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Abstract—New technological advancements in wireless net-
works have enlarged the number of connected devices. The un-
precedented surge of data volume in wireless systems empowered
by artificial intelligence (AI) opens up new horizons for providing
ubiquitous data-driven intelligent services. Traditional cloud-
centric machine learning (ML)-based services are implemented
by centrally collecting datasets and training models. However,
this conventional training technique encompasses two challenges:
(i) high communication and energy cost and (ii) threatened data
privacy. In this article, we introduce a comprehensive survey of
the fundamentals and enabling technologies of federated learning
(FL), a newly emerging technique coined to bring ML to the edge
of wireless networks. Moreover, an extensive study is presen-
ted detailing various applications of FL in wireless networks
and highlighting their challenges and limitations. The efficacy
of FL is further explored with emerging prospective beyond
fifth-generation (B5G) and sixth-generation (6G) communication
systems. This survey aims to provide an overview of the state-of-
the-art FL applications in key wireless technologies that will serve
as a foundation to establish a firm understanding of the topic.
Lastly, we offer a road forward for future research directions.

Index Terms—5G, 6G, artificial intelligence, federated learning,
wireless networks.

I. INTRODUCTION

Recent years have witnessed an unprecedented increase in
the number of connected objects, which is attributed to the
emergence of novel technological trends as well as the evolu-
tion of connected intelligence paradigms, promoting massive
scale connectivity [1]. In specific, the number of internet-of-
things (IoT) devices per human was 1.84 in 2010 with a total
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of 12.5 billion devices, while in 2020, this number increased to
6.58 devices per human with nearly a total of 50 billion devices
[2]. With the remarkable revolutionary advancements in the
field of wireless communications, it is envisioned that these
numbers will continue to rise exponentially. Accordingly, en-
larging connected devices, such as IoT, smartphones, industry
machines, etc., will create a bottleneck on the limited resources
of wireless networks. Therefore, there will be a continuous
need to develop the existing network infrastructure to meet
diversified demands.

According to the International Telecommunications Union
(ITU) and the 3rd Generation Partnership Project (3GPP),
the fifth generation (5G) wireless networks are designed to
deliver improved quality of experience (QoE) by offering
enhanced data rate, reliability, capacity, and energy efficiency.
In light of this, 5G wireless systems were mapped out based
on three fundamental concepts, namely, enhanced mobile
broadband (eMBB), ultra-reliable and low latency communic-
ations (URLLC), and massive machine-type communications
(mMTC) [3]. Nevertheless, the rise of services like extended
reality and massive IoT, and the expected future applica-
tions such as holographic communications and multi-sense
experience, impose far more stringent requirements than 5G
networks and shed light on the next network improvements.
Hence, the research will be shifted towards sixth-generation
(6G) communication networks.

The fast-growing number of connected devices, coupled
with the development of wireless communication infrastruc-
tures and the capability of embracing a wide range of intelli-
gent applications, have resulted in unprecedented volumes of
produced data traffic that need to be stored and processed;
yielding the new concept of big data [4]. To harness the
benefits of this data, artificial intelligence (AI), especially ma-
chine learning (ML), has become the cutting-edge technology
that has the potential to exploit big data to deliver pervasive
smart services and applications [5]. ML models are trained
to perform diversified tasks by exploring hidden data patterns
and drawing the value of such data to predict useful outcomes
for several use cases, such as medical diagnosis and natural
language processing [6].

In conventional ML algorithms, model training is performed
centrally in cloud-based servers [7]. Datasets are collected and
stored in one location, processed, and then employed to train
ML models using one or multiple servers. This centralised
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nature of ML models limits their applicability for several emer-
ging wireless network applications. The limitations include the
following:

• Increased communication overhead between the end
devices and the cloud resulting in network congestion
and high energy consumption.

• The privacy is not by design, so security and data privacy
are always a concern for conventional approaches.

• The propagation delay experienced in such ML tech-
niques limits the implementation of centralised learning
in real-time applications.

In light of this, federated learning (FL) has emerged as a
promising solution to tackle the aforementioned challenges
of centralised ML [8]. FL is a collaborative ML algorithm
that uses distributed entities’ datasets for local model training
without the need to exchange any raw data with a central
server. In FL, the role of cloud-based servers is limited to
aggregating local models to develop a global model to be
shared with all nodes in the network. Initially, a centralised
server broadcasts initial model parameters to participating
nodes, which leverage these parameters and their onboard
resource capabilities for local model training. Next, once the
training round is finished, each participant will send the local
model updates to the FL server to aggregate the received
local models. For enhanced accuracy, model training in FL
is performed over multiple iterations; hence, after each train-
ing round, the server shares updated model parameters with
participating devices to be utilised for the next training round.
By using FL, the amount of data that needs to be sent to the
server is reduced significantly, allowing only model updates to
be sent to the server and hence, alleviating the pressure on the
network resources. Furthermore, FL protects the endpoints’
data privacy and security by allowing model training locally,
where the data is generated.

A. Related Surveys in the Literature

FL has attracted numerous interests and has been imple-
mented in diverse applications across many areas. Notably,
several surveys have been published since the advent of
the FL algorithm. Table I summarises these surveys and
highlights their significance. Here we outline the surveys
in chronological order based on the publication date. The
work in [9] categorises the FL systems into three categories,
namely, vertical, horizontal, and federated transfer learning
(FTL), and discusses the privacy techniques used in FL. The
authors in [10] highlight the need to implement ML at the
wireless network edge to facilitate reliable and low-latency
communication. They explore the key building blocks of ML
that allow for the transition from centralised, cloud-based
model training to decentralised training techniques such as
FL. Furthermore, a thorough investigation of the technical
and theoretical frameworks of several case studies illustrates
the importance of edge intelligence for beyond 5G (B5G)
networks. Later, Kairouz et al. [11] introduce recent advances
in FL by discussing techniques used to improve FL efficiency,
explaining the methods used to preserve user data privacy, and
how to make FL algorithms robust against attacks. The authors

Table I: Summary of Relevant FL Surveys.

Ref. Date Authors Article Main Topic

[9] Jan. 2019 Q. Yang, et al.
Categories of FL and Privacy

Techniques

[10] Oct. 2019 J. Park, et al.
Edge ML in Beyond 5G

Networks

[11] Dec. 2019 P. Kairouz, et al.
FL Advances, Problems and

Challenges

[12] Mar. 2020 L. Lyu, H. Yu, Q. Yang FL Threats and Attacks

[13] May 2020 T. Li, et al. FL Implementation Challenges

[14] May 2020 Z. Du, et al.
FL Challenges in Vehicular

Networks

[15] July 2020 M. Aledhari, et al.
FL Protocols and Enabling

Technologies

[16] July 2020
V. Kulkarni, M. Kulkarni,

A. Pant
FL Personalisation Techniques

[17] July 2020 W. Yang, et al. FL in Mobile Edge Networks

[18] Dec. 2020 M. Chen, et al. Collaborative FL

[19] Jan. 2021 Q. Li, et al. Thorough FL Categorisation

[20] Feb. 2021 O. A. Wahab, et al.
FL in Communication and

Networking Systems

[21] Apr. 2021 S. Abdulrahman, et al.
FL Architecture Extensive

Explanation

[22] June 2021 L. Khan, et al.
FL Integration with IoT

Networks

[23] Dec. 2021 Z. Yang, et al.
FL Implementation in Wireless

Communications

[24] Mar. 2022 A. Z. Tan, et al. Taxonomy of personalised FL

[25] June 2022 B. Ghimire, D. B. Rawat Cybersecurity and FL in IoT

in [12] discuss possible threats and attacks, and highlight their
implications to future FL algorithms, whereas [13] discusses
FL properties and associated challenges in comparison to tradi-
tional distributed data centre computing. Du et al. [14] outline
the importance and technical challenges of implementing FL
in vehicular IoT networks.

The contribution in [15] spots the light on the concept of FL
and illustrates some of the enabling technologies and recent
research that addresses different FL perspectives. The study
in [16] discusses the implications of training the FL model
using heterogeneous datasets, and presents recent research
that applies personalisation to overcome the data heterogeneity
problem. While [17] is restricted in presenting the challenges
associated with deploying FL in mobile edge networks only
and provides the developed solutions that optimise these
networks. Reliance on a central controller to organise the FL
training process in IoT networks can limit the FL applications,
and this issue is the authors’ main focus in [18]. Accordingly,
they have proposed a collaborative FL (CFL) framework
where clients can implement FL with less dependence on
the central server. CFL enables clients to engage in FL
directly or indirectly, where some users are directly connected
to the server while others are associated with neighbouring
clients. Furthermore, this survey presents the original FL’s
architecture, benefits, and shortcomings compared to CFL.
In [19], the authors present a thorough categorisation of FL
in different aspects and discuss the existing solutions with
their limitations in enabling FL. Abdel Wahab et al. [20]
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present a tutorial on FL technologies and the associated
challenges in communication and networking systems. The
survey in [21] explains the FL architecture, system model and
design, application areas, privacy and security, and resource
management. The work in [22] presents a new taxonomy of
FL in the context of IoT networks and explores FL’s recent
developments toward enabling intelligent IoT applications.
Moreover, this survey introduces a set of metrics that can
be considered when evaluating the performance of new FL
algorithms. The review paper [23] highlights the requirements
for FL in wireless communications, particularly for envisioned
6G systems. Besides, the motivation for using FL and the main
obstacles accompanying FL implementation are discussed. Tan
et al. [24] introduce the key motivation and the taxonomy of
personalised FL, which is the technique used to handle the
statistical heterogeneity of real-world datasets to learn ML
models collaboratively. The authors in [25] study the use of FL
in cybersecurity and vice versa, and discuss several approaches
that address IoT networks’ performance issues when deploying
FL.

B. Contributions

It is worth emphasising that to the best of our knowledge, no
prior works presented a comprehensive study of FL potentials
and applications for various existing/next-generation wireless
networks. Besides, most of the aforementioned survey papers
generally focus on specific technological trends or aspects
associated with FL applications. Conversely, in this survey,
we provide a systematic review with a featured presentation
that leads the reader to a thorough understanding of the FL
algorithm and its recent advents, as well as its envisioned
implementations in various types of B5G/6G wireless net-
works. Moreover, this article offers numerous future research
opportunities derived from the latest trending technologies that
have not been covered by any previous surveys to the best of
the authors’ knowledge. The following points demonstrate our
main contributions:

• We present a concrete conceptual background on the
working principles of the FL algorithm. Also, we describe
its architecture, categories, operation, and optimisation
schemes.

• We explore the enabling technologies that create the
stepping stones for facilitating the operation of FL.

• We provide an in-depth discussion of the key drivers
for deploying FL in state-of-the-art wireless applications,
taking into account the associated performance metrics
and ongoing research. Moreover, we discuss the vision
for integrating FL with new potential prospective areas
in future wireless networks.

• The survey delves into highlighting the challenges as-
sociated with the operation of FL in emerging wireless
technologies, and identifies the approaches proposed to
tackle them.

• We offer a look ahead towards unexplored possibilities
drawn from modern technology trends to reap the benefits
of FL implementations in the context of cutting-edge
future research directions.

It is noteworthy that the survey structure is organised and
written in a distinct taxonomy to make it easier for the reader
to navigate and recognise the contributions made in each area.

C. Organisation

The rest of this paper is organised as follows. Section
II introduces the fundamental aspects of the FL framework
covering architecture, categories, operation, and aggregation
schemes. Then, we give the key enabling technologies of FL
in Section III. Section IV presents a comprehensive study
of FL applications in various wireless networks. In addition,
this section discusses its applicability in new potential areas
of B5G/6G networks. After that, the FL challenges and cor-
responding mitigating techniques are outlined in Section V.
Section VI points out future research directions from different
perspectives. Finally, Section VII gives concluding remarks.
Fig. 1 illustrates the detailed outline of this survey.

II. PRELIMINARY: FL FUNDAMENTALS

The concept of FL has attracted significant attention in
academia and industry [26]. The key principle of FL is to
construct a generalised global model by performing distributed
model training. The recent advancement in edge devices’ com-
munication and computation capabilities and the large amount
of data generated and stored locally on the devices facilitate
the spread of this emerging technology widely. This section
presents the fundamentals, architecture, categories, operation
principles, and aggregation schemes of FL algorithms.

A. FL Architecture

Based on the nature of the network, the architecture of
FL can be categorised into classical and hierarchical FL
(HFL). The classical FL approach consists of two main parts:
the server and the participating clients [8], as illustrated in
Fig. 2(a). The FL server must have certain specifications to
orchestrate the FL process efficiently. These specifications are
drawn from the considered ML technique and the number
of clients. For instance, training a deep learning (DL) model
through many clients requires a high server capacity, a huge
computation capability, high-speed interfaces, and locating the
server in close proximity to the clients. On the other hand,
the specifications may be less stringent when considering
simpler models of neural networks and a few clients. At the
beginning of the FL process, the server will initiate the training
procedure by sharing a new or pretrained model with the
participating clients. After that, the clients will personalise the
received model by training it based on their local data, and
then share their local models with the server for aggregation
and global model update. On the other hand, HFL framework
[27], depicted in Fig. 2(b), optimally fits in heterogeneous
networks that include different cell coverage. This architecture
is introduced to alleviate the bandwidth (BW) overhead at
the FL servers, resulting from the large number of model
updates communicated from the clients. Furthermore, HFL can
reduce the communication latency experienced between the
clients and the server by reducing the link distance. The HFL
framework consists of two stages; in the first one, the clients
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Figure 1: Illustrative diagram of the paper structure.

send and receive the model parameters by communicating
with a server located at the small base station (SBS), i.e., the
edge server, and the server performs local model aggregation.
Meanwhile, in the second stage, the edge servers send the
aggregated models to a central server that can be located at the
macro base station (MBS) or in the cloud, in which the server
performs edge model aggregation for global model update and
sends it back to the edge servers.

It is worth mentioning that the need for robust communic-
ations between the clients and the FL server, mainly when
the latter is located in the cloud, is mandatory to guarantee
a seamless FL training process. However, the current internet
links’ capacity is insufficient to meet the emergency demands,
along with the growing connectivity needs from different
sectors, such as industry, education, and transportation. This
results in the need to move to the new concept of worldwide
decentralised internet, which can be achieved using decentral-
ised mesh networks [28]. Such networks rely on establishing
connections between different nodes, i.e., consumers and busi-
nesses, to make alternative ways of connectivity other than
the known centralised internet service provider connection.
Decentralised mesh networks are reliable for maintaining the
connections between the participating clients and the FL server
and ensuring a smooth training process.

B. FL Categories

Given the significant role of local datasets in realising
efficient training and assuming the data is maintained in a
2D matrix form, rows represent data samples, and columns
indicate features. FL systems can be classified based on the
data distribution characteristics between different parties into
horizontal, vertical, and FTL [19].

1) Horizontal FL: This is the most common category of
FL, also called sample-based FL. The unique characteristic
of this category is that the datasets of different parties share

FL Server FL Cloud 

ServerEdge Server

(a) Classical FL (b) Hierarchical FL

Edge Server

Client 1 Client 2 Client K

Client 1

Client 2

Client N Client 1

Client 2

Client M

Figure 2: Types of FL architecture (a) Classical FL in client-server
architecture (b) Hierarchical FL in client-edge-server architecture.

the same feature space while differing in the sample space.
For example, two regional educational institutes have similar
interests in monitoring the research outcomes, representing
the feature space, while they have different research groups
that denote the sample space. This category facilitates the
adoption of a unified ML model with the same architecture
for all datasets. Therefore, the global model can be obtained
by averaging all local updates. FedAvg technique [29] is an
example of this type of FL system.

2) Vertical FL: This category, referred to as feature-based
FL, can be exploited when two or more datasets share the
same sample space while their feature spaces are distinct.
For instance, considering two different parties in the same
city, one is a healthcare institute, whereas the other is an e-
commerce company that records the customers’ buying habits.
Their user sets are most likely to have residents from that area,
which means the same sample space. The objective here is to
exploit the different features of these two parties to build a
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model that predicts the future health status of the residents
based on their buying practices. When implementing vertical
FL, the participating parties may be curious to know each
other’s data, so a trusted third-party coordinator can protect the
data confidentiality during the training process. However, if a
certain level of trust exists between the participating parties,
the need for a third party can be eliminated, and one of the
parties can be the coordinator.

3) FTL: When the dataset of different clients slightly inter-
sects in the feature and sample spaces, FTL (or hybrid learn-
ing) is the best candidate. FTL enables knowledge transfer
from one domain to another, which helps in achieving better
learning results. Specifically, a local model trained in one party
is transferred to another party to leverage information extracted
from the non-overlapping regions for enhanced model training
at the other party. The most common example of transfer
learning is the image classification problem. Several models
exist that are tailored for classifying specific datasets, and they
can be used to classify other types of datasets after making a
minor tuning.

C. FL Operation

FL protocol consists of three main phases [30] detailed as
the following:

1. Clients selection: Albeit large-scale deployment is an
attractive feature in FL, compared to classical ML, the number
of clients participating in model training can easily reach
thousands or millions of devices. This enormous number
of endpoints reflects the capacity enhancements anticipated
to be delivered by B5G (1 million/km2) and 6G networks
(100/m3). As a result, end-device onboard capabilities and
data distribution will vary considerably among the participants,
rendering client selection a critical design aspect in FL. Several
methods are proposed to address this issue, such as [31], where
the authors propose a technique that improves the time-to-
accuracy training performance by guiding the FL developers
to select participants even at the scale of millions of clients.
Further approaches are discussed in Section V-B.

2. Configuration: In this phase, the selected participants
receive the initial model parameters and train their local
models based on the local datasets. In particular, after selecting
participating devices successfully, K edge nodes are ready to
begin the training process. Fig. 3 illustrates the FL’s architec-
ture and the operation steps. The device, k ∈ {1, 2, ...,K}, has
a local dataset, Dk ∈ {D1, D2, ..., DK}, which includes input-
output pairs of samples (xi, yi) , xi, yi ∈ R. In step 1⃝, the FL
server initiates the global model created to perform a specific
task and shares it with the selected participants. Next, at the t-
th iteration, each participating node acquires the model weights
Wt−1 and begins the model training by exploiting the data
samples on their local storage. The objective of model training
is to minimise the loss function Fk(W

k
t ) of all data samples

in the training dataset, Fk(W
k
t ) = 1

Dk

∑
i∈Dk

fi(W
k
t ), i.e.,

obtaining the optimum model parameters W k
t that minimise

the loss function at each round of training which can be
represented mathematically as, argminWk

t ∈R Fk(W
k
t ). Where

Client 1 Client 2 Client K

FL Server

2

3

4

5
Downloading the global model2

Performing local model training3

Uploading model weights updates4

Updating global model weights5

D1
D2 DK

1

Initiating the global model1

Figure 3: Sequential operation steps of FL involving K participants.

fi(W
k
t ) indicates the loss on data sample i given the paramet-

risation W k
t , (steps 2⃝, 3⃝).

3. Reporting: At this point, the participants share the
local model updates with the central server in a synchronous,
or asynchronous manner [32]. Finally, the server aggregates
these models to update the global model. Specifically, models
aggregation and global model parameters computation are
performed at the server as the following Wt =

∑K
k=1

Dk

D W k
t ,

where D represents the entire dataset of all clients, i.e.,
D =

∑K
k=1 Dk, (steps 4⃝, 5⃝). The steps from 2⃝ to 5⃝

are repeated until the global model converges to a desired
accuracy.

D. FL Aggregation Schemes

Gradient descent (GD) algorithm that aims to find the
minimum of a differentiable function is commonly used in
various ML algorithms, especially NN models [33]. However,
the computational complexity of GD increases with the dataset
size, making it unsuitable for FL systems due to the slow
convergence rate. An alternative to GD is stochastic GD
(SGD), which can perform gradient calculation over a subset
of data, significantly enhancing the convergence rate. In the
FL setting, SGD (FedSGD) is exploited as an approach to
quantify how often the global FL model needs to be updated
[29]. FedSGD is the basic aggregation scheme for FL-enabled
systems, where clients compute gradients using random data
samples. However, the FedSGD technique requires many
communication rounds proportional to the volume of nodes’
datasets, which will burden the communication links and
consume BW.

To address the above problem, the federated averaging
(FedAvg) strategy has been proposed to alleviate the pressure
on communication resources [29]. FedAvg is a generalisation
of FedSGD, where each node repeatedly runs SGD locally
over different local data subsets and finds the optimum model
parameters by averaging the locally evaluated gradients. Three
main parameters control the performance of FedAvg: (i) the
fraction of the selected nodes that perform computation at each
round, (ii) the size of data subsets, and (iii) the number of
epochs that the node passes over its dataset in every round.
In FedAvg, instead of sending the computed gradients, each
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node will only send the model parameters. Thus, compared to
FedSGD, the FedAvg algorithm performs more local compu-
tation and less communication with the server.

Nevertheless, in real-world scenarios, in which network
devices are heterogeneous and the local datasets are non-
identically distributed, FedAvg experiences poor convergence
behaviour. Therefore, some variants of the FedAvg algorithm
have been introduced to develop faster aggregation techniques.
FedProx was proposed to solve the heterogeneity issue in
federated networks [34]. The FedProx principle is similar
to that of FedAvg but with a small critical modification
that improves performance. Instead of forcing every node
to perform the same computation work, FedProx considers
system heterogeneity by allowing each node to perform an
amount of local computation proportional to its resources.
Accordingly, enabling parameter aggregation from a set of
heterogeneous nodes.

Another extension to the FedAvg scheme is the FedSplit
algorithm [35], which relies on the operator splitting procedure
for convex optimisation problems. Operator splitting is an effi-
cient method for solving large-scale convex problems by per-
forming iterations of simple and computationally inexpensive
operations. It converts the problem into simpler sub-problems
and makes progress on them separately. Motivated by the
failure of FedAvg and FedProx to preserve the fixed points of
the original optimisation problem, FedSplit is proposed as a
splitting algorithm for federated optimisation to achieve rapid
convergence. Moreover, the work in [36] applied the adaptive
optimisers ADAGRAD, ADAM, and YOGI in the FL setting,
i.e., FedAdaGrad, FedAdam, and FedYogi. Extensive experi-
mental evaluations are performed to examine these algorithms
compared to the FedAvg algorithm. Furthermore, the Qsparse-
local-SGD algorithm [37] considers both local computation
and communication reduction in distributed settings. Conver-
gence analysis is made in synchronous and asynchronous FL,
showing that the Qsparse-local-SGD algorithm achieves the
same convergence rate as FedSGD.

The above approaches are mainly designed for NN mod-
els where the parameters, i.e. weights and biases, are the
main elements to update the global model. Despite numerous
attempts to enhance the aggregation process, NN and DL
models incur high communication and computation costs.
Therefore, several studies have begun to explore other low-
complexity techniques, such as ensemble learning under the
FL settings, like FedBoost [38] and FedTrees [39]. It has
been demonstrated in [38] and [39] that when the federated
model is trained according to these algorithms, an excellent
performance is achieved in terms of accuracy, computation
time, and communication rounds. This paves the way for
exploring other ML techniques in the FL environment.

III. FL ENABLING TECHNOLOGIES

With the aim to realise the full potential of FL, several
enabling technologies can be leveraged in order to improve
the performance of FL and hence, accentuate its promising
features. This section is devoted to discussing some of these
enabling technologies.

A. Multi-Access Edge Computing (MEC)

The rapid evolution of the internet-of-everything (IoE)
paradigm has resulted in a plentitude of end devices. The
abundance of resource-intensive devices, coupled with the
emergence of QoE-oriented applications, has led to a wealth of
data being generated at the edge of wireless networks. Exploit-
ing this data requires sending it across the networks to reach
the cloud server where the significant computation and stor-
age resources are located. Accordingly, cloud computing has
become unsuitable for resource-limited real-time applications,
owing to the increased overhead occurring in the network, in
terms of energy and spectrum resources, in addition to the
increased latency and compromised security. Therefore, the
European telecommunications standards institute (ETSI) has
introduced a new computing paradigm called MEC, which
brings cloud computing capabilities to the edge of the radio
access network [40]. The key motivation behind MEC is
that running applications closer to the end-users with their
associated computation tasks will reduce network congestion
and preserve the network resources, enabling enhanced user
experience.

The proliferation of smart end devices with the employment
of MEC provides a suitable environment for employing FL
algorithms. Shifting to decentralised ML model training at
the network edge allows for greater scalability by distrib-
uting the computation from centralised architectures of the
network core/cloud to the edge closer to the users. Moreover,
MEC enables FL algorithms to offer latency optimisation for
real-time applications where data aggregation, analytics, and
computation are handled within user proximity. In fact, the
capabilities of the edge server enable it to act as an FL
server, whereas the widely dispersed edge devices are used
as FL clients. Thus, MEC and FL provide rich services and
applications close to the end users.

B. Blockchain

As a decentralised learning algorithm, FL has benefits in two
main aspects: load balancing and privacy-preserving. However,
FL has shortcomings as it does not keep records of parti-
cipants’ training contributions along with reliance on a central
server prone to a single point of failure. In this regard, block-
chain, a decentralised database managed by distributed nodes,
can play an essential role in FL. Blockchain was initially
introduced in 2009 as a type of distributed ledger technology
[41]. In particular, blockchain was primarily proposed to serve
as a ledger of the public transactions for the cryptocurrency
Bitcoin. For improved security, the principle operation of
blockchain relies on grouping multiple transactions and storing
them in a block encrypted by a hash signature. After that, each
new block is time-stamped and chained with the previous one,
creating a long chain of encrypted chronologically-ordered
transactions. Therefore, blockchain has a high level of security,
as altering the content of any block requires an agreement
from all nodes connected to the chain. These merits motivate
the authors in [42] to design an incentive mechanism for a
blockchain-enabled FL platform that can record and secure
the workers’ updates and reward them accordingly. Whereas
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the study in [43] sheds light on the distributed ledger feature of
blockchain to realise decentralised FL training without needing
a central server, and proposes a new paradigm called FLchain.

Furthermore, the blockchain provides a fully transparent
network in which all nodes can observe all transactions coming
in and going out. When a new transaction is stored in the
blockchain, it is considered immutable because it is verified
based on a consensus mechanism. The consensus mechanism
validates the data in each block and verifies its availability
since all blocks will store the same copy of the data. This
has been exploited in [44] when the authors designed a
blockchain-based FL system that can prevent malicious model
updates using blockchain’s immutability and decentralised
trust property. Moreover, the work in [45] uses blockchain
to support the operation of the FL utilised to provide up-to-
date service provisioning and support device communication in
vehicular environments. Blockchain technology is adopted to
ensure the credibility and integrity of sensitive services, such
that the local models are verified using a consensus algorithm.
Similarly, the authors in [46] integrated blockchain with FL to
maintain and secure local model parameters, improve learning
quality, and optimise the allocation of varying resources in
B5G networks. In light of the above discussion, decentralisa-
tion, availability, transparency, immutability, and security are
the most promising features of the blockchain, which are well-
suited for the FL system and constitute one of its enabling
factors.

C. Network Slicing (NS)
NS is one of the key enablers in B5G wireless networks,

where it exploits the network’s physical structure to create
several independent logical networks called slices [47]. Each
slice comprises an end-to-end isolated network tailored to
fulfil diverse application requirements. In this respect, mil-
limetre wave (mmWave) and terahertz communications (THz)
in B5G/6G networks enable improved capacity for devices
operating in a small coverage area, allowing the realisation of
different IoE networks. These networks will require resources
that meet the diverse quality-of-service (QoS) requirements.
The unique characteristic of NS is that it grants each network
segment an isolated and tailored slice to enable a partic-
ular service. However, configuration, activation, association,
and management of network slices constitute a challenging
factor that requires developing dedicated intelligent tech-
niques. Therefore, using AI is a must to optimise real-time
resource allocation and distribution among different slices
according to their requirements. In light of this, FL and NS are
considered promising enablers for each other. The work in [48]
presents an FL-based framework that predicts slices’ service-
oriented key performance indicators (KPIs). The concept of an
in-slice manager was introduced for monitoring and collecting
slices’ KPIs and local decision-making to ensure optimal
performance.

NS allows future mobile communications to ensure the
efficient allocation of services while guaranteeing the QoS. For
this reason, the study in [49] proposes an FL-based forecasting
algorithm to predict base station level traffic in sliced network
architecture to facilitate intelligent and predictive management

of resources. Whereas the authors in [50] present a federated
deep reinforcement learning (DRL) scheme to manage the
transmission power and spreading factor resources in LoRa-
based industrial IoT (IIoT) slices. A multi-agent self-model
is trained under the FL environment to obtain an optimal
decision of LoRa parameters that fulfil the QoS of IIoT virtual
network slices. Furthermore, the proposed work in [51] offers
a hybrid federated RL framework to find the optimal device
association for radio access network (RAN) slices to maximise
the network throughput.

IV. FL APPLICATIONS IN WIRELESS NETWORKS

Since the advent of FL by Google in 2016, extensive
research has been conducted to promote, enhance, and de-
termine the best usage of this decentralised learning algorithm.
Wireless networks are one of the forerunners to adopt FL in
their architecture, as depicted in Fig. 4. This section will thor-
oughly present the key driving applications of FL in wireless
networks; more specifically, Section IV-A sheds light on the
existing FL applications and accompanying challenges along
with their potential solutions. Whereas Section IV-B describes
the significance of FL in new and promising application areas
of the forthcoming B5G and 6G networks.

A. FL State-of-the-Art Applications

This section presents the research that has been done on
utilising FL in current wireless networks.

1) Cellular Networks:
The rollout of 5G in late 2020 has allowed operators to

launch numerous commercial services that benefit from the
enhanced features provided by this new technology [52]. In
addition, the use of FL in these networks has many applica-
tions in different areas, as described below.

Homogeneous Cellular Networks: This type refers to
low-frequency wireless networks with macrocells, alluding to
their wide coverage. Two main concerns for FL at the network
edge are heterogeneous devices with different computation and
communication capabilities and securing local model updates.
The work in [46] presents a blockchain-enabled FL framework
to ensure security in a trustless environment using a distributed
ledger between entities. Blockchain is an intermediary between
the FL server and edge nodes to verify model parameters
based on the consensus process. Also, FL has applications for
network function virtualisation (NFV), which is introduced as
an innovative concept that enables adaptive resource allocation
for future wireless networks. Subramanya et al. [53] leverages
the FL technique to build a model that can proactively predict
the auto-scaling setting for MEC virtual services and ensure
data protection policies.

Heterogeneous Cellular Networks: Heterogeneous net-
works (HetNets), which comprise different cell types, expand
wireless networks’ coverage and capacity. FL can be imple-
mented in HetNets for resource allocation purposes. It was
demonstrated in [27] that applying HFL by grouping the users
and assigning the needed resources for transmission can reduce
the end-to-end communication latency in HetNets. This can
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Figure 4: FL in various wireless networks; FL algorithm in the context of single or multiple wireless networks.

be achieved by dividing users into clusters and assigning each
cluster to the closest SBS. On the other hand, 5G HetNets
are vulnerable to attacks, like denial of service (DoS), evil
twinning, and port scanning. The work in [54] proposes a
node-edge-cloud framework empowered by HFL to detect
attacks throughout the 5G HetNets. Specifically, multiple ded-
icated nodes are distributed inside the network, each of which
performs model training by employing the RL technique to
enable adaptive learning that can capture the rapidly changing
nature of the HetNets environment. In addition, the work in
[55] presents FL-empowered MEC framework to tackle the
communication overhead and delay between the edge server
and clients in FL to enhance the training efficiency.

Multiple-Input Multiple-Output (MIMO): FL has many
applications associated with MIMO technology. Given the high
dynamicity of mmWave systems, the study in [56] enhances
the performance of massive MIMO systems by estimating
channel state information. FL is leveraged to conduct de-
centralised learning on the user side using local pilot signals
to predict channel matrix, which helps determine the best
beamforming design and improve the system’s performance.
Moreover, the work in [57] presents an energy-efficient solu-
tion to support multiple FL groups in future wireless systems.
Massive MIMO is utilised to assist model updates and ensure
a stable operation of multiple FL processes executed within
the same coherence time.

Fog-Cloud RAN: The ever-increasing number of con-
nected devices in 5G and beyond networks necessitates the
transition to an ultra-efficient air interface. As a result, two
air interface structures evolved, namely cloud-RAN (CRAN)
and fog-RAN (FRAN). When surveying the literature, we

observed many FL applications in FRAN networks, but using
FL in CRAN networks is scarce. For example, the study in
[58] optimises the latency and BW resources when deploying
FL in reconfigurable intelligent surface (RIS)-aided CRAN
systems. The RIS controls channel propagation conditions
and supports over-the-air computation (AirComp) technique to
perform coherent on-air aggregation for local models by allow-
ing simultaneous transmissions from clients to the parameter
server. On the other hand, the FRAN paradigm fully uses edge
networks and provides vital features such as content caching
for optimal application performance and user experience. The
authors in [59] propose an FL-based mobility-aware content-
caching framework in FRAN-based networks. Mobility and
content demand statistics are exploited to improve users’ QoE
by predicting and caching the most likely future content.

5G New Radio (5G-NR): 5G-NR is a new radio interface
standard designed by 3GPP to satisfy the growing demands
of 5G mobile networks. This new radio access technology
allows user equipment to switch dynamically between different
resource blocks with different BWs. However, such a tech-
nique raises resource allocation challenges in B5G networks.
FL has many applications in resource allocation in terms
of computation, communication, and energy efficiency. For
example, the study in [60] uses FL to develop an ML model
that aids in performing distributed resource management in
cellular networks while minimising uplinks transmit power.

2) Internet-of-Vehicular (IoV) Networks:
IoV has recently emerged as a key enabler for intelligent

transportation systems (ITSs), combining two key concepts,
namely, vehicle networking and intelligence [61]. Within this
context, the IoV paradigm aims to achieve smart information
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interaction between a vehicle and all network entities. Whereas
vehicle computation capabilities realise vehicular intelligence
by exploiting DL algorithms, cloud and edge computing, and
big data analytics.

FL in ITS: Communication reliability and latency are
particularly significant in ITSs, owing to the severe con-
sequences that might affect human safety. The proposed work
in [62] exploits the integration of FL with blockchain to realise
a distributed, privacy-aware, and efficient model designed for
autonomous vehicular networks. The diverse nature of the
vehicles in ITSs is particularly appealing for FL applications.
The heterogeneous data helps improve the model accuracy by
incorporating all network scenarios experienced by different
vehicles. In addition to latency, FL has shortcomings in server
centralisation, where exchanging large updates between the
participants and the server yield a high overhead on the server.
To overcome this challenge, [62] employs the blockchain
technique, in which the distributed ledger is shared with each
vehicle and maintains copies of the global and private models
available and verified by each vehicle, relieving the pressure
imposed on the central server. [63] studies the use of FL
setting within the context of URLLC in vehicular networks.
It mainly focuses on proposing a distributed joint transmit
power and resource allocation framework that can reduce the
power consumption of vehicular users while ensuring low-
latency communications.

Vehicular Edge Computing (VEC): Following a similar
concept to MEC, VEC exploits the communication and com-
putation capabilities at the network edge. Ye et al. [64] imple-
ment FL with VEC to perform image classification to support
diverse applications in ITSs. A model-selective approach was
proposed to select clients with the highest computational
capabilities and select models with the best image quality for
aggregation. In an asymmetric FL setting, the server has no
information about clients’ data and resources. To this end, a
two-dimensional contract mechanism is proposed in [64], in
which the server designs contract bundles that include various
levels of data quality, computation capability, and rewards,
and then the clients select the bundles that increase their
utility. As part of IoV networks, electric vehicle (EV) networks
are becoming more popular as the number of EVs increases;
such networks are expected to take over from traditional
vehicles in the coming years. The work in [65] studies energy
efficiency and profit maximisation at charging stations (CSs).
It proposes an FL-based economically efficient framework to
investigate the historical energy transactions to increase CSs
profit. Specifically, FL is used to train a local model using
CS private data to predict the EVs’ energy demands. After
that, the local models of every CS are aggregated and shared
amongst them to benefit from other CS information, yielding
more accurate results.

Traffic Perdiction: Traffic prediction in smart cities
brings up many benefits for ITSs, such as road safety, con-
gestion avoidance, and shortest route selection. These gains
are pronounced when exploiting information gathered from
the edge in parallel with FL. One enhancement technique for
FL is selecting the best hyperparameters of the local models

in edge devices. As most of the literature focused on FL
global optimisation, privacy, and communication, very few
studied optimising model parameters. Qolomany et al. [66]
proposed a particle swarm optimisation (PSO)-based technique
to optimise local hyperparameters at the edge devices. Spe-
cifically, PSO optimises the local NN parameters, including
the number of layers, neurons per layer, and epochs. This
optimisation technique has been evaluated in traffic prediction
as a use case. The work shows that the number of client-
server communication rounds to find the best parameters is
significantly reduced. This technique is attractive due to its
low complexity implementation. However, its limitation lies in
the reliance on a random search for the best initial parameters,
which requires an unpredicted time that may affect the whole
learning process.

3) Unmanned Aerial Vehicle (UAV) Networks:
The flying vehicles in a UAV network have many attractive

features, such as low cost, mobility flexibility, and ease of
deployment, enabling them to participate in many tasks con-
sidered hard to perform. The application of AI algorithms and
the recent advancements in UAV technology have widened the
use-cases ambit of UAV networks [67].

AI-empowered UAV: The interplay between AI and UAV
networks opens a new horizon for exploiting UAVs in more
complicated tasks; however, data security and privacy remain
significant challenges. In UAV-enabled mobile crowdsensing
(MCS) applications, FL is particularly appealing for preserving
the privacy of sensed data. In this regard, the authors in [68]
integrated an FL-based UAV network with blockchain tech-
nology to eliminate the need for a central server. In addition,
blockchain enhances FL network security by expulsing the
adversary clients and sharing safe model updates between
clients. On the other hand, the work in [69] proposed an FL-
enabled air quality monitoring framework for secure MCS.
A UAV swarm is utilised to measure the air quality, and the
sensed data is used to train a lightweight model to predict the
air quality index. FL is considered a promising candidate that
can exploit the data silos collected by different agencies to
produce a global model while preserving data privacy.

Following the MEC concept, federated edge learning
(FEEL) can potentially reduce the end-to-end latency and com-
munication overhead in UAV networks. Yet, as demonstrated
in [70], the efficient implementation of FEEL in UAV-based
IoT networks is restrained by the battery lifetime of UAVs.
In this respect, computation resource and BW allocation
optimisation were formulated in [70] to enhance the FEEL
performance in a UAV network. Also, in [71], FL has been
utilised as an aided technique to reduce the communication
cost between multiple UAVs and a ground fusion centre in
the context of image classification for remote area exploration
missions.

Flying Ad-hoc Networks (FANETs): With the interest
of accomplishing complicated tasks in UAV networks, UAVs
are grouped in an Ad-hoc manner to create a local network,
which allows UAVs to cooperate to perform joint tasks. Recent
trajectory design and remote monitoring developments rely
primarily on ML algorithms [72]. To recall, such classical
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algorithms do not fit in the context of UAV networks due
to their high mobility and constrained energy resources. FL
was proposed to reduce the communication overhead as an
efficient paradigm for FANETs, in which all participating
UAVs collaborate to estimate the initial model parameters.
Then, initial model parameters from all UAVs are shared and
leveraged for local model training. A FEEL server is employed
for model aggregation to exploit the local models to develop
an enhanced global model.

Attributed to the inherent non-centrality nature of FANETs,
such networks are vulnerable to several security threats that
intend to disrupt their functionality, such as impersonation
and jamming attacks [73]. Centralised attack detection and
mitigation approaches are impractical, owing to the highly
dynamic topology of FANETs. Thus, decentralised techniques
are mandatory for such types of networks. To this end, in
[74], an FL-based device jamming detection for UAVs in
FANETs was proposed. In addition to the enhanced security,
the framework in [74] has considered the data heterogeneity
issue between different UAVs. In particular, a Dempster-Shafer
technique categorises UAV clients based on their data quality
into groups. Then the FEEL server selects high-quality data
group(s) for model training purposes.

4) Reconfigurable Intelligent Surface (RIS)-Assisted Net-
works:

The emergence of numerous mmWave and THz applications
has flagged several concerns attributed to the vulnerability
of such applications to signal blockage and shadowing ef-
fects. Motivated by this and with the recent advancements
in the solid-state industry, RISs have emerged as enablers
of future wireless networks [75]. An RIS, comprising several
reflective elements, can be artificially engineered to control
the electromagnetic properties of wireless signals and enable
diverse functionalities, including wave splitting, reflection,
absorption, etc. Leveraging an RIS is particularly beneficial in
AirComp-enabled FL scenarios, in which some clients may be
experiencing blockage or weak channel conditions, affecting
the global model training quality [76]–[78]. AirComp is a
technique that exploits the superposition nature of the wireless
channel to transmit simultaneous model updates from multiple
clients. Section V-D covers the details of this technique.
Yang et al. [76] use the AirComp technique assisted by
RIS to boost fast global model aggregation, which reduces
the required radio spectrum for parameter transmission since
the clients collectively send their updates using the same
channel. Also, to further enhance and boost the global model
aggregation quality, an RIS is used to reduce aggregation
errors by strengthening the quality of combined signals. In
this respect, aiming to unleash the full potential of RIS in
FL settings, Liu et al. [77] formulated a joint communication
and learning optimisation problem by taking into consideration
device selection, transceiver design, as well as RIS parameters.

The aforementioned contributions have assumed perfect
channel state information (CSI) at the server and clients’ sides.
However, acquiring CSI at the transmitter (CSIT) is not always
attainable due to dynamic channel conditions, leading to a
significant delay in receiving the CSI information, thus curbing

the FEEL global model convergence. The proposed work in
[78] investigated the CSIT-free over-the-air model aggregation
based on RIS-assisted FEEL. The CSI at the transmitter side
is assumed to be unavailable, while perfect CSI is assumed
at the server side. Besides, the RIS adjusts and aligns the
channel coefficients with the model aggregation weights. To
this end, the successive channel coefficients are constrained,
as a function of RIS phase shifts, to be proportional to the
weights of the local models. Moreover, the received scaling
factor is optimised by minimising the aggregation mean square
error. To solve this optimisation problem, a difference-of-
convex algorithm was adopted. Furthermore, RIS has proven
its efficiency in converting wireless channels into a smart
electromagnetic environment. To realise high-speed RIS-based
communication, the authors in [79] proposed two FL-based
RIS optimisation schemes: RIS-assisted outdoor and indoor
IoT mmWave communications. In the former scenario, the
RIS controller is considered the FL server, while the user
equipment (UE) is a client. The clients’ data represents the
CSI corresponding to their location and optimum RIS config-
uration. The trained model is aimed to optimise the achievable
rate to enable high-speed mmWave communications. The latter
scenario considers an access point (AP) connected to multiple
IoT devices assisted by RISs and acts as an FL server, while
the RIS and IoT devices are considered clients. The FL model
is trained based on location information and optimal RIS
configuration. As a result, the trained FL model can achieve
high transmission sum rates in IoT networks.

5) IoT Networks:
High-dimensional data analytics will shift the traditional IoT

paradigms from connected things to connected intelligence. It
is envisaged that FL will be an indispensable tool in intelligent
IoT-based applications, which are spreading in diverse fields
[80], [81]. In this section, we outline the usage of FL in various
sectors associated with IoT networks.

Industrial IoT (IIoT): The fourth industrial revolu-
tion (Industry 4.0) was triggered by the advancements in
automation and manufacturing industries, coupled with the
emergence of IIoT devices. Albeit the promising features of
FL can be beneficial for IIoT networks, the upsurge number
of nodes that may participate in the training process might
produce colossal traffic that burdens the network. Reliable
participant selection schemes can reduce network overhead
and alleviate communication costs. The work in [82] presents
a budgeted client selection algorithm that enhances the global
model accuracy by choosing the best clients. This algorithm
finds R clients with the best test accuracy based on the
secretary problem. More specifically, clients are interviewed
sequentially and marked as selected or rejected, and then these
clients will be ranked from the best to the worst to facilitate
the selection process. Another serious design aspect in FL-
empowered IIoT networks is edge device failure, which causes
severe fluctuations in production quality. The authors in [83]
shed light on such aspects and propose an anomaly detection
framework that uses FL to train edge devices to predict
abnormalities, enabling enhanced communication efficiency.
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Healthcare applications: FL has become very popular in
the field of healthcare applications [84]. Pandemics negatively
affect human health and cause negative impacts on economics.
Recently, Covid-19 swept the world, causing health problems
and mortality. Covid-19’s primary manifestation is pneumonia
which is detected using X-ray scanning. ML can play a vital
role in such medical cases, in which collected data can be
exploited to train an ML model that can predict the infectious
state. By emphasising that patient data across different medical
centres should be handled privately, the FL setting is the
natural option for such applications. Therefore, Liu et al. [85]
applied FL to datasets of various clinical centres; FL clients
exploited the available local X-ray images of Covid-19 cases
at each hospital to train a model that helps practitioners to
determine if a patient has been infected, without leaking any
personal information.

Financial Perspective: The financial sector plays a
central role in all societies. In particular, the dependency
on credit cards has exponentially increased in recent years,
facilitating everyday life. Security attacks constitute a major
threat to credit card systems, resulting in critical information
leakage and money loss. Currently, banks utilise their datasets
individually to develop centralised ML algorithms for fraud
detection to mitigate such threats, but this was unavailing as
the datasets did not help create an accurate model due to their
insufficiency. To overcome this challenge, the work in [86]
presented a framework that depends on FL to build a fraud
detection system that is collaboratively trained using datasets
from multiple banks. The problem is that the number of
fraudulent transactions is too small compared with legitimate
transactions; this can obstruct FL performance. To this end,
the synthetic minority over-sampling technique (SMOTE) is
used to oversample the minority class by producing synthetic
datasets that can be used to train the FL model for enhanced
model inference.

B. FL Potential Future Applications
After describing FL and presenting its applications in

various wireless networks, we outline some prospective ap-
plication scenarios in new and promising areas. Our vision
is primarily inspired by the applications anticipated to be
inherent in B5G and 6G networks.

1) Visible Light Communications (VLCs):
VLC is a new nascent wireless communication technology

that relies on the visible spectrum for data transmission. VLC
exploits the advantageous properties of light-emitting diodes
(LEDs), such as low-power consumption, high brightness, and
a long lifetime, to provide high data rate, low latency, and
green indoor communications [87]. VLC will play a major
role in relieving the pressure on the scarce spectrum of the
current wireless networks and provide a new connectivity
method for the ever-increasing IoT devices. Fig. 5 represents
the VLC communication system that consists of LED units,
called APs, connected to a gateway that, in turn, is connected
to the external network through wired or wireless links. As
a subfield of AI, FL will have a role to play in promoting
VLC applications. The features that characterise VLC systems,
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Figure 5: VLC system uses visible light as a medium for communic-
ation for wireless devices.

including high spatial reuse, ultra-low-latency, ultra-high-data
rates, and inherent security, provide the ingredients needed
for the efficient implementation of FL algorithms [88]. The
main purpose of FL is to secure data privacy and reduce
communication overhead. Accordingly, in the VLC network,
the external server can be the FL server, and the deployed
indoor devices can play the role of FL clients. In this case,
clients may leverage the fast, secure, and reliable transmission
environment to update the global model through the gateway,
while the FL server can reach the required level of convergence
faster.

FL training latency highly depends on client selection and
scheduling. Therefore, how to properly select FL clients in
the VLC network is an important question that needs to be
addressed. Besides, as the number of participants increases,
the global model can better infer accuracies. Nevertheless, the
field of view of the LED units is limited and covers a limited
number of clients so that a few devices can participate in the
FL training process. To increase the number of participants
in the VLC network, the HFL can be utilised, where the APs
are used to aggregate the model updates of the clients under
their coverage. Once this step is completed, the APs send the
aggregated models to the central FL server. One interesting
application of FL in VLC is predicting when an LED will
stop illuminating due to, for example, LED life expiration
or LED light-off time and instructing the endpoints to an
alternate connection. Additionally, FL can play a major role in
predicting clients’ mobility, LED beam assignment, and client-
LED association, to name a few.

2) Cell-Free Massive MIMO (CFmMIMO):
The implementation of massive multiple-input multiple-

output (mMIMO) networks includes two types based on
the antenna deployment strategy: collocated and distributed
antenna setup. The collocated type is easier to implement and
has low data sharing overhead, which requires less backhaul.
In contrast, the distributed implementation is more complex
but gives the network an improved performance, especially
in coverage gain. Recently, a new promising technology
called CFmMIMO has been proposed as an incarnation of
the distributed antenna setup [89]. CFmMIMO constitutes a
radical change in the cellular network paradigm as it eliminates
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Figure 6: Cell-free mMIMO network which shows number of UEs
surrounded by many APs.

the concept of cells. Many small, simple, geographically
distributed BSs, called APs, jointly serve a small number of
UEs using the same time-frequency resources via time division
duplexing. APs are connected to a CPU through backhaul
links and use the fronthaul to serve the UEs simultaneously, as
shown in Fig. 6. CFmMIMO enhances the UEs connectivity
by eliminating inter-cell interference and reducing the path
attenuation due to the presence of the UEs near the APs.

CFmMIMO embraces distinct features that have a signific-
ant advantage in favour of FL. One such features is channel
hardening [90], which means that the fading channel will
behave as an almost deterministic scalar channel. Channel
hardening greatly benefits FL, especially when selecting the
clients to participate in the training process. Selecting UEs
with stable connections eliminates any unfavourable transmis-
sion failure when uploading local updates to the FL server,
i.e., CPU, thereby enhancing the FL performance. Moreover,
when many APs surround the UEs, this will lead to high
coverage gain and reduced distance between the UE and
the AP. As a result, this will facilitate training the global
model that requires a large number of clients to participate
in the training process, thus reducing training latency and
improving performance. Furthermore, FL can realise potential
applications in CFmMIMO, for instance, creating FL models
capable of assigning users to the optimal APs that fulfil the
desired QoS by measuring the received signal strength of
many surrounding APs. On the other hand, FL can be used to
alleviate the congestion on the APs by training a model that
can monitor, predict, and distribute UEs to APs in a way that
maintains network performance.

3) Satellite-Aerial-Terrestrial Networks:
Terrestrial cellular networks aim to serve populated regions

while building such networks to serve sparsely populated
areas like islands, oceans, and mountains is impractical. Satel-
lite communication systems address this issue by providing
rural areas with network connectivity. However, the quality
of satellite links is not guaranteed due to challenges such
as large path loss and limited UE power transmission. For
this reason, the research has been directed toward utilising
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Figure 7: Illustration of satellite-aerial-terrestrial integrated networks.
Satellites are used as a relay for communication between UAVs and
terrestrial BS.

aerial platforms to aid satellite communications. High altitude
platforms (HAPs) can be used to provide broadband services
over a large coverage area [91]. Moreover, HAPs provide more
reliable communication links than terrestrial networks because
they are less susceptible to ground blockages and multipath
signal effects. Integrating the aerial-satellite network forms
a space-backbone network layer that can provide wireless
connectivity to ground users anywhere. As a result, the hybrid
satellite-aerial-terrestrial networks have drawn the research
community’s attention for further improvements, which are
envisioned to be an essential part of the B5G/6G networks.
Fig. 7 represents the topology of the satellite-aerial-terrestrial
network.

Recently, ML techniques have been considered in solving
challenges related to satellite communications [92]. Employ-
ing FL in satellite-aerial-terrestrial networks is still in its
infancy; thus, there is plenty of room to explore the poten-
tial of FL in such networks. For instance, FL can tackle
the network’s limited resources, security, and energy usage
challenges. Furthermore, satellite and aerial platforms have
received significant attention due to their ability to deliver
services in emergency scenarios such as disaster relief, and
rescue missions [93]. To achieve this, it is necessary to
maintain robust and reliable communication between satellite,
aerial, and ground-based networks. For instance, the terrestrial
networks may be overloaded or destroyed if a large-scale
disaster occurs, demanding a rapid establishment of a network
to serve the afflicted area. Airborne vehicles can cover and
monitor this area and send information to an emergency
centre. However, in some cases, the vehicles may be outside
the coverage of terrestrial BS; therefore, the vehicles can
establish a connection with a satellite to act as a relay point
between the air vehicle and the terrestrial BS, as demonstrated
in Fig.7. Airborne vehicles provide the needed multimodal
information; however, transferring a large amount of data
burdens the communication links and consumes much time,
which is critical in such situations. In this case, employing FL
can eliminate the drawbacks. Equipping the vehicles with a
pre-trained FL object detection and localisation model allows
for sending lower-size vital information to locate survivors.
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Simultaneously, the vehicles can train the model using the
collected data to enhance its accuracy and then send the model
updates to the FL server. Accordingly, saving time and relieves
communication links.

4) Semantic Communication:
The main theme of communication systems up to 5G net-

works was to ensure the correct reception of every single trans-
mitted bit, regardless of the meaning conveyed by the trans-
mitted bits. However, this classical communication-theoretic
framework does not meet the aspiration of B5G/6G networks,
as the research community agrees on the need to upgrade this
framework to a smarter and more informative one. The over-
looked meaning behind transmitted data is expected to play
a significant role in next-generation communication systems,
forming an interface between machine intelligence and human
intelligence. Therefore, considering data content’s high-level
meaning or relevance to support machine-intelligent services
necessitates a shift from semantic-neural toward semantic
communication systems [94].

The interplay between human beings and AI has resul-
ted in many revolutionary applications like virtual reality
(VR)/augmented reality (AR) and haptic communications.
Several studies have begun to envision the integration of FL
with semantic communications, VR/AR, and haptic commu-
nications. Similarly, in this article, we discuss several wireless
scenarios where FL can be applied in these emerging fields.
In semantic communications, using FL helps improve the
network’s BW utilisation by training a model that can extract
relevant/contextual information from the data and filter out
irrelevant information. FL-based semantic communication can
effectively preserve the network’s resources by transmitting
semantic information rather than bits or symbols. On the other
hand, VR/AR are real-time technologies that bridge the real
and digital worlds by replacing or enhancing the physical
environment with a computer-generated one. In the AR/VR
environment, detecting users’ movement and location is es-
sential and heavily influences the wireless network’s resources.
FL is effective in predicting user movement and actions, which
can be used to optimise the allocation of wireless resources
to users [95]. Finally, haptic communications bring a new
dimension over conventional communication modalities by
enabling real-time haptic experiences between tactile parties.
Haptic communication will have diverse applications, partic-
ularly in industry and health sectors, which poses a critical
need to protect such communications. FL is a vital tool for
securing haptic-based applications through training an ML
model that can discriminate between genuine and counterfeit
actions based on previous signatures and warn the system of
possible suspicious measures.

V. FL CHALLENGES
Deploying FL in various fields demonstrates its efficiency

and highlights its main advantages. However, the successful
implementation of FL is restricted by some challenges and
limitations that must be resolved to realise its full potential.
In this section, we articulate the most common challenges of
FL and outline their proposed solutions. Table II summarises
the key FL challenges and the associated solutions.

A. Server Centralisation

The performance of employing FL depends by large on the
server and the participants. The bottleneck of either classical
FL or HFL systems relies on the dependency on a centralised
server to orchestrate the learning process, representing a single
point of failure. Additionally, the large number of model
updates sent to the central server can overwhelm the network,
resulting in traffic congestion and degrading the network per-
formance. Two approaches were used to address this challenge,
namely blockchain and peer-to-peer.

Blockchain approach: Adopting FL systems integrated
with blockchain instead of a central server avoids malfunctions
that may result from using a single centralised server. Block-
chain has been widely used in the literature [62], [68], where
it can provide a distributed, end-to-end trustworthy training
environment. The blockchain consists of miners and devices;
miners can be randomly selected devices or separate nodes
(such as cellular BSs or WiFi APs) that are computationally
powerful to perform the mining process. The operation of
blockchain-based FL systems can be summarised as follows:
the process begins at the participating devices by computing
and sending the local model updates to the associated miner in
the blockchain network. Next, miners verify and exchange the
local model updates using one of the consensus algorithms,
generating a new block where the verified updates are recor-
ded. Finally, the generated blocks that store the model updates
are added to the blockchain and can be downloaded by the
devices to perform the next round of computation. Leveraging
the blockchain will not adversely impact the overall network
system when a failure or malfunction happens in a miner,
making the FL system more robust.

Peer-to-Peer approach: The study in [96] proposed a
new technique called BrainTorrent, in which a centralised
server is not required. This technique is aimed at medical
applications where data sharing is prohibited due to privacy
concerns. According to the authors in [96], BrainTorrent is
a peer-to-peer procedure where each centre shares its model
updates directly with the others without needing a central body
to coordinate the process. Initially, every client maintains a
version of the trained and old models. One of the clients
in the network initiates the training process by sending ping
requests to all other clients to update the model. Other clients
will respond by sending their model weights and the training
sample size. Then, the model weights are aggregated and
averaged at the request initiator based on the clients’ dataset
size to produce a new version of the trained model, followed
by repeating the process until a certain level of accuracy is
attained. The main drawback of this technique is that it is
feasible for networks containing a limited number of clients,
while in an environment with a large set of clients, such a
technique is impractical.

B. Clients Selection

To recall, the FL process consists of three main phases:
selection, configuration, and reporting [30]. These three phases
are performed iteratively until the FL model achieves a sat-
isfying level of model accuracy. In the selection phase, the
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Table II: Summary of FL challenges, impacts, and proposed solutions.

Area FL Challenge Impact Solution Article 

Cellular Networks 

Client Heterogeneity Synchronisation Issue Asynchronous FL Scheme [46] 

Securing Model Updates Private information leakage Blockchain Technique [46] 

Server- Clients 

Communication Latency 

Reduced Model Aggregation 

Efficiency 

HFL [27] 

Resource Allocation Technique [55] 

Training Accuracy Reduced Model Accuracy 
Participants Selection Scheme 

Based on the Weights 
[55] 

IoV Networks 

Server Centralisation Single Point of Failure 

Blockchain Technique [62] 

Asynchronous Peer-to-Peer 

Updates 
[97] 

Data Heterogeneity Degraded Model Accuracy Model-Selective Approach [94] 

Client Mobility 
Server-Client Communication 

Disruption 
Asynchronous FL [97] 

Hyperparameters Selection Inefficient Model Training PSO Local Parameters Tuning [66] 

Client Incentivisation 
Reduced Model Accuracy and 

Longtime Training 
Blockchain Loyalty Program [62] 

Client Heterogeneity 
Reduced Model Aggregation 

Efficiency 
Model-Selective Approach [64] 

Securing Model Updates Private Information Leakage DP Technique [97] 

 

 

 

 

UAV Networks 

 
 
 
 

Server Centralisation Single Point of Failure Blockchain Technique [68] 

Securing Model Updates Private Information Leakage Local DP [68] 

Client Incentivisation 
Reduced Model Accuracy and 

Longtime Training 

Two-Tier RL- Based Incentive 

Mechanism 
[68] 

Data Heterogeneity Degrade Model Accuracy 
Dempster Shafer Client Grouping 

Based on Data Quality 
[74] 

Server- Clients 

Communication Latency 

Reduced Model Aggregation 

Efficiency 

Adjusting the CPU-Frequency and 

Upload BW 
[70] 

Clients Energy 

Consumption 
Increased System Cost 

Adjusting the CPU-Frequency and 

Upload BW 
[70] 

RIS-Assisted Networks 

Server- Clients 

Communication Cost 

Reduced Model Aggregation 

Efficiency 
AirComp Technique [75] 

Client Heterogeneity 
Reduced Model Aggregation 

Efficiency 

Unified Communication-Learning 

Optimisation 
[76] 

Unreliable Wireless 

Channels 
High Transmission Delay RIS-Receiver Joint Optimisation [77] 

Server-Client Transmission 

Throughput 
Reduced SINR RIS-based Optimisation Scheme [78] 

IoT NETWORKS  

Client Heterogeneity Synchronisation Issue Personalised FL [99] 

Data Heterogeneity Degrade Model Accuracy Personalised FL [99] 

Model Heterogeneity Different Model Architecture Personalised FL [99] 

Server- Clients 

Communication Cost 

Reduced Model Aggregation 

Efficiency 
Budgeted Clients’ Selection [82] 

Client Abnormality Degrade Model Accuracy Anomaly Detection Framework [83] 

Unlabeled Data Add Complexity to Model Training Pseudo Labeling Technique [98] 

Data Insufficiency Reduced Model Accuracy 
Oversampling and Producing 

New Synthetic Data using SMOTE 
[86] 

server determines the optimum users allowed to participate in
the training process according to predefined selection criteria,
i.e. whether or not the device is available and its resources.
Concerning clients, two main factors directly impact the model
convergence speed and efficiency.

1) Clients heterogeneity: In practical wireless networks,
end devices have different hardware characteristics and ex-
perience varying channel transmission conditions, in addition
to data heterogeneity. For instance, clients with high hard-
ware capabilities and high-quality data can produce a well-
trained model in a relatively short period compared to others.
Furthermore, clients experiencing good transmission circum-
stances support low latency model transmission, enabling
timely parameter aggregation. Failing to consider these aspects

will reduce the efficiency of the FL training process. In [97],
a participant selection scheme based on the available client
resources has been proposed. Rather than selecting random
clients, this scheme sends a resource request to the clients
to collect information about their hardware specifications,
communication reliability, and data availability. Based on this
information, the server estimates the time required to complete
a specific task and then selects clients that will participate in
the following training round accordingly. In a similar context,
the scheme in [64] relies on selecting local models based on
the clients’ computation capability and data quality.

2) Clients incentivisation: FL depends on the participants
and the on-device datasets. The high computation resources
and valuable data attract FL to select these clients for training.
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However, nothing forces the end device to participate in a
learning process that will deplete its resources and leads to
unsolicited costs. Thus, a reward procedure must be considered
to encourage the end devices to participate in the FL training
process. In this context, various client incentivisation schemes
are released [62], [68], [98]. In [62], a loyalty program based
on the blockchain technique is presented to motivate users
with large samples of useful data to participate in FL training.
According to their contribution, the loyalty program rewards
the participants, attracting users with high data quality to
participate in the training process.

Furthermore, a two-tier RL-based incentive mechanism is
presented in [68]. The two-tier RL mechanism enables ob-
taining the best scenarios for the task publisher and clients in
a dynamic environment by encouraging the workers to provide
high-quality model training when explicit network parameters
are unavailable. The reward of each client is maximised based
on the contribution provided to enhance the global model. The
work in [99] improves the reliability of FL by proposing an
incentivisation scheme that combines the client reputation and
a contract theory to encourage clients with high-quality data
to participate in model learning.

C. Data Heterogeniety

Data is the main driver of ML algorithms, and high-accuracy
model training requires a large amount of data. Generally,
practical datasets are heterogeneous and require pre-processing
before they can be used for model training.

Data quality: The characteristics of the locally generated
data differ from one user to another. Datasets can be classified
into two categories, independent and identically distributed
(IID) and non-IID data. In practical scenarios, datasets are
usually non-IID [100], while most of the existing literature
in FL is based on the assumption of IID data. Given data
heterogeneity, Ye et al. [64] employ a selective model ag-
gregation approach to evaluate the quality of the images and
then quantify it. The central server evaluates the image quality
based on the clients’ historical records and prepares a contract
to select fine clients with fine models. In [74] Dempster Shafer
technique is used at the global node to classify and prioritise
the UAV clients into groups according to data quality. The
highest priority group can contribute more to model training
and produce better model weights.

Fairness in FL has recently received more attention. As data
heterogeneity increases among clients, the training process will
produce a skewed model that may ignore some of the clients,
resulting in fairness issues. A possible solution is to employ
the personalisation concept [101], where the global model with
coarse-grained features is sent to each participating device,
and then the clients train the model using their data to build
a model with fine-grained features.

Data insufficiency: In some cases, the data collected by
the devices may not be large enough to conduct model training.
On the other hand, the percentage of high-quality data could be
small compared to the total datasets, which affects the model
inferencing and classification tasks. The proposed work in [86]
uses the SMOTE technique, which attempts to rebalance the

classes in the datasets by oversampling the required features’
data. SMOTE generates new synthesised data examples close
to the observed datasets. Another approach that can be used to
provide more data samples is based on generative adversarial
networks (GANs) [102]. The goal of GAN models is to study
and determine the distribution of the training data samples to
generate more close to actual data samples from the estimated
distribution.

Data annotation: Most studies considering FL assume
a supervised training approach, where the data is processed
and classified to facilitate the training process. However, in
real situations, most of the generated data is unlabelled; in
this case, the unsupervised FL is the method that should be
considered. Data annotation is a challenging task that requires
high cost and significant effort. The presented work in [103]
uses a pseudo-labelling technique to classify the unlabeled
data based on the labelled data. Instead of manually labelling,
which is time-consuming and requires much cost and effort,
pseudo-labelling gives approximate labels depending on the
model trained by the labelled data. The FL algorithm is used to
train the model in two phases. First, the global model is trained
by the distributed devices’ labelled data until reaching a certain
convergence level. Second, improving the performance of the
trained global model by training it again using the classified
unlabeled data.

D. Communication Cost

The model convergence speed and accuracy in FL highly
depend on the hardware specifications of the server and the
clients. Despite the recent advancements in the computational
and communication capabilities of end devices, model train-
ing and transmission overhead over multiple training rounds
remain major design issue that potentially affects the global
model training quality. Furthermore, a large number of model
updates exchanged between the server and the clients can
severely exhaust the network communication resources. In the
following, we outline the main approaches to tackling this
challenge.

Models scaling and superposition: Despite the signific-
ant advancements in edge computing, the lack of communica-
tion resources in current FL-enabled systems seriously affects
the latency performance and reduces the model convergence
rate. To this end, AirComp has been proposed to provide a co-
design approach for the FL aggregation procedure by utilising
the superposition nature of radio channels for simultaneously
transmitting model updates from different clients [104]. There-
fore, improving communication efficiency by reducing the
required BW resources and providing fast convergence. Later,
a new variant of AirComp was introduced, called broadband
analog aggregation (BAA) [105] to cover wideband channels
that can carry the multidimensional updates of local models.
Furthermore, in [106], the authors propose a framework for
model aggregation that relies on digital modulation. The
proposed scheme utilises a single-bit gradient quantisation
and quadrature amplitude modulation at the edge devices to
achieve fast model convergence.
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Resource allocation: It was demonstrated in [70] that
joint optimisation of onboard computation resources and
BW allocation can be a promising solution to the computa-
tion/communication overhead in resource-constrained devices.
This issue is more pronounced in ultra-dense networks, where
an excessive number of model updates must be exchanged
for global model convergence, and this further yields traffic
congestion. Thus, selecting a subset of clients has proved
its efficiency in tackling the communication cost problem.
In particular, employing only clients with high-quality data
in the training process can speed up the convergence rate.
Subsequently, a reduced number of training rounds will be
performed. Yao et al. [107] propose a two-stream model ap-
proach to reduce the FL communication cost. In this approach,
the single model that was typically used to be trained by
the clients is replaced by a two-stream model. The authors
exploit the transfer learning mechanism and maximum mean
discrepancy to force nodes to learn other nodes’ knowledge.
The experimental results showed a reduction in the required
communication rounds and reduced communication costs.

Gradients compression: Large-scale deployment of FL
requires significant communication rounds between the cent-
ral server and the clients. This necessitates expensive net-
work resources to perform model parameter exchange, which
can limit the scalability of the FL system. The work in
[108] significantly reduces communication costs by using
deep gradient compression. The work shows that most SGD
parameters are redundant, so the compression technique is
employed to considerably reduce the number of transmitted
parameters while preserving the model’s accuracy. Moreover,
the compression minimises the gradients by sending only
the necessary gradients to the central server in each round,
reducing communication latency and alleviating the utilisation
of limited wireless resources. On the other hand, by exploiting
non-orthogonal multiple access (NOMA), a new 5G medium
access technology that improves spectrum efficiency by al-
lowing simultaneous transmission over the same channel, the
work in [109] proposes a NOMA-enabled adaptive gradient
compression FL system. In this work, the authors exploit
NOMA and adaptive gradient quantisation and sparsification
to facilitate uploading model updates over fading wireless
channels.

E. FL Latency and Convergence

The network and devices heterogeneity, data statistics het-
erogeneity, dynamic wireless environment, and acquiring the
CSI are the most important factors influencing FL performance
in terms of latency and convergence rate. An appropriate client
scheduling mechanism can be the key to an accurate and
fast model convergence. The authors in [110] formulate an
optimisation problem that jointly selects a group of clients
with local models that significantly impact the global model
and assigns the limited resource blocks to those clients.
Furthermore, Huang et al. [111] proposed a stochastic client
selection algorithm that jointly considers the cumulative effect
of participants and selection fairness to maintain a high-
quality training performance while ensuring fairness among

high-qualified and low-qualified clients. Moreover, enabling
edge computing can remarkably reduce the FL latency, in
which APs are placed close to the edge device, and hence,
reduced latency can be achieved. Within the same context, the
authors in [112] proposed a framework to reduce the average
time per round by considering latency-based scheduling, in
which clients are selected based on their computation and
communication delay.

Generally, ML algorithms are sensitive to hyperparameters,
which play a critical role in the model convergence rate.
Therefore, to further reduce FL training latency and enhance
the convergence time, careful consideration should be taken
in the design of efficient hyperparameters. In this regard,
several hyperparameter tuning algorithms have been developed
to manage many of these parameters with their wide ranges.
This includes Bayesian optimisation, grid search, and random
search. The work in [113] develops a scheme that can effi-
ciently determine the optimum learning rate (LR) values. In
the proposed technique, referred as cyclical LR (CLR), the
CLR is bounded by a range of carefully selected values, in
which its value can vary. This approach aims to avoid random
LR initialisation. The presented results in [113] showed the
efficiency of such a technique in reducing the FL latency by
minimising the number of training operations while ensuring
a particular level of accuracy.

F. Securing Model Updates

Although FL is motivated by inherent privacy-preserving
and security features, sophisticated intruders can retrieve
critical information about the participating nodes from the
shared model updates. Besides, malicious devices may opt
to participate in the training model process to inject false
model updates, affecting the accuracy of the trained model.
The following approaches are developed in order to ensure
secure model transmission:

1) Secure multi-party computation (SMC): A crypto-
graphic protocol that aims to conceal personal information and
guarantee zero-knowledge between multiple involved parties
[114]. Its main idea is to distribute the computation between
multiple parties without exposing or moving private informa-
tion. Its working mechanism can be summarised as follows:
first, the participated organisations’ datasets are split and
masked by adding random numbers, and then these encoded
segments are shared between organisations to perform the
required computation, thus guaranteeing data privacy and trust.
SMC allows organisations to work together without knowing
one anothers’ confidential information.

2) Differential privacy (DP): This approach prevents leak-
ing model parameters to intruders by leveraging artificial
noise, which is added to the locally trained model before
transmission [115]. However, enhanced security comes at
the expense of model accuracy; hence, joint optimisation
is essential to strike a balance between security and model
accuracy. Such technique has been used in the literature, e.g.,
[116] and [68], in which random Gaussian noise is utilised to
enhance the privacy of model parameters.
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3) Homomorphic encryption (HE): HE is a key-based
security mechanism which allows performing calculations on
encrypted data. In the context of FL, participating clients
generate public and private keys, where the former is used to
encrypt locally trained models. After that, the model updates
received from all clients are aggregated on the server side in
an encrypted mode. The clients leverage the private keys in
order to decrypt the global model updates. Albeit the enhanced
security achieved by exploiting the HE mechanism, the com-
putation complexity of the cryptographic operations imposes
additional overhead on the resource-constrained clients in
terms of time, power consumption, and communication cost.
In this regard, Zhang et al. [117] proposed a batch encryption
technique, which minimises the encryption and communica-
tion cost resulting when using HE. Specifically, each client
quantises the gradients to be represented in a low-bit integer
format, and then a batch of the encoded gradients is encrypted
for transmission. Consequently, the encryption overhead and
the size of the total ciphertext will be considerably decreased.

VI. FUTURE RESEARCH DIRECTIONS
Despite the prospects brought by the advancements of FL,

its application is still in its early stages. This necessitates
dedicating the research efforts toward addressing the associ-
ated challenges and exploring new horizons of implementation
possibilities. In the following, we list a number of interesting
future research directions.

A. Data Freshness

In information technology, data is marked by the date
of its creation and can become meaningless, i.e., outdated.
Access to timely information (i.e., data freshness) is paramount
for time-based systems driven by datasets [118]. In order
to quantify the data freshness, the age of information (AoI)
metric is introduced [119], and is considered an essential
parameter in realistic scenarios of data networks. From the
perspective of FL, AoI can be defined as the time that elapses
between collecting data from clients and completing the FL
training task. Considering applications with tight latency and
throughput requirements, e.g., ITS, the AoI becomes crucial in
network design principles. Accordingly, future research may
focus on proposing novel schemes that select FL clients based
on their data freshness to ensure that the required network
reliability is achieved. Additionally, distributed client datasets
can be highly temporal and change rapidly; thus, incorporating
the rapidly changing data and determining the correct timing
of model updates is essential to enhance FL performance in
highly dynamic environments.

B. Spectrum Sharing

The widespread use of IoT devices and the new techno-
logical trends make the limited spectrum bands insufficient
to meet the requirements of BW-hungry applications. To this
end, spectrum sharing is proposed to mitigate the pressure
on frequency bands by allowing multiple networks to operate
using the same portions of the licenced or unlicensed spec-
trum, provided that they do not interfere with each other [120].

Coexisting networks should consider interference problems,
i.e., co-channel and adjacent channel interference, addressed
by imposing strict rules from telecom regulators. Multiple
networks from the same or different technologies can coexist
and use the same spectrum band, where this coexistence is
categorised into equal and different access rights. The major
concerns associated with equal rights coexisted networks are
maintaining seamless operation, mitigating harmful interfer-
ence between them, and ensuring fairness. By exploring the lit-
erature, we conclude that it is difficult to satisfy these concerns
without the intervention of a third party who must receive
information from the coexisting networks and manage trans-
missions. However, this method is undesirable as it requires
information disclosure and incurs additional communication
costs. Therefore, the FL algorithm is a potential solution that
preserves network data privacy and eliminates the need for
a third party. Coexisted networks transmission demands and
local spectrum utilisation can collaboratively train a global
FL model, for instance, deep RL, to address coexisting issues.
This model is fed back to each network to make the right
spectrum access decisions.

C. FL at Scale

The applications mentioned in Section IV-A are considered
small-scale scenarios. However, many applications require
a wide deployment of FL to take advantage of the data
collected in different locations. This helps to get feature-rich
datasets from extensive scenarios that can train an effective
global model. Designing an FL system that covers large-
scale environments requires special attention to the FL server
capabilities in addition to cellular and backhaul communic-
ations. The number of participants can easily reach millions
spread in broad areas and produce massive model updates that
must be transmitted through the wireless network. Therefore,
considering the network’s communication efficiency alongside
selecting an FL server with efficient hardware to handle
enormous amounts of updates is crucial. To this end, fu-
ture research should consider wireless network design and
the specifications of the FL server suitable for large-scale
deployments and develop a technique that intelligently selects
the optimum participants among many devices willing to
participate promptly.

D. Meta-Learning

The shortcoming of existing ML techniques, especially DL
algorithms, is that they rely on large datasets to develop a
good model. In most cases, it is not possible to obtain a
high amount of dataset, while in other cases, the number of
samples that hold the desired features is small compared to the
entire dataset. Therefore, finding a mechanism to train models
based only on a small dataset sample is necessary. In light
of the preceding discussion, the meta-learning technique is
introduced to address data insufficiency [121]. Meta-learning,
also known as learn to learn, uses the metadata of other tasks,
like data patterns, properties of the learning problem, and the
algorithm performance to learn how to learn and then learn the
new task more efficiently from a small set of data. This new
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learning method in the FL algorithm is expected to improve
its performance in several aspects. First, using only a small
amount of data samples in meta-learning leads to a more
convenient client selection. Moreover, the operating cost will
be reduced, thus saving many resources and training time.
The optimal client selection will also lead to rapid model
convergence and lower latency which is crucial for B5G and
6G networks. Finally, meta-learning can help adapt the global
model to each user, especially when data heterogeneity exists
among clients.

E. Modality Agnostic Learning

In current ML approaches, the models are designed based on
the characteristics of input data dedicated to a specific task.
However, B5G/6G networks allow the creation of different
dataset modalities, such as vision, audio, time series, and point
cloud. When a specific model needs to be used with a different
data configuration, its architecture must be redesigned. This
means that best-practice models cannot be used in different
domains without modification. Perceiver [122] is an interesting
solution proposed to handle the configuration of different
data shapes based on Transformers networks [123], which
are sequence transduction models that rely entirely on the
attention mechanism. The usage of Transformers in computer
vision has shown their efficiency in classification tasks using
considerably lower computation resources. Therefore, utilising
dynamic models that suit multimodal inputs, like Perceiver, in
the FL setting will help in its realisation and wide adoption to
perform different network optimisation tasks that render the
network more reliable. In more detail, dynamic models will
allow clients with different data shapes to participate in the FL
process, facilitating FL operation. This new research direction
needs further investigation under the umbrella of FL systems.

F. FL Carbon Footprint

DL-based approaches are highly dependent on heavy com-
putations, resulting in high power consumption. Higher energy
cost increases carbon dioxide equivalent (CO2e) emissions,
constituting the main reason for climate change [124]. Recent
studies have been devoted to investigating the impact of ML on
Earth’s climate, steering the focus to the environmental effects
of training large-scale ML models connected to network grids
powered using fossil fuels. The environmental consequences
of FL in wireless networks have not been explored much;
few studies have recently begun to detail such implications. In
addition, the transition from centralised to distributed learning
seems more energy efficient. Avoiding transmitting big data to
a central location saves much network energy and eliminates
the need for cooling and other auxiliary tasks. However, the
ML technique and the number of participants determine how
efficient the network is. With this in mind, the study in [125]
proposes a sustainable FL-based framework by considering
energy harvesting technology. Our vision is that future wireless
networks will highly depend on renewable energy resources;
for instance, we may see more dependence on solar power at
the edge devices. This aspect opens the horizons for exploring
FL approaches that can potentially contribute to achieving

carbon-friendly wireless networks. To this end, future research
should be dedicated to assessing the environmental impacts of
FL-empowered networks before being widely used in broader
scopes.

G. Low-Precision FL
Computational capabilities are a significant factor in determ-

ining the best clients involved in the FL process. However,
edge devices often have limited computing resources, making
implementing FL more complex. For instance, the computa-
tional complexity of DL models increases as the model be-
comes deeper, requiring high-performance hardware, while in
reality, resource-limited devices are available. The use of full-
precision DL models that perform floating-point mathematical
operations is a major reason for the increased computational
complexity of such models. Various approaches are introduced
to compress deep networks, such as parameter pruning [126]
and parameter quantisation [127]. Much interest has focused
on the model quantisation technique as it produces more
compact models than their floating-point counterparts. Binary
neural networks (BNN) [128] is a promising approach that re-
cently emerged to facilitate deploying DL models in resource-
limited devices. In BNNs, model weights are quantised using
binary values. The merits of BNNs represented in memory
saving, computation reduction, and energy efficiency make
them appealing for use under the FL setting. The combination
of FL and BNNs will form a new low-precision framework
that can be used at the edge of wireless networks. Although
the usage of BNNs addresses the scalability of the FL process,
their performance is degraded compared to other full-precision
counterparts. Using BNNs in FL is a promising solution;
nonetheless, more research should focus on optimising BNN-
based FL frameworks and closing the performance gap.

H. Digital Twin (DT)
DT is a technology representing a physical object, service,

or even an entire system in its counterpart digital version
[129]. The DT framework aids the operation of complex
systems by providing insights into how these assets behave
under various simulated circumstances that will help improve
decision-making and optimise these systems. As reported by
Gartner, DT is envisioned to be one of the most influential
industry 4.0 technologies in the next decade. Furthermore, DT
is a data-driven technology that can provide system operation
excellency by leveraging real-time analysis when paired with
AI. However, The DT faces the challenges associated with big
data and privacy protection. Accordingly, a novel collaborative
paradigm can be achieved when fusing FL with DT systems
to meet these challenges. As two emerging and promising
techniques, FL and DT can help reduce wireless networks’
operation complexity and realise 6G-based IoE applications
[130]. Despite the literature’s scarcity of works that leverage
such fusion, it is envisioned to become an essential part of the
next generations of wireless networks. Future research may
consider using FL with DT to share knowledge between DT
nodes and develop a common understanding. In addition, the
DT can assist FL tasks, for example, by quantifying the DT
node’s trust and selecting clients based on the degree of trust.
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I. FL Task-Reward Announcement

FL model training depends on the participating clients’ re-
sources and the corresponding on-device datasets. Data quality
differs from client to client based on usage, and behaviour
[131]. The selection of devices is based on predefined condi-
tions like being connected to an unmetered network, idle, and
in a charging state. Moreover, choosing the optimal clients
for a particular task helps relieve the pressure on wireless
spectrum resources by lowering the training rounds required
in FL and improving network latency. However, to encourage
users to participate in the FL process, a reward mechanism
should be developed to compensate for their consumed re-
sources and data used while training. How to determine and
select participants based on their resources and data quality is
ongoing research. FL task-reward announcement is a necessary
approach. With an effective announcement technique, users
with high-quality data and resources may be encouraged to
make themselves ready to participate in the FL process by
matching the terms of participation required to receive some
rewards. Announcement techniques can enhance the overall
performance of the FL system.

VII. CONCLUSIONS
The emergence of FL and its distinctive features pave the

way for numerous advancements in the industry. Motivated
by the various implementation scenarios in different wireless
networks, we conducted a survey demonstrating the salient
merits of FL. In this context, this review paper presented the
basic operational principles of FL and discussed the essential
enabling technologies. This is followed by a discussion of
state-of-the-art wireless network applications optimised by
utilising the FL mechanism. Moreover, we shed light on
promising research directions that may unlock the potential
of FL in new areas of B5G and 6G wireless communication
systems. Furthermore, we focused on the challenges associated
with implementing FL and outlined the techniques used to
address those challenges in literature, and then we offered
insights to improve the design of the FL algorithm. We believe
that the way this survey is harmonised can offer a firm
understanding of FL usage in various areas, facilitating the
focus on new research directions.
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