated aspects) include ventral-

occipital, parietal, insular and precentral regions of both the left and right hemispheres 

(see Rouw, Scholte, and Colizoli (2011) for a review). The inconsistency in these 

reported findings has been largely attributed to statistical and methodological caveats 

but also to the heterogeneity in the synaesthetic phenomenology exhibited between 

individuals (see Hupe, Bordier, & Dojat, 2012 and Hupe & Dojat, 2015 for a review 

and insights regarding this matter). van Praag and colleagues (2016) demonstrated 

that activity in colour-specific brain areas (which were individually defined and also 

varied between individuals) varied among synaesthetes and was correlated with 

synaesthetic phenomenology. Based on their findings, they propose that the 

seemingly contradictory findings reported over the past two decades may at least 

partially reflect the heterogeneity between synaesthetic individuals, emphasising the 

need for methodological approaches that can account for individual differences in the 

synaesthetic concurrent.  

Few studies have directly investigated the timing of the induced synaesthetic 

percept using methodological approaches with more precise temporal resolution than 

fMRI, like electro- or magnetoencephalography (M/EEG) (Teichmann et al., 2021; 

Brang, Hubbard, Coulson, Huang, & Ramachandran, 2010). Some studies have 

explored other aspects of synaesthesia, such as semantic congruency effects, general 

early sensory processing, or attentional effects (e.g., Ward et al., 2021; Brang, 

Edwards, Ramachandran, & Coulson, 2008; Brang, Kanai, Ramachandran, & 

Coulson, 2011; Sagiv & Ward, 2006; van Leeuwen et al., 2013; van Leeuwen, 

Petersson, & Hagoort, 2010). In this study, we use MEG to directly examine induced 

synaesthetic activity in order to advance our knowledge of its timing and proposed 

mechanisms. MEG serves as a happy medium between other neuroimaging 

techniques (i.e., fMRI and EEG), as it exhibits precise temporal resolution together 

with adequate sensitivity to the anatomical correlates of the measured signal.  

 We here designed an innovative MEG experiment and devised a novel 

analysis protocol to study the underlying brain mechanisms of grapheme-colour 

synaesthesia in six associator grapheme-colour synaesthetes. For this, we contrasted 

achromatic synaethsesia-inducing letters and non-inducing pseudoletters (in analogy 

to Brang et al., 2010). Our analysis approach was sensitive enough to capture even 
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weak, evoked neural activations related to the synaesthetic experience, while 

simultaneously remaining unbiased regarding any a-priori assumptions about the 

investigated brain locations. Additionally, due to strong inter-individual differences 

across associator synaesthetes, we performed the analysis on each participant 

separately, avoiding the smearing effects of group averaging. The core element of this 

novel MEG analysis protocol is Independent Component Analysis (ICA), a method 

for decomposing the multivariate multi-channel recordings into independent additive 

sub-components (Makeig, Debener, Onton, & Delorme, 2004; Makeig, Jung, Bell, 

Ghahremani, & Sejnowski, 1997). ICA is routinely used in the analysis of MEG data 

either for removal of artefacts or for analysis of resting state data (Brookes et al., 

2012; Brookes et al., 2011; Capilla, Belin, & Gross, 2013; Spadone, de Pasquale, 

Mantini, & Della Penna, 2012; Vigario, Sarela, Jousmaki, Hamalainen, & Oja, 2000).  

Here, ICA analysis was performed on the single-subject MEG data comprising 

both the synaesthesia-inducing and non-inducing stimuli sets together. This initial 

step results in sub-components of the data signal, each which reflect independent 

brain activity associated with some aspect of the MEG task. In order to isolate the 

sub-components potentially related to the induced synaesthetic percept, we identified 

those that exhibited a statistically significant difference between the two sets of 

stimuli (letters vs. pseudoletters). These sub-components of the data signal can be said 

to reflect brain activity dominated by the response to letters as opposed to 

pseudoletters. This unbiased selection of MEG data potentially related to the 

synaesthetic experience (i.e., that with statistically significant differences between 

inducing and non-inducing graphemes) comprises both “strong” and “weak” sub-

components that represent a small portion of the total MEG data variance. In more 

conventional evoked-analysis approaches, such sub-components would be masked by 

much “stronger” evoked sub-components (representing a much larger portion of the 

MEG data variance). Each of the selected independent components, identified at the 

sensor level, are then projected to the entire source space (i.e., the entire brain) in 

order to localise their neural sources, without any a-priori selection of brain areas with 

expected effects. This analysis protocol was repeated for each individual participant. 

Overall, this novel MEG analysis protocol represents an unbiased, single-subject 

approach, with high sensitivity for investigating the sometimes subtle 

and  heterogenous induced percept in synaesthesia. 
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Our results show an absence of early, visually evoked (extrastriate) activity in 

associator grapheme-colour synaesthetes (in response to synaesthesia-inducing letters 

vs. non-inducing pseudoletters). Instead, we find evoked activity dissociating 

inducing vs. non-inducing graphemes (in synaesthetes but not matched controls) to 

peak at approximately 190 ms and exhibiting an occipito-parietal topology localised 

consistently across individual synaesthetes to extrastriate visual cortex and the 

superior parietal lobes. Our findings provide evidence for a relatively late timing of 

induced synaesthetic activity, suggesting a Disinhibited Feedback model (or its 

variants) as underlying associator grapheme-colour synaesthesia.   

 

2. Materials and Methods 
 
 All experiments were conducted in accordance with the ethical guidelines 

established by the Declaration of Helsinki, 1994, and were approved by the local 

ethical committee of the College of Science and Engineering, University of Glasgow. 

All participants gave their written informed consent prior to inclusion in the study. All 

participants had normal or corrected-to-normal vision, including normal colour vision. 

2.1 Participants 
 
 Six grapheme-colour synaesthetes (age range: 19-34, all female, all right-

handed), and six controls (age range: 21-35, m/f=1/5, all right -handed) matched on 

age, handedness and educational level participated in this experiment. Developmental 

synaesthesia was established by means of two questionnaires: in the first, participants 

rated statements describing aspects of their synaesthetic experiences and provided 

accompanying written explanations of these (questionnaire adapted from Banissy et 

al. (2009)), while in the second, they rated visual illustrations portraying their 

synaesthetic experiences (questionnaire adapted from Skelton et al. (2009)) and also 

provided short accompanying statements describing additional aspects of their 

synaesthetic experiences (see Supplementary Material for copies of both 

questionnaires). Based on both questionnaires, all six grapheme-colour synaesthetes 

were classified as associators according to the projector-associator distinction (Dixon, 

Smilek, & Merikle, 2004), but see (Eagleman, 2012). In addition, grapheme-colour 
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synaesthesia was tested and confirmed in all six individuals by means of a 

Consistency Test, which includes a surprise re-test (see Section, Consistency Test). At 

the conclusion of the study, all six controls were also screened for synaesthesia using 

the same written questionnaires administered to synaesthetes. 

2.2 Consistency Test 
 

The aim of the Consistency Test was to confirm grapheme-colour synaesthesia 

in all six synaesthetic participants using a test-retest reliability protocol, and to define 

synaesthetically inducing and non-inducing stimuli for the subsequent MEG task. 

To this end, we used a computerized protocol adapted from Eagleman, Kagan, 

Nelson, Sagaram, and Sarma (2007), also providing normative data. Each trial began 

with the presentation of an achromatic grapheme (black on a medium grey 

background), together with a colour palette consisting of more than sixty-five 

thousand colours. Participants were instructed to select the colour that most closely 

matched their synaesthetic percept of the presented grapheme (or a “no colour” option 

if they lacked a colour experience for that grapheme). Participants were instructed to 

take their time and to be as precise as possible. Upon selection of a colour, the 

corresponding RGB value was automatically recorded and the next trial began. In 

total, there were 150 trials, corresponding to the full set of graphemes A-Z (26 total), 

the digits from 0-9 (10 total), and fourteen pseudo-letters (14 total) (see Figure 1), 

each repeated three times in randomised order. Matlab 2007b (The MathWorks, Inc.) 

was used to control both stimulus presentation and data collection. 

 After a minimum delay of three weeks, all six participants were re-tested in 

the exact same task. All grapheme-colour pairings were then tested for consistency, 

per synaesthete and across the two sessions based on the formula established by 

Eagleman et al. (2007): for each of the fifty graphemes (26 letters, 10 numbers, 14 

pseudoletters), the total distance between the selected colours (i.e., three colours per 

testing session) was calculated in normalised RGB colour space. Then, all colour 

distances were averaged within sessions (i.e., average of fifty colour distances for the 

first session, and average of fifty colour distances for the second) to yield Consistency 

Scores for each session; and subsequently the colour distances in both sessions 

together (i.e., data was concatenated across sessions) were averaged to yield a 

Consistency Score across sessions. All six grapheme-colour synaesthetes fell within 



	 7	

the normative synaesthesia range provided by Eagleman et al. (2007), i.e., exhibiting 

Consistency Scores below 1 (range of scores across sessions: 0.55-0.88). 

2.3 Grapheme Stimuli 
The set of stimuli was individually tailored to each synaesthete. First, seven 

colour-inducing letters and seven non-inducing pseudoletters were chosen for each 

synaesthete based on individual responses in the Consistency Test (i.e., those letters 

showing maximum consistency scores within and across sessions, and those 

pseudoletters showing no induced colours within and across sessions). Then, each of 

the seven colour-inducing letters was paired to one of the seven non-inducing 

pseudoletters, resulting in seven pairs of inducing/non-inducing graphemes (see 

Figure 2, Morph Levels 1 and 5). A sequence of “morphed graphemes” was created 

for each of these seven pairs, such that each of the seven stimulus sets consisted of 

one colour-inducing letter, one non-inducing pseudoletter, and three intermediate 

morphed graphemes, each representing a step-wise transformation between the 

preceding and succeeding grapheme pairs. These intermediate morphed graphemes 

were created such that they physically resembled a “blend” of the adjacent 

graphemes. This led to a total of thirty-five graphemes (7 stimulus sets x 5 graphemes 

per stimulus set) per synaesthete (also shown to individually age-matched controls). 

All graphemes were created manually, and were achromatic set against a medium 

grey background.   

 
2.4 Psychophysics of the Synaesthesia-Inducing Stimuli 
 
 Following creation of the stimulus sets, all synaesthetes (but not controls) 

were asked to complete a computer task aimed at: 1) acquiring psychophysical 

measures of the synaesthesia-inducing and non-inducing nature of the presented 

stimuli across the five morph levels, and 2) defining the optimal duration of stimulus 

presentation for the subsequent MEG task (i.e. to minimize stimulus duration without 

compromising synaesthesia induction for synaesthesia-inducing graphemes).  

Task (see also Figure 3): Participants were instructed to focus their attention to 

the centre of the screen. Each trial began with the presentation of an instruction screen 

(medium grey background) prompting the participant to press the “spacebar” key 
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when ready for the next trial. Upon the key-press, the stimulus appeared in black 

against the medium grey background. The stimulus was always one of the thirty-five 

pre-selected graphemes (i.e., from that particular synaesthete’s stimulus set). The 

stimulus remained on the screen for a pre-defined stimulus duration time (either 50 

ms, 200 ms, or 1000 ms, randomized across trials). Fifteen repetitions were presented 

per stimulus and presentation time, which resulted in a total of 525 trials.  

The task was two-fold. Synaesthetic participants were prompted first to 

indicate by button press whether the presented stimulus had induced a synaesthetic 

colour experience or not, by using two pre-defined (yes-no) keys; and second to rate, 

on a scale from 0 to 5, how strong their synaesthetic experience was via six other pre-

defined keys (marked with labels 0-5). Synaesthetes were instructed to always 

respond with a ‘0’ if they had not experienced a synaesthetic colour, and to rate the 

strength of their synaesthetic colour experiences from 1 to 5 if they had answered 

“yes” to the previous question, with “1” being the weakest and “5” being the strongest 

synaesthetically induced colour experience. Synaesthetes were encouraged to use all 

five button presses and were reminded in every trial via on-screen instructions of the 

response-key assignments. Both questions, presented sequentially, remained on the 

screen until response. Synaesthetic participants were encouraged to take breaks, as the 

task lasted between 60-90 minutes, depending on individual pace.  

2.5 MEG Task 
 

During MEG recordings, grapheme-colour synaesthetes and matched controls 

viewed pairs of achromatic graphemes presented sequentially, while performing a 

grapheme comparison task of the two (Figure 4). The aim was to compare cortical 

processing of synaesthesia-inducing letters to non-inducing pseudoletters. Morphs 

were also presented in order to maintain participants’ attention to the presented 

graphemes (i.e., to increase the difficulty of the comparison task), but were not 

analyzed in terms of MEG responses.  

In each trial, synaesthetes and controls viewed two successive achromatic 

graphemes, drawn from the pool of pre-selected graphemes (i.e., the individual 

stimulus set). The presented graphemes could thus be colour-inducing letters, 
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morphed graphemes, or non-inducing pseudoletters (i.e., any two graphemes within a 

stimulus set). Participants were instructed to compare the two presented graphemes on 

a scale from 1 to 5, where ‘1’ was “very similar” and ‘5’ “very different,” and the 

numbers ‘2,’ ‘3,’ and ‘4’ progressively dissimilar. Participants were encouraged to 

use all five buttons.  

 Stimuli were presented through a DLP projector (PT-D7700E-K, Panasonic) 

placed outside the shielded room onto a screen situated 1.90 m away from the 

participants via an in-room mirror. All stimuli (achromatic) were presented using 

Psychtoolbox (Brainard, 1977). Each trial began with the presentation of a black 

fixation cross against a medium grey background. After a delay of 1.5 s, the first 

grapheme (stimulus 1) was presented for 50 ms (duration selected based on the 

psychophysical pre-tests detailed above). After a delay of 2 s (with only the 

background screen remaining on the display), a second (different) grapheme (stimulus 

2) was presented and remained until response. Upon response (using keys numbered 

1-5), the background screen was again presented for 1 s before the next trial began 

(i.e., signalled by the presentation of a fixation cross). The fixation cross and 

graphemes were presented in the centre of the screen, and subtended a visual angle of 

6 and 4 degrees, respectively. 

 Each grapheme was presented a total of twelve times as stimulus 1, and was 

paired with each of the other four related graphemes in its stimulus set three times 

(stimulus 2, separated by a blank screen, as described above). This led to a total of 84 

trials (7 stimulus sets x 12 repetitions) per each of the five morph levels 

(synaesthesia-inducing letter, morph 2, morph 3, morph 4, non-inducing 

pseudoletter), and thus 420 trials in total (84 trials x 5 morph levels per stimulus set). 

Stimulus presentation was divided into six blocks, lasting 6-8 minutes each. 

 Participants were given instructions to maintain a steady gaze at the centre of 

the screen, and to blink immediately upon response. They were given unlimited time 

to rest between runs. On average, the total duration of the task was ~1 h.  

2.6	MEG	Recording	
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 Brain activity was recorded with a 248-magnetometers whole-head MEG 

system (MAGNES® 3600 WH, 4-D Neuroimaging) confined in a magnetically 

shielded room. MEG signal was acquired at a 1017 Hz sampling rate.  

 Before starting the recording session, 5 coils were positioned on the 

participant’s head, which was localized at the beginning and end of each run. These 

coils, together with 3 fiducial points and the subject’s head shape, were digitized 

using a Polhemus system. During the recording session, participants were seated in a 

reclining chair and supported their head against the back and top of the 

magnetometer. Participants were asked to remain as still as possible and were 

continuously monitored by video camera. They were also instructed to minimize 

blinking during the presentation of visual stimuli, and instead to synchronize their 

blinks with the blank grey screen that immediately followed their response. 

2.7 MEG Analysis 
 
 The analysis of the MEG signal was performed using the FieldTrip software 

package (Oostenveld, Fries, Maris, & Schoffelen, 2011) (see 

http://fieldtrip.fcdonders.nl/) and in-house Matlab code. It was performed in four main 

steps: 1) preprocessing aimed at removing artifactual activity; 2) an Independent 

Component Analysis (ICA) aimed at extracting the dominant patterns of brain 

activity; followed by 3) a Cluster-Level Analysis on the resulting event related fields 

(derived from single ICs) evoked by the synaesthesia-inducing (vs. non-inducing) 

visual stimuli; and, finally, 4) source-level analysis aimed at projecting single ICs into 

source space, and thus identifying the neural generators underlying the differences 

between conditions (inducing vs. non-inducing). 

2.7.1 Preprocessing 
 
 Signals were first epoched in trials of 3 s length (1 s pre-stimulus), time-

locked to the onset of the first stimulus in the pair (stimulus 1). We then removed the 

DC offset and linear trends in the signal to centre it around zero. To standardize the 

whole-signal preprocessing and facilitate subsequent source analysis, a common set of 

MEG sensors (n=8) manifesting low correlation with immediate neighbours 

(signifying increased levels of hardware noise) were removed from the MEG data set. 
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These MEG sensors were manually selected by computing the correlation between 

individual channels and their first and second order neighbours over the entire signal 

length (with bad trials removed, i.e., trials manifesting a variance three z-scores above 

the average variance, per channel). Then, trials contaminated with SQUID jumps 

were discarded from further analysis, and the remaining MEG signal was de-noised 

relative to the MEG reference sensors, as implemented in the “ft_denoise_pca” 

function in FieldTrip. Finally, trials with large signal variance were removed from the 

MEG data set prior to implementing ICA to isolate and reject both eye blinks and 

cardiac components from the MEG signal (“fastica” algorithm implemented in 

FieldTrip, after a dimensionality reduction to 20 components). 

2.7.2 Independent Component Analysis (ICA) for Analysis of Evoked Signals 
 
 In the case of comparing two experimental conditions, as is done here, 

performing ICA to each of the conditions separately could lead to the undesired 

situation in which the decomposition of a component was not performed in exactly 

the same numerical way for both conditions. In such a case, it becomes difficult both 

to identify and compare components underlying a brain process present in both 

conditions, but dominant in only one. For these reasons, ICA was performed on the 

entire data set before isolating the conditions of interest (Inducing vs. Non-Inducing). 

 Specifically in this study, ICA has been employed to isolate components 

present in both conditions of interest, on a single-subject level. All components are 

then compared across the conditions of interest (Inducing vs. Non-Inducing 

Graphemes), in order to identify components dominated by one condition versus the 

other. Thus, following the preprocessing of the raw data, the “cleaned” data were 

downsampled to 250 Hz and subjected to an ICA (“runica;” FieldTrip/EEGLAB, 

http://sccn.ucsd.edu/eeglab/) in a time window between -0.3 s and 1.2 s. This 

algorithm first performs a PCA-based dimensionality reduction to 40 components, 

and then performs ICA on these 40 components. For each participant, the resulting 

data (from the ICA) were filtered between 1-50 Hz, since only event-related averages 

were of interest; and finally, single trials in each ICA component were averaged 

separately for both conditions (Inducing vs. Non-Inducing).  
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2.7.3 Nonparametric Cluster-Based Permutation Analysis (ICA Space) 
	
 We then applied a nonparametric cluster-based permutation analysis (Maris & 

Oostenveld, 2007), as implemented in FieldTrip, to the resulting single-subject data 

(i.e., from each participant’s ICA) in order to identify clusters of time in which the two 

conditions of interest (Inducing vs. Non-Inducing) exhibited significant differences 

(time window of interest, 70-320 ms). This test controls the family wise error rate 

(FWER) in the context of multiple comparisons. For each permutation (n=1000), time 

clusters are defined on the basis of temporal adjacency by regrouping samples whose 

t-values correspond to (or exceed) a p-value of 0.05. Cluster-level statistics are then 

calculated by taking the sum of t-values within the cluster. Here, only temporal 

clusters with corrected p-values ≤ 0.025 are reported (note that the 97.5th quantile 

corresponds to the threshold for a two-sided parametric t-test at critical alpha-level 

0.05, as was performed here). For each parcitipant, only ICs surviving the cluster-

based permutation analysis (p<0.05) were kept and further examined (timing of 

significant differences, inverse solution for individual ICs). 

2.7.4 Timing of Significant Differences between Inducing and Non-Inducing 

Conditions within Independent Components (ICs) 

In order to further refine the selection of significant ICs across participants, 

the time window of maximal temporal overlap across participants’ significant clusters 

was identified. Importantly, this allowed identification of the time period in which 

processing of the Inducing grapheme differed from that of the Non-Inducing 

grapheme across all participants. To this end, all ICs exhibiting significant differences 

between conditions were grouped together independently for each group 

(Synaesthetes vs. Controls), and the distribution of significant time points (i.e., time 

points corresponding to significant differences between conditions) was plotted in 

time-bins of 20 ms. The time window corresponding to maximum temporal overlap 

(across participants’ significant clusters) was thus identified, and only corresponding 

ICs were further analysed (i.e., those containing significant clusters at least partially 

falling within the identified time window). 

2.7.5 Topography of Significant Independent Components (ICs) 
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The grand average of these ICs was then calculated individually for each 

group by projecting ICs back to sensor space on a single-subject level. Planar gradient 

magnitudes were then computed considering first- and second-order neighbouring 

sensors (maximum distance of 7.4 cm) using the “sincos” approach implemented in 

FieldTrip, before the resulting data were averaged across participants of each group. 

The aim here was to identify and compare the average brain activity and topography 

in this (highly significant) time period across individual participants of each group, 

and also between groups. 

We clarify that the grand averages reported here do not entail or represent any 

statistical group analysis. Statistical significance is only assessed on the individual-

subject level (due to strong inter-individual differences across associator 

synaestheses). As ICA is performed for each participant separately, it is possible that 

the identified significant ICs represent different underlying neural processes with 

variable topographies, but which are all related to processing of synaesthesia-inducing 

versus non-inducing graphemes. Thus, the grand averaging of all significant ICs 

across participants here is performed only to depict an overview of the areas activated 

across the different groups of participants. This analysis is merely a depiction, or a 

single summarised map, of all significant activations. 

2.7.6 Source Level Analysis 
 
	 The	ICs	(for	each	participant)	showing	significant	differences	between	

conditions	were	localized	in	source	space	using	a	weighted-Minimum Norm Least 

Squares Estimation (wMNLS). The brain source space was created by constructing a 

semi-realistic single shell head model (Nolte, 2003) from each participant’s own MRI 

image. 		

	

2.7.7 MEG-Magnetic Resonance Image Co-Registration 
 
 T1-weighted structural magnetic resonance images (MRIs) of each participant 

were co-registered to the MEG coordinate system by a semi-automatic procedure that 

provided the best fit between the participant’s scalp surface, extracted from his/her 

anatomical MRI, and the digitized head shape from the MEG. To obtain a first 

approximate alignment between MEG and MRI coordinates, we manually located the 
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three digitized fiducial points (nasion, left and right pre-auricular points) in each 

individual’s MRI.  

2.7.8 Head and Forward Models 
 
 The brain was segmented using the segmentation routine implemented in 

FieldTrip/SPM8 (http://www.fil.ion.ucl.ac.uk/spm). Cortical surfaces were first 

extracted with the FreeSurfer image analysis suite, which is documented and freely 

available for download online (http://surfer.nmr.mgh.harvard.edu/; Reuter et al., 

2012). Then, the source space spanning the cortical sheet was created using the MNE-

suite software (Gramfort et al., 2013; Dale et al., 1999), which by using the topology 

of a recursively sub-divided icosahedron on the cortical surface, inflated to a sphere, 

selects the subset of vertices that define the source space. In this work, the original 

cortical sheet point set from the Freesurfer segmentation was downsampled to a total 

of 8,196 vertices for each individual. We then constructed a semi-realistic single shell 

head model (Nolte, 2003) based on each individual’s brain. Finally, we computed the 

lead fields corresponding to the 2 tangential orientations for each voxel.    

2.7.9 Inverse Solution (Source Space) 
 

The aim of the inverse solution, as used here, is to project single ICA activity 

into source space using a methodology similar to that previously applied to resting 

state MEG data (de Pasquale et al., 2010; Mantini et al., 2011), in which a weighted-

Minimum Norm Least Squares Estimation (wMNLS) is employed (Lin et al., 2004), 

but with a different regularization parameter for each IC.  In particular, each map of 

the IC spatial weights is projected from sensor to source space through wMNLS and 

the regularisation parameter is computed based on the distribution of the IC weights 

(for details, please see Appendix). The inverse solution was computed in MATLAB  

using the Fieldtrip toolbox (Oostenveld et al., 2011).  

 
3. Results 
 
3.1 Psychophysics of the Synaesthesia-Inducing Stimuli 
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 thAs expected, the proportion of trials in which synaesthetes indicated a 

synaethetic experience decreased across the 5 five morph levels, with optimal 

duration of stimulus presentation being 50 ms (i.e. minimum stimulus duration 

without compromising synaesthesia induction for synaesthesia-inducing graphemes).  

(grapheme-colour synaesthetes collapsed; stimulus duration time = 50 ms; letters, 

morph 2, morph 3, morph 4, pseudoletter: 91.43 % ± 5.47, 90.95 % ± 5.49, 84.76 % ± 

7.18 %, 66.19 % ± 11.10, 40.95 % ± 12.96), as did the mean strength of subjective 

synaesthesia-experience (max=5, min=0) (3.43 ± 0.54, 3.03 ± 0.48, 2.54 ± 0.42, 1.79 

± 0.433, 0.82 ± 0.32). Comparing the strength of synaesthetic sensations between 

letters and pseudoletters for synaesthetic participants (n=6) (group-level paired 

samples t-test) revealed a significant difference (t(5)=4.62, p=0.005), confirming that 

letters did indeed induce a synaesthetic experience, while pseudoletters either did not 

(synaesthetic strength=0) or only did so very weakly, as intended per design.  

3.2 Non-parametric Cluster-Level Permutation Analysis on ICs 

The single-subject level ICA on the cleaned, raw signal yielded 40 

independent components (ICs) per participant, of which on average 1.6 ICs in 

Synaesthetes proved to show significant differences between synaesthesia-inducing 

and non-inducing stimuli (vs. on average 1 IC in Controls), according to a non-

parametric cluster-level permutation analysis. Therefore, Synaesthetes generally 

exhibited more significant ICs than Controls, with all Synaesthetes (but not all 

Controls) exhibiting at least one significant IC (compare 10 total significant ICs 

observed in all 6 Synaesthetes vs. 6 total significant ICs observed in only 4 out of 6 

Controls) (Figures 5 and 6). 

3.3 Timing of Significant Differences between Inducing and Non-Inducing 

Conditions within Independent Components (ICs) 

In order to identify the time window of maximal temporal overlap across 

participants’ significant clusters (i.e., the time period in which significant differences 

between conditions generally manifested across participants), all ICs containing 

significant clusters (i.e., significant differences between conditions) were grouped 

together (independently for each group, Synaesthetes vs. Controls). First, the entire 
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analysed time window (70-320 ms) was divided into bins of 20 ms. Then, the time 

points of significant clusters were grouped into the specified time-bins (i.e., 70-90 ms, 

90-110 ms, 110-130 ms, etc.). The total number of significant clusters falling within 

each time-bin was counted, normalised according to the total number of participants 

in each group (n=6 for each), and plotted (Figure 7).  

Figure 7 thus illustrates the number of clusters (within ICs) that show 

significant differences between Inducing and Non-Inducing graphemes across the 

analysed time window (70-320 ms), in bins of 20 ms, for each group. We report three 

main findings from this analysis. First, significant differences in processing of 

Inducing and Non-Inducing graphemes occur in synaesthetes predominantly in a late 

time window, peaking at around 190 ms (ranging between 130-230ms). Second, the 

histogram demonstrates that synaesthetes show more significant differences than 

controls. Third, controls showed a similar timing for differences between both 

experimental conditions but with fewer ICs.   

3.4 Topography of Significant Independent Components (ICs) 

Since the maximum temporal overlap of significant clusters across participants 

in both groups centred at approximately 190 ms and the majority of clusters fell 

within 130-230ms, the grand average of all corresponding ICs (i.e., those containing 

significant clusters at least partially falling within the time window, 130-230 ms) was 

calculated individually for each group, in order to identify and compare the average 

brain activity and topography in this (highly significant) time period across individual 

participants of each group. Figure 8 illustrates the topographies and signal differences 

of Synaesthetes and Controls between conditions (Inducing vs. Non-Inducing) within 

the pre-selected time window (130-230 ms). While the topographies in panel (a) show 

the contrast between conditions (Inducing minus Non-Inducing) for each group 

independently (Synaesthetes and Controls), the topography in panel (b) shows the 

difference between these (Synaesthetes minus Controls), revealing increased activity 

in Synaesthetes (vs. Controls) in occipito-parietal areas.  

Here, we note that these topographies are the concatenated significant activity 

from individual participants and not common activity across all of them. Thus, Figure 
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8 should not be seen as a group statistical analysis, as all statistical analysis was 

performed at the single-subject level and is presented in Figure 7. Instead, it is simply 

a summarising map of all superimposed topographies (of significant individual 

components). This overview shows that all identified significant components are 

localised to posterior, occipito-parietal regions. While the activated areas are not 

common across all participants, individual areas are all coarsely located in this part of 

the brain. The following section presents, for each individual participant, where the 

significant activity is localised in source space. 

3.5 Source Level 

 The wMNLS source reconstruction, performed on a single-subject level, 

yielded consistent sources across the five Synaesthetes (of 6) who showed ICs in the 

130-230 ms window (n=5, see Figure 9). As indexed by the Talairach Tournoux atlas 

(Talairach & Tournoux, 1988), these were localized to visual extrastriate cortex 

overlapping with Brodmann area 19 in the occipital lobe (in five Synaesthetes) and 

Brodmann area 7 in the superior parietal lobe (in three Synaesthetes). In contrast, 

source reconstructions across the three Controls (of 6) who showed ICs in the 130-

230 ms window were less consistent (see Figure 10), localizing instead to Brodmann 

area 18 in the occipital lobe in one participant, to Brodmann area 40 in the inferior 

parietal lobe in a second participant, and to both areas in a third. 

Note that the scaling of Figures 9 and 10 reflect Z-scores of the projected IC 

weights. What are projected through the inverse solution into source space are the 

weights of single ICs. The spatial filters are derived through wMNLS, which uses the 

forward solution as a model for propagation (from the brain to the sensors). This 

inverse solution translates the magnetic field measurements outside the brain into 

activation inside the brain. In our case, we multiply the unit-less set of numbers (i.e., 

weights of ICs) with this inverse solution; consequently, these numbers (i.e., the 

weights of the ICs) are scaled by the spatial filter of the inverse solution. As the IC 

weights are unit-less, this scaling does not produce a physical quantity inside the brain 

(such as power), but rather a set of linearly combined, scaled weights. In order to 

make these results more interpretable, we add a further scaling by using the Z-score of 
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the projected numbers. This further scaling provides a better interpretation of the 

distribution of the projected weights on the cortical sheet.  

  

4. Discussion 
 
 We here carry out an MEG study on associator grapheme-colour synaesthetes 

in whom we examine the neural activity dissociating the perception of synaesthesia-

inducing letters from non-inducing pseudoletters. Overall, we find that the neural 

processes differentiating between inducing and non-inducing graphemes occurs 

relatively late in the processing hierarchy, peaking approximately at 180-200 ms, well 

after grapheme identification is likely complete (Rey, Dufau, Massol, & Grainger, 

2009) and consistent with the reported timing of the synaesthetic colour concurrent in 

a recent MEG classification study (Teichmann et al., 2021). Due to the late timing of 

these effects, they do not likely occur during the initial, feed-forward sweep of 

activity in the visual processing stream (see Lamme & Roelfsema, 2000), as predicted 

by models of synaesthesia invoking rapid timing predictions (i.e., Cross-

Activation/CCT models). In addition to examining the timing of induced synaesthetic 

activity, we performed source reconstruction of the corresponding signals. We report 

consistent involvement of occipito-parietal areas, localising to extrastriate visual 

cortex in the occipital lobe and coinciding with activity in the superior parietal 

lobules. These anatomical correlates could implicate multisensory convergence zones 

in the dissociation between synaesthesia-inducing and non-inducing graphemes.  

Only two MEG studies to-date (Teichmann et al., 2021; Brang et al., 2010) have 

examined the induced synaesthetic percept via the presentation of achromatic, 

synaesthesia-inducing graphemes. Brang and colleagues (2010) showed activity in 

pre-defined area hV4 peaking between 111-130 ms, only 5-ms after the onset of 

activity in pre-defined grapheme areas. In contrast to our study, these findings support 

a model of synaesthesia that hypothesises early and rapid activation of the involved 

brain areas in response to inducers, such as Cross-Activation (as proposed by Brang 

and colleagues (2010)) or models describing a breakdown in modularity between 

presumably separate and independent brain areas (Baron-Cohen et al., 1993). One 

important distinction between our studies is that the four grapheme-colour 
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synaesthetes who were included in Brang et al. (2010) were strong projector sub-

types, while those who participated in ours were considered associators. Thus, we 

speculate that the inconsistency in our findings could reflect differences in 

phenomenology between sub-types, as has been previously proposed (see van Praag 

et al., 2016). Associators differ from projectors in that their synaesthetic qualia are 

more conceptual than perceptual and are generally experienced in their mind’s eye 

rather than in external space. It is thus possible that different models account for 

different synaesthetic sub-types, given their differences in phenomenology, measured 

behaviour, and differential white matter connectivity (Rouw et al., 2010; Rouw et al., 

2007). Recently, differences in the timing and experience of photisms between 

projectors and associators was also shown (Lungu et al., 2021). In contrast, 

Teichmann and colleagues (2021) used classification models on a larger group of 

grapheme-colour synaesthetes to examine the timing of induced colours; they 

reported a later time period (around 200 ms) as corresponding to the induced 

synaesthetic activity.  

 The difference topography between Synaesthetes and Controls (derived from 

the group averages of all ICs exhibiting significant differences between conditions) 

implicates occipito-parietal areas (see Figure 8) peaking at ~190 ms. Furthermore, 

localisation of significant ICs via a Minimum Norm inverse solution (single-subject 

approach) consistently yielded areas in extrastriate occipital cortex and both inferior 

and superior parietal lobes (Figure 9). The superior parietal lobes have been 

implicated in the (spatial) co-localization of visual features into coherent percepts 

(i.e., feature conjunction tasks) (Baumgartner, 2013; Robertson, 2003; Donner et al., 

2002; Shafritz et al., 2002; Corbetta et al., 1995) and, importantly, have been causally 

implicated in the binding of colours to letters in grapheme-colour synaesthesia 

(Esterman, Verstynen, Ivry, & Robertson, 2006; Muggleton, Tsakanikos, Walsh, & 

Ward, 2007; Rothen, Nyffeler, von Wartburg, Muri, & Meier, 2010). In fact, there is 

increasing evidence showing the importance of parietal cortex in associator 

grapheme-colour synaesthesia, particularly the superior parietal and intraparietal 

sulcus (IPS) regions (van Leeuwen et al., 2010; Weiss et al., 2005; Zeki & Marini, 

1998), including anatomical studies showing increased coherence (FA) in the white 

matter of IPS (Rouw & Scholte, 2007), and functional connectivity studies (Jancke & 

Langer, 2011; Specht & Laeng, 2011) demonstrating important hubs in parietal areas 
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(in addition to corresponding early sensory areas, such as fusiform gyrus). Thus, 

parietal cortex seems to play a crucial (essential) role in the induced synaesthetic 

percept of associator synaesthetes, either in the hyperbinding of visual features 

elicited in earlier visual areas, or in feedback to earlier visual areas. 

In our study, the lateralisation of occipital and parietal areas varied between 

synaesthetes. Our single-subject ICA approach made no a priori assumptions about 

the underlying neural activity of the synaesthetic percept or of its location within the 

brain. Thus, while this approach allowed for inter-individual differences to be 

expressed (often missing in synaesthesia studies), it also resulted in a heterogenous 

selection of anatomical regions across participants. This limits our ability to allocate 

the functional loci of our findings onto common brain areas across all synaesthetes, as 

it is possible that the activity captured by ICs across individuals reflected differing 

processes related to the induced synaesthetic percept. Having said this, previous 

neuroimaging studies have reported similar findings (see (Gray et al., 2006; Zeki & 

Marini, 1998)) and in fact, both veridical as well as synaesthetic colour have been 

found to maximally activate a broad range of areas in ventral occipitotemporal cortex, 

in both hemispheres (see van Praag et al., 2016 and Rouw et al., 2011, for a review). 

Synaesthesia is highly idiosyncratic and individual differences between synaesthetes 

are common in the literature (both in behaviour and neuroimaging) (van Praag, 2016; 

Rouw & Scholte, 2010; Sperling et al., 2006; Hubbard et al., 2005; Dixon et al., 

2004), including lateralisation.  

Contrary to Synaesthetes, the three Controls who also displayed significant 

differences between conditions showed no consistency in their inverse solutions 

(Figure 10), possibly reflecting task-specific strategies, slight differences in activity 

reflecting letters versus pseudoletters, or possibly further supporting a model of 

synaesthesia invoking enhanced activity in universally-present neural pathways (i.e., 

akin to Stochastic Resonance). We did not expect to observe early visual differences 

between conditions (Inducing vs. Non-Inducing) based solely on grapheme 

recognition, given (1) the physical similarity between letters and pseudoletters in 

terms of low-level visual complexity, (2) current theories of grapheme recognition as 

a process of hierarchical feature analysis, and (3) the lack of letter-centred or 

language-centred task demands (note that 80% of presented graphemes were 
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pseudoletters, or morphed graphemes) (Dehaene et al., 2005; Hubbard et al., 2005; 

Mitra & Coch, 2009) (but see Rey et al., 2009). Nonetheless, we cannot rule out the 

possibility that observed differences between conditions reflect visual processing 

differences unique to grapheme-colour synaesthesia, but not specifically related to 

induced, conscious colour concurrents. Since our paradigm did not directly address 

the “consciousness” or phenomenological experience of the synaesthetic concurrent 

itself, these are here not dissociable from general processing differences between 

inducing and non-inducing stimuli.  

 We here present evidence for the relatively late timing of induced activity in 

associator grapheme-colour synaesthetes, more in line with models like the 

Disinhibited Feedback model, implicating functional (as opposed to structural) 

differences between synaesthetes and non-synaesthetes. This is consistent with 

models proposing common mechanisms of cross-modal integration across 

synaesthetes and non-synaesthetes alike. In sum, our study is the first MEG study to 

date revealing stimulus evoked activity in associator grapheme-colour synaesthetes in 

a network of areas including the occipital and parietal cortices, peaking relatively late 

(~190 ms) in the visual processing stream of events and thus advancing our ability to 

disentangle between current models of synaesthesia.  
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Appendix  
 
Minimum Norm Inverse Solution for Single Independent Components 
 

The weighted Minimum Norm Least Squares (wMNLS) solution is computed 

according to (see Lin et al., 2004): 

 
 
where 
 

  : Leadfield matrix 
 : a priori assumed brain source covariance 

  : noise covariance in MEG sensor array 
   : Minimum Norm regularisation parameter 

 
 
In our work, we followed a novel approach for the computation of the regularization 

parameter for each IC, according to the following equation: 

 

 

 
where    is the a priori assumed brain source covariance matrix scaled as : 

 

 
so that 
  

 

 
Consequently, the regularization parameter formula is reduced to: 

 

 
and the inverse solution becomes: 
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where  is a scalar parameter used to represent a pseudo Signal-to-Noise 

ratio for a single IC.  

As the noise power within a single IC is unknown, here we chose to derive an 

empirical measure of how well an ICA represents a few strong focal brain sources or 

widely distributed noise. For an ICA representing a strong focal brain dipole, the 

squared ICA unmixing weights have a skewed distribution, with high values at the 

sensors close to the underlying sources, and all the rest of the sensors (further from 

the underlying sources) having much lower values. In the case of an IC capturing 

widely distributed noise, the squared ICA unmixing weights have more comparable 

values. Consequently, the upper, i.e. 70 %, and lower, i.e. 30 %, distribution 

percentiles are expected to be more distant in the case of a brain activity IC than in the 

case of a noise IC. 

This parameterization has been used in order to estimate a pseudo Signal-to-

Noise Ratio for a single IC. If the squared unmixing ICA coefficients for a single ICA 

are represented by , then the  is computed as: 

 

 

 
This parameter has a lower bound of 0. The higher the distance between the 

percentiles, the higher the value of this parameter. The closer the upper and lower 

percentiles get, the closer this parameter is to this lower bound.  

From the formula for the regularisation parameter, the latter term 

 varies in an inverse fashion, from 0 to high positive values. This 

means that for ICs representing strong dipolar sources, little regularization is used, as 

the unmixing matrix contains a clear dipole representation. For ICs representing 

noise, a higher regularization is used as the unmixing matrix represents a more 

complex and distributed pattern.  
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Having very small regularisation values close to 0 for very strong dipoles can 

lead to instability in the derivation of the inverse solution. In order to avoid such 

instabilities, a scalar value of 0.5 has been added to  in the derivation of 

the regularization parameter. This value represents the  ratio when the 

difference ratio between the upper and lower percentiles under the square root in

 is equal to 4.   

 
With this final formulation, the regularisation parameter varies between 0.5 

(for ICs representing strong brain sources) and infinity (for ICs representing noise). 

Infinity here just represents very high values. This is because in ICA unmixing 

matrices, the 30 % and 70 % percentiles cannot have the exact same values, as this 

would require that all the in between weights in the distribution should be identical.  

The above described regularisation parameter has a lower bound, which 

hedges against instabilities of the inverse solution, and no upper bound, which allows 

for high regularisation when ICA components representing noise are localised.  

The above described inverse solution procedure was applied to each of the 

ICs, for which a significant statistical difference was found in the comparison 

between the compared conditions, both for synaesthetes and controls. No a priori 

brain sources covariance was assumed, so  was the identity matrix with 

dimensions Nsources x Nsources. As the level of noise in the single ICs was also 

unknown, the noise covariance matrix  was the identity matrix as well, with 

dimensions Nsensors x Nsensors. The source localization was performed and plotted 

on the 3-dimentional template grid with 6mm resolution, warped to each subject’s 

brain volume. 
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Figures & Figure Legends 

 

Figure 1. Pseudo-letters presented to grapheme-colour synaesthetes in Consistency 

Task. These were manually created using component features similar to letters.    
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Figure 2. Morph Sets. Seven static sequences of morph graphemes were created for 

each grapheme-colour synaesthete, such that each complete “morph set” consisted of 

a colour-inducing letter, a non-inducing pseudo-letter, and three “intermediate” morph 

graphemes representing step-wise transformations between the inducing letter and the 

non-inducing pseudo-letter. The intermediate morph graphemes were created such 

that they physically resembled a “blend” of their preceding and subsequent 

graphemes. 

 

Figure 3. Task used in Psychophysical Testing of MEG Stimuli.  
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Figure 4. Task administered to grapheme-colour synaesthetes and controls in MEG. 

Participants were instructed to attend to all stimuli and rate the similarity between 

presented graphemes (on a scale from 1-5) following the presentation of the second 

one. 

 

 

 



	 32	

Figure 5. Independent Components of Synaesthetes: Topographies and Time-Series. 

(a) Represented are the topographies of those ICs exhibiting clusters with significant 

differences between conditions (Inducing, Non-Inducing) in Synaesthetic participants. 

(b) Represented are the time series of the same ICs. The shaded areas represent 

clusters of time in which significant differences between conditions (Inducing, Non-

Inducing) occurred. The lighter shading corresponds to ICs with time periods outside 

the window of maximal temporal overlap (see Figure 7). Note that values on the y-

axis correspond to an order of 10e-12 (arbitrary units). 

 

Figure 6. Independent Components of Controls: Topographies and Time-Series. As 

Figure 5, but for Control participants.  
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Figure 7. Maximal Temporal Overlap of ICs. Bar plots for each group (Synaesthetes, 

Controls) showing the frequency of significant clusters (within ICs) for the entire 

analysed time window (70-330 ms), in bins of 20 ms and normalised to number of 

participants in each group (n=6).  
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Figure 8. Contrast between Inducing and Non-Inducing Conditions. The topographies 

and signal differences between conditions (Inducing vs. Non-Inducing) within the 

pre-selected time window (130-230 ms) are shown. (a) Contrast between conditions 

(Inducing minus Non-Inducing) for each group independently (Synaesthetes, 

Controls). (b) Contrast between groups (Synaesthetes minus Controls). Note that this 

difference plot is a difference (Synaesthetes minus Controls) of two differences 

(Inducing minus Non-Inducing, for each group).  
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Figure 9. wMNLS source reconstructions in individual Synaesthetes. Five out of six 

Synaesthetes exhibited ICs with significant differences between conditions. The 

inverse solutions of these individual ICs are shown. All Synaesthetes but one (Syn.1) 

exhibited sources both in the occipital and parietal lobes.  
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Figure 10. wMNLS source reconstructions in individual Controls. As in Figure 9, but 

for Controls. In contrast to Synaesthetes, sources across the three Control participants 

were inconsistent, localizing to differing occipital, temporal, and parietal areas.  
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