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Abstract—Ultra-wideband (UWB) sensor 
technology is known to achieve high-precision 
indoor localization accuracy in line-of-sight (LOS) 
environments, but its localization accuracy and 
stability suffer detrimentally in non-line-of-sight 
(NLOS) conditions. Current NLOS/LOS identification 
based on channel impulse response’s (CIR) 
characteristic parameters (CCP) improves location 
accuracy, but most CIR-based identification 
approaches did not sufficiently exploit the CIR 
information and are environment specific. This 
paper derives three new CCPs and proposes a novel 
two-step identification/classification methodology with dynamic threshold comparison (DTC) and the fuzzy credibility-
based support vector machine (FC-SVM). The proposed SVM based classification methodology leverages on the 
derived CCPs obtained from the waveform and its channel analysis, which are more robust to environment and 
obstacles dynamic. This is achieved in two-step with a coarse-grained NLOS/LOS identification with the DTC strategy 
followed by FC-SVM to give the fine-grained result. Finally, based on the obtained identification results, a real-time 
ranging error mitigation strategy is then designed to improve the ranging and localization accuracy. Extensive 
experimental campaigns are conducted in different LOS/NLOS scenarios to evaluate the proposed methodology. The 
results show that the mean LOS/NLOS identification accuracy in various testing scenarios is 93.27 %, and the LOS 
and NLOS recalls are 94.27 % and 92.57 %, respectively. The ranging errors in LOS(NLOS) conditions are reduced from 
0.106 m(1.442 m) to 0.065 m(0.739 m), demonstrating an improvement of 38.85 %(48.74 %) with 0.041 m(0.703 m) error 
reduction.  On the other hand, the average positioning accuracy is also reduced from 0.250 m to 0.091 m with an 
improvement of 63.49 %(0.159 m), which outperforms the state-of-the-art approaches of the Least-squares support 
vector machine (LS-SVM) and K-Nearest Neighbor (KNN) algorithms. 

Index Terms—UWB, CIR, Fuzzy Credibility, SVM, Channel identification, Ranging mitigation, Indoor positioning. 

 

 

I. Introduction 

OCATION-BASED service (LBS) plays a crucial role in 

daily life and industrial production. In the outdoor 

environment, the global satellite navigation system (GNSS)[1] 

provides stable, high-accuracy localization services. However, 

the satellite signal cannot be used due to poor or no signal 

penetration and multipath transmission in buildings in indoor 

environments. This leads to poor positioning accuracy. To 

realize indoor localization, extensive research has been carried 

out on various localization technology such as Wireless Fidelity 

(Wi-Fi) [2], Bluetooth [3], geomagnetism [4], Ultra-wideband 

(UWB) [5-8], pseudo-satellite[9]. Among these approaches, 

UWB has attracted extensive attention due to its large 

transmission bandwidth that leads to high localization accuracy 

resolution, which can meet the requirements of indoor high-

precision positioning. It has been applied to many aspects like 

industrial robots, unmanned aerial vehicle (UAV) search, etc. 

With the update of smartphone hardware, phones including 
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Apple, Samsung, and Xiaomi have adopted UWB technology 

to support consumer indoor positioning applications on mobile 

phones such as Smart Tag, and Airtag[10]. 

The accuracy of the UWB hardware positioning is 

determined by the time-of-flight (TOF)-based ranging accuracy, 

which is affected by clock drift, frequency drift, received signal 

level, and Non-Line of Sight (NLOS) transmission [11-14]. The 

first three impairments are hardware related, while NLOS 

transmission has the direct signal propagation path between 

devices being blocked. NLOS [14, 15] transmission occurs 

frequently due to complex indoor topology and various indoor 

obstacles such as walls and doors. The UWB pulse signal from 

the transmitter must travel an extra distance to reach the 

receiver, resulting in a positive deviation in ranging error and 

hence inaccurate localization. It is necessary to first identify and 

suppress the NLOS signal before positioning. 

Existing NLOS/LOS identification algorithms mainly 

comprise distance statistics-based algorithms [14-17], fusion-

based technologies [18-21], and Channel Impulse Response 
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(CIR)-based methods [22-33], which divide the data into 

identified-NLOS (I-NLOS) and identified LOS (I-LOS). CIR 

epitomizes signal fluctuation and attenuation in the channel 

environment. Such characteristics of different channel 

environments can be measured, recorded, and effectively 

trained with various classification algorithms for identification. 

Therefore, the CIR-based methodology is one of the most 

popular NLOS/LOS identification methodologies. Previous 

research works mainly focus on the distinction of the waveform 

and its overall energy distribution but does not reflect the key 

features of the waveforms. This results in poor performance 

robustness to dynamic environments and obstacles. Typically, 

the algorithms to suppress ranging errors’ influence on location 

can be divided into two methodologies. The first methodology 

[34-38] is pivoted on the correction of the I-NLOS components 

in the dataset and combined with the I-LOS components, which 

can improve the position accuracy, but requires lots of 

complicated processing work during the correction. The second 

methodology [39-43] introduces additional positional 

information to suppress ranging error. Pedestrian Dead 

Reckoning (PDR) provides high relative positioning accuracy 

but subjects to heavy drift in the IMU components. It requires 

external constant calibration to correct the drift such as from 

UWB system. However, when the environment layout is 

complex, a large number of continuous NLOS measurement in 

the UWB system will not be able to compensate the 

accumulated errors of PDR and other algorithms in real time, 

which will reduce the stability and accuracy of the overall 

system.  In the visual positioning system (VPS) which relies on 

light energy for positioning. In more complex feature texture 

and brightness changes, the lighting recognition and correlation 

to the device exact position will be in doubt and suffers 

inconsistency. In open and large environment, the use of Wi-Fi, 

BLE and vision positioning technology will reduce positioning 

accuracy significantly since these technologies relies heavily on 

feature matching as the core but the spatial change of features 

in large open environment is not obvious. Furthermore, existing 

methodologies cannot alleviate relatively high errors in LOS 

components in the dataset. Based on the above limitation, this 

paper introduces the novelty in the extraction of three new CIR 

characteristics parameters (CCPs) and further mines potential 

classification information by fuzzy credibility [44]. Combining 

the ranging error with the CCPs improves the mitigation 

algorithm with robustness in the environment dynamic. Our 

novel contributions are summarized as follows: 

(a) We divide the whole process of the UWB hardware signal 

acquisition into three stages according to the fluctuation caused 

by the arrival of FP, namely environmental noise stage (ENS), 

first path signal (FP) judgement stage, and multipath (MP) stage. 

To the best of our knowledge, this paper is the first to introduce 

the UWB signal acquisition into 3 novel stages for 

localization/positioning. These stages are not only essential to 

optimize the existing CCPs but enabling the feature extraction 

of three new proposed CCPs namely: false crests number (FCN), 

FP error (FPE), and FP distance error (FDE) from the waveform 

and energy of key nodes. These 3 new features’ parameters 

cover the main characteristics of the 3 proposed signal stages 

and classify channel environment from both time series and 

energy perspective in two dimensions as compared to existing 

CCPs which monotonously classified channel in one dimension. 

Hence our proposed CCPs provide much stronger feature 

representation and robustness in classification performance. 

(b) We propose a two-step dynamic threshold comparison- 

fuzzy credibility-based support vector machine (DTC-FCSVM) 

algorithm to classify the UWB channels. Based on two 

proposed typical misjudgment environments, the algorithm 

refines the optimal CCP feature set of different pre-

classification results and used the fuzzy credibility to mine 

potential CCPs’ classification information. To ensure the 

performance of the first step DTC, we also update the DTC 

threshold (DTC-T) with the final identification result. 

(c) We also design a correction strategy for the NLOS 

ranging error. As the ranging error is classified based on the 

environment noise energy fluctuation on the weakened true first 

path (TFP), we propose different correction schemes from the 

perspective of time and energy. Finally, we conduct a multi-

scene experimental campaign to verify the proposed algorithms’ 

channel identification accuracy, ranging error correction effect, 

and the improvement of dynamic positioning accuracy. 

Section II briefly reviews the related work about UWB 

NLOS/LOS identification and ranging error mitigation. Section 

III introduces the principle of TOF-ranging and the proposed 

CCPs set containing three new parameters. Section IV proposes 

a two-step channel identification algorithm and ranging result 

correction strategy. In Section V, we set up the experimental 

campaign in multi-scenes to verify the algorithm’s performance. 

Finally, Section VII gives some conclusions. 

II. RELATED WORKS 

A. LOS/NLOS Identification Algorithms 

The existing identification algorithms can be divided into 

three categories: distance statistics-based method, fusion-based 

approaches, and CIR-based methods. The distance statistics-

based techniques use the variance of ranging results or 

probability density function [14] (PDF) to distinguish the 

channel. Before positioning operation, the system needs to 

collect lots of LOS data to determine the variance threshold 

𝜎𝐿𝑂𝑆
2  of ranging signal, which performs well in static 

experiments [16]. In dynamic experiments, the threshold 

formula needs to introduce the known maximum velocity 𝑣𝑚𝑎𝑥  

to alleviate the misjudgment of LOS as NLOS due to 

overestimation of 𝜎𝐿𝑂𝑆
2  [17]. Obviously, the algorithm can only 

significantly improve the recognition accuracy when the 𝑣𝑚𝑎𝑥  

is accurate, and it is also limited by environment constraint 

since the prior information of the environment needs to be 

repeatedly measured. Fusion-based methods need to combine 

other localization technologies such as inertial measurement 

units (IMU), visual positioning, etc. In [18],  IMU is integrated 

with UWB and the former real-time positioning results are used 

to identify NLOS data through the iterative extended Kalman 

filter (IEKF). It does not need the prior information, but the 

gyro drift will affect the recognition accuracy. Research work 

in [20] uses the Mahalanobis distance to identify abnormal 

UWB ranging and control its noise covariance matrix, which is 

implemented on mobile phones with the low-cost IMU. 

However, in continuous NLOS, the performance of outlier 

detection based on Mahalanobis distance is influenced by walls, 

obstacles, and low hardware accuracy. Jo et al. [19] obtained 

the signal’s statistical information from the propagation delay 
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data by ray tracing and calculated the variance threshold using 

Cramer Rao lower bound. Its off-line training time increases 

exponentially with the increase of positioning area and layout 

complexity. In addition, the system cannot simulate all 

obstacles and need high-precision maps to ensure accuracy. 

The CIR-based methods mainly include two steps. Firstly, 

CCPs are extracted from UWB sensors parameters, which are 

mainly divided into time and energy domains. The time-domain 

CCPs are based on the difference in the arrival time of the 

multipath signals. These mainly include rise time (𝑡𝑟𝑖𝑠𝑒) and the 

probability of NLOS (PNLOS). On the other hand, the energy 

CCPs are based on the signal attenuation and interference 

caused by obstacles. These include total energy (𝜀𝑟), standard 

power deviation (𝜎𝑟 ), mean excess delay (𝜏𝑀𝐸𝐷 ), root mean 

square delay spread (𝜏𝑟𝑚𝑠), kurtosis (κ), maximum amplitude 

CIR (𝑟𝑚𝑎𝑥), first path power level (FPPL), receive power level 

(RXL), and the difference between FPPL and RXL (DFR = 

RXL - FPPL) and energy saturation (ES) [25]. Secondly,  the 

channels are normally identified by combining CCPs with 

classification methods like threshold comparison [22], joint 

likelihood function [17, 23, 24], support vector machine (SVM) 

[25-28], and K-NN [30], etc. In [22], the mean accuracy of the 

single CCP threshold comparison algorithm is only 71.28 %, 

which does not meet the positioning requirements and has no 

clear threshold definition rules. Previous work [23] improves 

the mean accuracy from 86.9 % of single CCP to 91.3 % with 

joint likelihood estimation with ratio comparison of κ, 𝜏𝑀𝐸𝐷 

and 𝜏𝑟𝑚𝑠  with the fixed threshold. The delay-spread estimate 

[24] of  𝜏𝑟𝑚𝑠 can ensure classification performance when the 

distance is unknown, and hence improve positioning accuracy 

once TOF and received signal strength are further utilized. 

Jasurbek et al. [5] uses effective and dominant path number as 

a new CCP feature to reduce the complexity of the parameter 

set on the premise of ensuring accuracy. However, the recall of 

LOS is universally lower than the recall of NLOS. This is not 

conducive in the extraction for high-precision-ranging results. 

SVM [26] does not need much prior information and is widely 

used in various classification problems through pre-training 

models. In [27], the performance of SVM classification is 

compared in multiple scenarios (concrete wall, glass, wood wall) 

with different kernel functions, namely linear, polynomial, 

Gaussian, and sigmoid. Another factor is the number and 

composition of support vector sets to be used. Gifford et al. [25] 

discussed the impact of different CPP sets on identification 

accuracy and evaluated SVM’s performance through Monte 

Carlo simulation. As the number of CPPs sets increases from 2 

to 3, the identification accuracy will increase from 90 % to 

91.4 %, but 𝑟𝑚𝑎𝑥 has no impact to the performance once added 

to the set that comprise of {𝜀𝑟 , 𝑡𝑟𝑖𝑠𝑒 , κ}. In addition, the accuracy 

of this set in [6] is only 89.7 %, and its optimal set contains 

{𝑟𝑚𝑎𝑥 , 𝜏𝑀𝐸𝐷}. Kolakowski et al. [29] use 𝜏𝑀𝐸𝐷 and 𝜏𝑟𝑚𝑠 instead 

of DFR and 𝜀𝑟  to compare the accuracy of the same three-

parameter sets, which can improve the recognition accuracy by 

22.83 % and greatly improve the LOS recall. They also refine 

the classification of different NLOS namely Direct-Path NLOS 

when direct path component is receivable although blocked and 

Non-Direct-Path NLOS when direct path is completely blocked 

and cannot be received. However, the performance is 

inconsistent as it is highly site-specific. Mostly, three-

parameters set is stable enough to provide high identification 

accuracy but optimization is needed for different scenarios to 

obtain the optimal effect. Qiang et al. [30] proposed an 8-

parameter K-NN recognition algorithm with lower complexity. 

When the number of reference nodes are increased to 15, its 

accuracy is equivalent to that of the least square SVM (LS-

SVM) and the offline training time is reduced by 5 seconds, but 

the performance shown is only for a single scenario. The 

identification accuracy of traditional machine learning (ML) 

will decrease when the types of offline data are unbalanced. Che 

et al. [31] recognized NLOS by calculating the Gaussian 

distribution and the generalized Gaussian distribution of 

energy-related features (such as FPPL and RXL), which were 

3.715 % and 4.475 % more accurate than ML, respectively.  

Under the same parameters, the weighted Naive Bayesian 

algorithm [32] has better ROC curves for true and false positive 

rates, with an average increase of 0.17AUC area. Research 

work in [33] uses κ and Gabor filter to realize LOS and NLOS 

switching detection. However, it can only be used as an 

auxiliary means due to the need of accurate initial states and the 

error will accumulate. 

In summary, the changing environment and obstacles will 

affect waveform identification, which leads to fluctuated 

classification performance using existing CCPs. In addition, the 

CCPs used in the existing algorithms are independently being 

used in the estimation, without exploring their cross-correlation 

to give rise to additional potential classification information. 

Furthermore, there is no universal CCP set that balances 

accuracy and robustness since it is site-specific. 

B. NLOS Ranging Error Suppression Algorithm 

The existing NLOS ranging error suppression algorithms are 

divided into two categories. The first methodology directly 

rectifies the ranging errors and uses the corrected range result 

for localization to determine the receiver’s coordinates. Heidari 

et al. [34] uses 𝜏𝑟𝑚𝑠, FPPL and  𝜀𝑟 to establish the statistical 

error model, decreasing the root mean square (RMSE) of 

ranging error by 50 % to 1.56 m , but the estimation error was 

random. Wu et al. [35] iteratively estimate TFP by combining 

received TOF with RXL and derived NLOS ranging error 

expression using the signal path loss model. It can reduce the 

mean ranging error in the range of 2-13 m to less than 0.5 m 

and remain below 1m with the expansion of the positioning area. 

However, the correction effect in some points is detrimental due 

to outliers. Converting the amplitude information into rank 

statistics can weaken outliers’ interference and effectively 

maximize the FP’s information [36]. TFP is estimated using the 

row rank statistical sequence of each frame's amplitude and 

combines maximum likelihood to improve performance. Due to 

the need for ergodicity which required all signal paths, the FP 

evaluation algorithm is complex and time-consuming. Li et al. 

[37] use the signal means to eliminate Gaussian white noise 

(AWGN) and searched FP by the least square (LS) to reduce 

complexity. It can decrease ranging error to below 1m with 30 % 

to 80 % performance improvement, but it is time-consuming to 

process multiple signal pulses. Saeed et al. [38] introduce time 

and amplitude thresholds to improve the timeliness and reduce 
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the 30 % search area. However, the selection criteria of the 

threshold are unclear with no comparison with existing 

algorithms. In general, the first methodology is time-consuming 

and cannot meet the real-time positioning. 

The second methodology does not attempt to correct the 

ranging error but uses additional information and I-LOS data to 

solve the receiver’s coordinates to suppress the NLOS ranging 

error. Chen et al. [39] estimate coordinates by integrating 

homologous ranging results of additional anchors and using 

residual weight to reduce error impact,  which is relatively easy 

to implement. However, the average calculation time increases 

by 150 % when the number of nodes adds from 4 to 9. Jiao et 

al. [40] reduced average calculation time by 58.91 % under the 

same test condition in [39] by selecting the minimum residual 

combination. However, the above algorithms are required to 

optimize anchors’ layout for different environments.  Using the 

MSE positioning error, Zhao et al. [41] has developed an 

optimized UWB deployment scheme to balance the geometric 

and NLOS effects of radio locations, which reduced the two-

dimensional RMSE positioning error by 47 %. Additional 

information can also be fused such as fusing IMU and UWB by 

EKF [42], which can ensure dynamic positioning continuity and 

reduce the standard deviation (STD) of the location to 1.14 cm. 

However, it requires expensive high-precision hardware to 

reduce the impact of the cumulative drift error by the IMU on 

positioning performance during continuous NLOS scenarios. 

On the basis of the combination of IMU and UWB, Huang et al.  

[43] proposed a positioning framework that fuses additional 

map information and achieved the multi-anchors positioning of 

hybrid LOS and NLOS by maximum likelihood estimation 

taking into account of clock drift error. The second 

methodology has low dependency on prior information and do 

not need error modeling but is difficult to balance add-on 

technology with UWB. 

The above algorithms need high recognition accuracy to 

retain the original high-precision-ranging results and reduce the 

consumption of the correction algorithm. To reduce algorithms’ 

environmental sensitivity and improve the universality, we pre-

classify error according to waveform CCPs and reduce the TFP 

estimation’s complexity by enhancing FP judgment processes. 

III. THEORETICAL FRAMEWORK 

A. UWB TOF Ranging Principle 

UWB TOF ranging technologies include single-sided two-

way ranging (SS-TWR) and double-sided two-way ranging 

(DS-TWR)[45]. SS-TWR measures the signal's single round 

trip time on hardware timestamps (HTS) but is seriously 

affected by clock drift. As shown in Fig.1 DS-TWR is an 

extension of SS-TWR, which reduces the impact of clock drift 

and improves the accuracy by recording two round-trips HTS 

of the signal. The communication process of DS-TWR is as 

follows: The tag starts with sending poll frames to the anchor, 

HTS 𝑝𝑜𝑙𝑙𝑡𝑥  and 𝑝𝑜𝑙𝑙𝑟𝑥  are recorded by the tag and anchor 

respectively; after the first fixed time delay 𝐷𝑟𝑜𝑢𝑛𝑑1, the anchor 

sends resp frames to the tag, and the corresponding HTS is 

𝑟𝑒𝑠𝑝𝑡𝑥 and 𝑟𝑒𝑠𝑝𝑟𝑥for the anchor and tag respectively; after the 

second fixed time delay (𝐷𝑟𝑜𝑢𝑛𝑑2 = 𝑆𝑙𝑜𝑡 − 𝑇𝑟𝑜𝑢𝑛𝑑1), the tag 

sends final frames to the anchor, and the corresponding HTS is 

𝑓𝑖𝑛𝑎𝑙𝑡𝑥  and 𝑓𝑖𝑛𝑎𝑙𝑟𝑥  for the tag and anchor respectively. The 

TOF can be obtained as follow: 

𝑇𝑂𝐹 =
(𝑇𝑟𝑜𝑢𝑛𝑑1𝑇𝑟𝑜𝑢𝑛𝑑2 − 𝐷𝑟𝑜𝑢𝑛𝑑1𝐷𝑟𝑜𝑢𝑛𝑑2)

𝑇𝑟𝑜𝑢𝑛𝑑1 + 𝑇𝑟𝑜𝑢𝑛𝑑2 + 𝐷𝑟𝑜𝑢𝑛𝑑1 + 𝐷𝑟𝑜𝑢𝑛𝑑2
 

(1) 

where 𝑇𝑟𝑜𝑢𝑛𝑑1, 𝑇𝑟𝑜𝑢𝑛𝑑2, 𝐷𝑟𝑜𝑢𝑛𝑑1, 𝐷𝑟𝑜𝑢𝑛𝑑2 are calculated as: 

𝑇𝑟𝑜𝑢𝑛𝑑1 = 𝑟𝑒𝑠𝑝𝑟𝑥 − 𝑝𝑜𝑙𝑙𝑡𝑥  

(2) 
𝐷𝑟𝑜𝑢𝑛𝑑1 = 𝑟𝑒𝑠𝑝𝑡𝑥 − 𝑝𝑜𝑙𝑙𝑟𝑥 

𝐷𝑟𝑜𝑢𝑛𝑑2 = 𝑓𝑖𝑛𝑎𝑙𝑡𝑥 − 𝑟𝑒𝑠𝑝𝑟𝑥 

𝑇𝑟𝑜𝑢𝑛𝑑2 = 𝑓𝑖𝑛𝑎𝑙𝑟𝑥 − 𝑟𝑒𝑠𝑝𝑡𝑥 

Tag

Anchor

TOF

TX

RX TX

TXRX

RX

TOF TOF

POLL RESP FINAL
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Dround2

Dround1  
Fig. 1. Ranging process of DS-TWR. Slot represents the ranging period. 

Based on TOF, the distance between the tag and anchor is 

calculated as: 

𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 = 𝑇𝑂𝐹 ∗ 𝑐 (3) 

where 𝑐 is the speed of light. In addition to the hardware system 

errors especially clock drift, ranging accuracy is mainly 

affected by the estimation accuracy of signal arrival time [12], 

that is, whether the reported first path (RFP) by the system is 

equivalent to TFP. 

B. UWB CIR Wave Features Extraction 

The communication frame reaching the receiver depends on 

the hardware’s statistical judgment of CIR [28]. The CIR is the 

system's estimation of the correlation between the cumulative 

incoming sample and the expected lead sequence: 

𝑟(𝑡) =∑ 𝑎𝑖𝑝(𝑡 − 𝜏𝑖) + 𝑛(𝑡)
𝑁𝑚

𝑖=1
 (4) 

where 𝑁𝑚  is the number of multipath components; 𝑎𝑖  and 𝜏𝑖 
are the amplitude and delay of 𝑖𝑡ℎ  component, respectively; 

𝑛(𝑡) is the additive AWGN; 𝑝(𝑡) is the waveform of the UWB 

impulse waveform which usually is a Gaussian pulse. This 

paper divided the typical complete LOS/NLOS CIR 

communication process as shown in Fig. 2 and Fig. 3 into the 

environment noise stage (ENS), FP judgment stage, and 

multipath stage (MP).  

During communication, the system dynamically calculates 

the FP decision threshold 𝐿 (LDE-Thre) based on the leading-

edge detection (LDE) algorithm [46] as shown in Fig 2. Its 

equation definition is as follows:  

𝐿 = 𝑆 ∗ 𝑁𝑇𝑀 (5) 

where 𝑆 is the standard deviation of the CIR noise level; NTM 

is the noise threshold multiplier to reduce FP misjudgment 

caused by noise perturbation [47]. We defined the CIR stage at 

the receiver when the UWB signal from the transmitter has not 

reached the receiver as the environment noise (ENS CIR) as 

shown in Fig 2. This CIR waveform is relatively stable and 

fluctuates naturally. When the UWB signal arrives at the 

receiver, the CIR waveform will have abrupt jump. The system 

records the HTS of the first CIR that exceeds threshold 𝐿 as the 

RFP (FP CIR) as shown in Fig. 2. Theoretically, since there is 

no obstacle in the LOS environment to jam the UWB signal, the 

RFP is the TFP. On the contrary, since the weakened TFP 
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energy in the NLOS environment cannot meet threshold 𝐿, RFP 

arrival is later than TFP and produces a positive deviation 

ranging error as shown in Fig. 3. The CIR waveform after RFP 

is the multipath signal formed by inevitable reflection and 

scattering (MP CIR). In this work, the two new CCPs from the    

time-domain are defined as follows:    

 
Fig. 2. Typical LOS communication process and CIR feature points.  

 
Fig. 3. Typical NLOS communication process and CIR feature points. 

1) FP Error (FPE) 

The difference between the weakened TFP and ambient noise 

in the NLOS environment is small, but the fixed and larger 

NTM and larger standard deviation, S, of the CIR in the NLOS 

environment will increase 𝐿 . This will aggravate the 

misjudgment of FP as shown in Fig. 3. This paper provides a 

re-judgment of the FP by selecting a small NTM that is more 

suitable for the NLOS environment based on our measurement 

campaign. The re-judged FP is recorded as TFP, and the 

interpolation between it and the RFP is used as the judgment 

basis as follows: 

𝐹𝑃𝐸 = 𝑅𝐹𝑃𝑡 − argmin
𝑡

(𝑟(𝑡) ≥ 𝑆 ∗ 𝑁𝑇𝑀) (6) 

where 𝑅𝐹𝑃𝑡 is the RFP arrival time. In LOS, too small NTM 

will result in fluctuating or abrupt environmental noise as the 

true mistaken UWB FP signal, while too large a value will 

ignore the true UWB FP signal and mistake subsequent MP 

signal as FP in NLOS environment. In a mixed LOS/NLOS 

environment, it is even more crucial to provide a reasonable 

performance level between false identification of noise peaks 

and NLOS multipath as FP during LOS and NLOS environment 

respectively. In this paper, NTM is optimized to 11.56 based on 

the 5 experimental campaign scenarios that will be conducted 

repeatedly 20 times each to give rise to the highest LOS/NLOS 

differentiation with a FPE accuracy of at least around 60 % to 

73 %. The FPE in NLOS is much higher than it in LOS. In the 

NLOS environment, FPE is around 2.57 in Fig.3. For clear LOS, 

the gap between 𝑅𝐹𝑃𝑡 and true FP is small with FPE around 

0.38, due to the steep rise of CIR as shown in Fig. 2. 

2) False Crests Number(FCN) 

Both LOS and NLOS ENS contains many false crests. In 

addition to the false crests of natural fluctuations as shown in 

Fig. 2 in the LOS environment, there are many high-energy 

false crests in the NLOS environment as shown in Fig. 3. It is 

because the weakened TFP is less than threshold 𝐿 and will be 

classified as ENS. We define the following threshold 𝐹  to 

maximumly distinguish weakened TFP in NLOS [48]: 

𝐹 = 𝐿 ∗ 0.6 (7) 

Under LOS, the arrival of the UWB signal will cause the 

CIR energy to rise sharply and be much higher than the ambient 

noise. As there are CIR component or points in front of the FP 

unless weak propagation path, the standard threshold L is 

suffice to distinguish ambient noise and FP. However, under 

NLOS, the difference between the weakened UWB FP signal 

and the environmental noise is subtle and the slope increase in 

CIR is slow. Futhermore, multipath signal may have strong 

energy than the true FP and be mistaken as the FP.  Such 

misjudgement can be avoided by multiplying L by a parameter 

less than 1, but the size should also be controlled to avoid the 

misjudgements of conventional and abrupt ambient noise. In 

this paper, a multiplier of 0.6 is chosen based on the 5 

experimental campaign scenarios that will be conducted 

repeatedly 20 times each to give rise to the highest LOS/NLOS 

differentiation with a FCN accuracy of at least around 60 % to 

73 %. The number of false crests exceeding the threshold F 

(FCN-thre) in ENS is called False Crests Number (FCN).FCN-

Thre, F is established to maximize the discovery of UWB 

signals before FP in NLOS, and distinguish low-energy 

environmental noise from high-energy UWB signals in LOS, 

which comes from the potential information of LDE algorithm 

threshold. The TFP in the NLOS environment is hidden in ENS 

which will increases 𝑆 and more MPs are identified as FCN (=8 

based on measurement campaign) in Fig. 3. In LOS, there is 

only fluctuating low-energy environmental noise in ENS, most 

FCN is equal to 0.  

The traditional energy CCPs: 𝜀𝑟 and 𝜎𝑟 are calculated by the 

vast majority of the complete CIR dataset (1015 CIR) [47], 

which will increase the positioning delay. Under the same 

principle as FCN, the above parameters calculated by CIR in 

ENS have stronger performance and environmental robustness. 

Therefore, we use 200 CIRs before RFP to improve their 

performance. The new energy CCP is defined as follows: 

3) FP Distance Error 

According to reference[47], the first path power level (FPPL) 

consists of the last three CIRs of FP determined by the system. 

In the LOS environment, it represents the energy change caused 

by the real first-path UWB signal. In NLOS environment, due 

to the misjudgement of the system, it represents the energy of a 

relatively high part of the multipath signal. The sum of the 

squares of CIR of three-unit times {F1, F2, F3} after reported 

FP as shown in Fig. 2 and Fig. 3, can be used to evaluate the 

FPPL of the UWB signal as follows  [47]: 

𝐹𝑃𝑃𝐿 = 10 log10((𝐹1
2 + 𝐹22 + 𝐹32) 𝑃𝐴𝐶2⁄ ) − 𝐴 (8) 

where PAC is the preamble time accumulation count in UWB 

measuring unit; A is the correction constant for different 

frequencies, which is 113.77(121.74) for 16(64) MHz [42]. 

Since there is no obstacle in the LOS environment, FPPL is only 

related to ranging distance. Based on the traditional signal 

attenuation model, we introduce antenna attenuation to 
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establish the FPPL and distance model under LOS as follows: 

𝐹𝐷 = 10
𝑃𝑇+𝐺𝑅+20 𝑙𝑜𝑔10(𝑐)−𝐹𝑃𝑃𝐿−20𝑙𝑜𝑔10(4𝜋𝑓𝑅)

20  (9) 

where FD is fitting distance; 𝑃𝑇  is the transmitted power; 

𝐺𝑅=+2 dB is the total antenna gains of the transmitting and 

receiving antennas in the adopted UWB system [42]; 𝑓𝑅 is the 

center frequency. We defined the difference between FD and 

the measured distance (MD) as FDE: 

𝐹𝐷𝐸 = |𝑀𝐷 −  𝐹𝐷| (10) 

 
(a) (b) 

Fig. 4. FPE’s different in equal FPPL and statistical distribution. 

To offset the additional attenuation of the signal by obstacles 

under the same FPPL, the actual distance of NLOS is longer 

than that of LOS, so the FDE of NLOS in Fig. 4(a) is larger than 

LOS due to the NLOS positive ranging error. The LOS FDE in 

the statistical histogram Fig. 4(b) is concentrated at 1 m and 

below, and the mode is 0-0.3 m, which is different from NLOS. 

IV. PROPOSED METHOD 

A. Architecture 

Fig. 5 shows the overall framework of the proposed system 

and data flow direction, including the membership function 

constructed from offline data, DTC-FCSVM identification 

algorithm, ranging mitigation and location of online data. 

Firstly, we pre-classify the data according to the correlation 

between multiple CCPs including our proposed CCPs with its 

threshold in DTC-T. Due to the classification result of some 

CCPs may be different from the real channel environment and 

shortcomings in existing LDE and the CIR waveform, we 

propose two typical misjudgment environments and optimize 

the corresponding SVM vector. Secondly, we add fuzzy 

credibility evaluation to the traditional SVM to form FC-SVM 

with better identification performance. We associate pre-

classification results with the typical misjudgment environment 

and use different FC-SVM to finally determine whether the 

channel is LOS or NLOS. To improve the environmental 

universality of the algorithm, we use the membership function 

(MSF) to obtain the fuzzy credibility of parameters and 

optimize the classification vector. The algorithm dynamically 

updates DTC-T according to the final result to ensure the 

coarse-grained accuracy and improve the overall accuracy. 

During the ranging error correction stage, we classify and 

correct the ranging errors based on waveform characteristics 

and the attenuation degree of TFP energy. It can additionally 

modify some of the I-LOS and hence improve the identification 

algorithm performance. Finally, we used the corrected distance 

to solve the localization coordinates.  

B. Fuzzy Credibility Evaluation 

During the offline fuzzy mapping, we establish the MSF 

required by FC-SVM, which is used to determine the fuzziness 

of CCP. It is the probability that the parameter is judged as LOS. 

Fig.6 adds a description of Fuzzy Mapping in the blue frame of 

Fig.5, where MSF is built from a large amount of offline data 

via data normalization, fuzzy statistics, and membership 

function simulation. In red frame, the online data only use the 

data normalization and membership function of the Fuzzy 

mapping to get the fuzziness of the single CCP. Next, Main 

Factor method 𝑀(∙,∨)  and Centroid method M( ∧ ,+) are 

introduced to provide the fuzziness of the CCP set, watch is 

used to FC-SVM. 
Offline 

data
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Ranging error 
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Location 
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Fig. 5. The flowchart of the DTC-FCSVM algorithm. 
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Fig. 6. Fuzzy mapping constructs membership function using offline data 
and the fuzzy credibility evaluation process using online data 

1) Fuzzy Mapping 

The basic idea of fuzzy sets [49] is to add binary decisions 

for absolute LOS and absolute NLOS which are represented by 

1 and 0 respectively. It is expressed by the following order pair: 

𝐴(𝑈) = {(𝑢𝑖 , 𝐿𝑜𝑠̃(𝑢𝑖)) |𝑢𝑖 ∈ 𝑈} 𝑖 = 1,2,⋯ , 𝐼 (11) 

where 𝑈 = {𝑢1, 𝑢2, ⋯ , 𝑢𝐼} is the finite set of parameters; 𝑢𝑖 is 

the 𝑖𝑡ℎ CCP  and 𝐼 is the total number of CCPs used in the fuzzy 

set; 𝐴(𝑈) is the whole fuzzy set; 𝐿𝑜𝑠̃(𝑢𝑖) is the degree that 𝑢𝑖 
is judged as LOS which is obtained by the MSF in (13). The 

determination of MSF requires the following three steps:  

(a) Data Normalization 

To reduce the influence of parameters’ dimensions on the 

final defuzzification, this paper uses the following min-max 

transformation to compress the original 𝑢𝑖 within the interval 

[0,1]: 

𝑢𝑖
′ =

𝑢𝑖,𝑚 −𝑚𝑖𝑛{𝑢𝑖,𝑚}

𝑚𝑎𝑥{𝑢𝑖,𝑚} − 𝑚𝑖𝑛{𝑢𝑖.𝑚}
 𝑚 = 1,2,⋯ ,𝑀 (12) 

where 𝑢𝑖
′  is the normalized value of 𝑢𝑖  and 𝑀  is the total 

number of data points for 𝑢𝑖  collected in the entire offline 

experiment campaign. 

(b) Fuzzy Statistics 
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The membership degree of the fuzzy set is determined by the 

following statistical probability method of random events. The 

probability of 𝑢𝑖
′  CCP belongs to LOS (ambiguity) is 

determined as:  

𝑙𝑗(𝐿𝑜𝑠)(𝑢𝑖
′) =

𝜇𝑙𝑜𝑠
𝑗 (𝑢𝑖

′)

𝜇𝑙𝑜𝑠
𝑗 (𝑢𝑖

′) + 𝜇𝑁𝑙𝑜𝑠
𝑗 (𝑢𝑖

′)
 

 

(13a) 

where 𝜇𝑙𝑜𝑠
𝑗 (𝑢𝑖

′)   and 𝜇𝑁𝑙𝑜𝑠
𝑗 (𝑢𝑖

′)  are 𝑢𝑖
′  value being LOS and 

NLOS respectively in 𝑗𝑡ℎ  experimental campaign trial. For 

example, as shown in Fig. 7(a), under LOS and NLOS 

environments in 𝑗𝑡ℎ  trial, the normalization FDE of 0.05 has 

occurred approximately 80 % and 20 % of the time respectively. 

This translates to 𝜇𝑙𝑜𝑠
𝑗 (𝑢𝑖

′)   and 𝜇𝑁𝑙𝑜𝑠
𝑗 (𝑢𝑖

′)   are approximately 

80 % and 20 % respectively. This gives rise to 𝑙𝑗(𝐿𝑜𝑠)(𝑢𝑖
′)~0.8. 

To ensure the stability of the LOS probability prediction of each 

CCP, the experimental trial is repeated numerous times in 

which  

𝑙(𝐿𝑜𝑠)(𝑢𝑖
′) ≜

1

𝐽
∑ 𝑙𝑗(𝐿𝑜𝑠)(𝑢𝑖

′)
𝐽

𝑗=1
 

(13b) 

where 𝑙(𝐿𝑜𝑠)(𝑢𝑖
′) will be defined as 𝐿𝑜𝑠̃(𝑢𝑖) when 𝐽, being the 

number of the experimental trial is large. 

(c) Function Simulation 

As shown in Fig. 7, the 𝑥-axis is the 𝑢𝑖
′ of the CCP and the 

𝑦-axis is the ambiguity 𝑙(𝐿𝑜𝑠)(𝑢𝑖
′), with the red curve being the 

new MSF constructed by Gaussian fitting for the three proposed 

CCPs. Other CCPs’ MSF and more information are in [49]. 

 
(a) 

 
(b) 

 
(c) 

Fig. 7. The Gaussian function fits the membership functions of new 
CCPs. (a) FDE; (b) FPE; (c) FCN 

2) Fuzzy credibility evaluation 

During the online fuzzy credibility evaluation in Fig. 6, each 

CCP needs to be normalized similarly in the fuzzy mapping 

stage and fused into the corresponding MSF to obtain its 

fuzziness. We obtain the overall fuzzy credibility evaluation of 

the set through different defuzzification operations with the 

following model: 

𝐵 = 𝐴′ ∘ 𝑅 (14) 

where 𝐴′  and 𝐵  are two fuzzy sets of parameter domain and 

credibility evaluation domain, respectively; 𝑅  represents the 

above fuzzy sets’ relationship; ‘∘’ is the fuzzy operator used to 

obtain the evaluation results according to the information of 𝐴′ 
and 𝑅. Suppose there are 𝐾 sampling measurement set  {𝑔𝑘}𝑘=1

𝐾 , 

where each 𝑔𝑘  has online data consisting of 𝑃  dataset; 𝑔𝑘  is 

further defined as part of the fuzzy set A(U): 

𝑔𝑘 = 𝑈
𝑘 = {𝑢𝑖

𝑘}𝑖=1
𝐼  (15) 

where 𝐼 is the number of CPPs as defined in (11). As such, the 

normalization 𝐴′ of CCP from (15) is obtained as: 

𝐴′𝑘 = {𝑢𝑖
′𝑘}𝑖=1

𝐼 = {𝑎𝑖
𝑘}𝑖=1
𝐼  0 ≤ 𝑎𝑖 ≤ 1 (16) 

where 𝑎𝑖 is the normalization of 𝑢𝑖 using (12). The credibility 

result 𝐵 is defined as {b𝑘}𝑘=1
𝐾 , and the correlation matrix R is 

defined as 𝑅𝑘 = {𝑟𝑖
𝑘}𝑖=1
𝐼 . 

𝑏𝑘 = 𝐴
′𝑘 ∘ 𝑅𝑘 = [𝑎1

𝑘 , 𝑎2
𝑘 , ⋯ , 𝑎𝐼

𝑘] ∘ [𝑟1
𝑘 , 𝑟2

𝑘 , ⋯ , 𝑟𝐼
𝑘] (17) 

where 𝑟𝑖
𝑘 is calculated differently according to different fuzzy 

operators. We adopt the Main Factor method 𝑀(∙,∨) and the 

Centroid method 𝑀(∧,+) to turn fuzzy quantity into clear 

quantity, which is the defuzzification process [50]. 

(a) Main Factor method 𝑀(∙,∨) 

𝑟𝑖
𝑘 = 𝐿𝑜𝑠̃(𝑎𝑖

𝑘) 
(18) 

𝑏𝑘 = 𝐴
′𝑘 ∘ 𝑅𝑘 = 𝑚𝑎𝑥 {(𝑎𝑖

𝑘 ∙ 𝐿𝑜𝑠̃(𝑎𝑖
𝑘))

𝑖=1⋯𝐼
} (19) 

(b) Centroid method 𝑀(∧,+) 

𝑟𝑖
𝑘 =

𝐿𝑜𝑠̃(𝑎𝑖
𝑘)

∑ 𝐿𝑜𝑠̃(𝑎𝑖
𝑘)𝐼

𝑖=1

 (20) 

𝑏𝑘 = 𝐴
′𝑘 ∘ 𝑅𝑘 = [𝑎1

𝑘 , 𝑎2
𝑘 , ⋯ , 𝑎𝐼

𝑘] ∙ [𝑟1
𝑘 , 𝑟2

𝑘 , ⋯ , 𝑟𝐼
𝑘]  

=∑ 𝑎𝑖
𝑘𝐿𝑜𝑠̃(𝑎𝑖

𝑘)
𝐼

𝑖=1
∑ 𝐿𝑜𝑠̃(𝑎𝑖

𝑘)
𝐼

𝑖=1
⁄   (21) 

C. DTC-FCSVM identification 

Phase 1: Dynamic Threshold Comparison  

The DTC algorithm is to pre-classify the data to improve the 

accuracy of the final identification results. The DTC Threshold 

({dtc-𝑡𝑖}𝑖=1
6 ) is obtained offline from three empirical CCPs 

(PNLOS; ES; DFR) and three new proposed CCPs (FCN; FPE; 

FDE). This paper summarizes the obvious inconsistency 

between the numerical representation of some CCPs’ 

characteristics in DTC-T and the actual channel. This 

consistency is named the misjudgment environment. 

Since empirical CCPs focus on the multipath (MP) 

differences between LOS and NLOS, we proposed the 

introduction of a scenario where the empirical CCPs’ DTC 

results and the actual channel are different as the misjudgment 

MP environment (M-MP). As shown in Table 1, there are 6 

CCPs used in the proposed CCP set. For M-MP classification, 

PNLOS, ES, and DFR are used. Traditional LOS is defined as 

the intervisibility between transmitter and receiver, and it is 

independent of surrounding clutters and the trailing MPs. 

However, once the clutters around the transmitter and the 
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receiver who are in LOS are heavy, the MP waveform at the 

receiver may be similar to NLOS. In addition, the TFP of NLOS 

is fully undetected in the ENS, and as such the receiver can only 

accept the multipath reflection signals. As such, the interval 

between the strongest multipath and RFP will be as small and 

hence PNLOS will be small. The RFP will be mistakenly 

treated as LOS.  

The new proposed CCPs are mainly related to TFP’s 

attenuation degree and the relationship between weakened TFP 

and the 𝐿 . Similarly, we proposed the introduction of the 

misjudgment of FP as the misjudgment FP environment (M-FP) 

where FCN, FPE, and FDE are used. In the NLOS environment, 

the TFP is lower than 𝐹 after path attenuation, the multipath 

will be misjudged as LOS due to the ENS waveform, and this 

phenomenon will also occur when the multipath level is higher 

than 𝐿. Similarly in the LOS environment, if the LOS TFP is 

lower than 𝐿 after adding NTM, its ENS will appear the false 

crests like NLOS. 
TABLE I 

PSEUDO CODE OF THE LOS/NLOS IDENTIFICATION ALGORITHM 

Algorithm: Dynamic threshold comparison LOS/NLOS identification 
algorithm based on UWB technology. 
Input: UWB offline dataset{𝐶𝐶𝑃𝑖 , 𝐿𝑂𝑆 𝑜𝑟 𝑁𝐿𝑂𝑆}𝑖=1

6 , {𝐶𝐶𝑃𝑖}𝑖=1
6 =[FCN 

 FPE FDE PNLOS ES DFR ]𝑇; DTC-T {dtc-𝑡𝑖}i=1
6  

Output: single CCP result of DTC {dtc-𝑟𝑖}i=1
6  

DTC result {DTC-𝑅𝐾 }; Final result{𝑅𝑒𝑠𝑢𝑙𝑡𝐾} 
1 For 𝑘=1 to K 

2  Compare {𝐶𝐶𝑃𝑖}𝑖=1
6  with the corresponding {dtc-𝑡𝑖}𝑖=1

6  to get{dtc-𝑟𝑖}𝑖=1
6 . 

LOS: dtc-𝑟𝑖
𝑘=1; NLOS: dtc-𝑟𝑖

𝑘=0;  

3  Due to the correlation between CCPs, 𝑑𝑡𝑐 − 𝑟4:5
𝑘  needs to be corrected 

4     if    𝐶𝐶𝑃5
𝑘 < 0.1 & dtc-𝑟4

𝑘==1; 

5                     dtc-𝑟4:5
𝑘 = 0 

6    end 

7    Calculate the sum of {dtc-𝑟𝑖
𝑘}𝑖=1
6  to get DTC-𝑅𝐾. 

8    The  𝑅𝑒𝑠𝑢𝑙𝑡𝑘 = 1/0 when DTC-𝑅𝑘=6/0.  

9     if  sum (dtc-𝑟𝑖=1:3
𝑘 )<3 

10             𝑅𝑒𝑠𝑢𝑙𝑡𝑘 = M-MP label class 

11   else if  sum(dtc-𝑟𝑖=1:3
𝑘 )>3& DTC-𝑅𝑘 = 4 or 3 or 2 

12           𝑅𝑒𝑠𝑢𝑙𝑡𝑘 = Mixture of M-MP & M-FP label class 
13   else 

14            𝑅𝑒𝑠𝑢𝑙𝑡𝑘 = M-FP label class 
15   end 

16  The data 𝑅𝑒𝑠𝑢𝑙𝑡𝑘 ≠ 1/0 needs to be fine-grained identified with FC-SVM 

to get the final 𝑅𝑒𝑠𝑢𝑙𝑡𝑘. 

17 The data with 𝑅𝑒𝑠𝑢𝑙𝑡𝑘=1 will be added in DTC-D, and the DTC-T will 

 be updated every 30 time-series data 
18 end 

The formulation of the DTC-threshold (DTC-T) initialization 

and update rules are as follows: 

a) Threshold Initialization (Offline) 

Firstly, the first and last 3 % of the sorted offline dataset of 

each CCP value are removed and the remaining dataset is 

termed as DTC-Decision (DTC-D) dataset. The value at the 90 % 

percentile of the DTC-D dataset is used as the initialization dtc-

𝑡𝑖 , and restored in DTC-T. However, we need to repeat the 

above initialization operation if ES<0.9 or PNLOS<0.5 or 

DFR≥6 dB [48].  

b) Threshold Update (Online) 

During online update process, as shown in Fig. 5, if every 30 

time-series online datasets have been identified by FC-SVM as 

the LOS class, they will be added into the DTC-D dataset to 

repeat the initialization operation to update the dtc-𝑡𝑖 in DTC-

T.  However, if these LOS datasets did not meet the ES, PNLOS, 

and DFR criteria as mentioned in step a), these LOS data will 

not be added to the DTC-D dataset to update the DTC-T.  

 The 𝐶𝐶𝑃𝑖
𝑘  represents the 𝑘𝑡ℎ  data of dataset and the 𝑖𝑡ℎ 

CCP of [FCN, FPE, FDE, PNLOS, ES, DFR]”. The first three 

CCPs correspond to the proposed CCP that are deived from the 

proposed three stages of UWB signal acquisition. During DTC 

process, we compare 𝐶𝐶𝑃𝑖  with the dtc-𝑡𝑖  in DTC-T, and if 

CCPs (except ES and PNLOS) are less than the threshold, we 

will indicate this result as dtc-𝑟𝑖 = 1, else as 0. The operation of 

CCPs ES and PNLOS is the opposite. According to this 

threshold judgment process of a single CCP and hence for all 

CCPs, the pseudo-codes in Table 1 are used in data threshold 

pre-classification. 

Phase 2: Fuzzy credibility-based SVM 
The coarse-grained classification performance in Phase 1 has 

poor robustness to environments and will be affected by human 

movement. In this paper, we extend the FSVM [51, 52] 

classifier to fine-tune the classification of the DTC results with 

our proposed fuzzy credibility into FC-SVM.  

To get better classification results, FC-SVM first maps the 

input points (𝑥1, 𝑦1), (𝑥2, 𝑦2),⋯ , (𝑥𝐾 , 𝑦𝐾) to high-dimensional 

feature space where 𝒙 is the feature vector and  y = {−1,+1} is 

the channel environment as NLOS or LOS respectively. The 

classifier divided data into two types according to the 

hyperplane of this space, which can be expressed as: 

𝒘𝑇Φ(𝒙) + 𝑤𝑜 = 0 (22) 

where Φ is the mapping function; 𝑤0  is the bias. The system 

finds the above separation hyperplane by solving the following 

maximum margin optimization problem: 

𝑎𝑟𝑔𝑚𝑖𝑛 
1

2
||𝒘||

2
+ 𝛾∑ 𝜉𝑘

𝐾

𝑘=1
 

(23) 

where 𝛾  controls the trade-off between minimizing training 

errors and model complexity; 𝜉𝑘 > 0 are slack variables that 

allow the SVM to tolerate misclassifications. The solution is the 

quadratic optimization using Lagrange duality 

𝑀𝑎𝑥𝑊(𝜆)

=∑ 𝜆𝑘
𝐾

𝑘=1
−
1

2
∑ ∑ 𝜆𝑗𝜆𝑘𝑦𝑗𝑦𝑘𝛷(𝒙𝒋)𝛷(𝒙𝒌)

𝐾

𝑗=1

𝐾

𝑘=1
 

(24) 

where 𝜆𝑘  is the Lagrange multiplier satisfying Karush-Kuhn-

Tunker (KKT) and 0 ≤ 𝜆𝑘 ≤ 𝛾；𝛾  can be considered as the 

misclassification cost value, the more important 𝜉𝑘 are assigned 

higher costs: 

𝜆𝑘(𝑦𝑘(𝒘
𝑇𝛷(𝒙) + 𝑤𝑜) − 1) + 𝜂𝑘𝜉𝑘) = 0 (25) 

Another advantage of SVM is to use kernel function 

K(x,y)=Φ(𝑥)Φ(𝑦) or other point functions instead of mapping 

equation Φ(𝑥), and the dual-optimization problem in (24) can 

be transformed into: 

𝑀𝑎𝑥𝑊(𝜆)

=∑ 𝜆𝑘
𝐾

𝑘=1

−
1

2
∑ ∑ 𝜆𝑘𝜆𝑗𝑦𝑘𝑦𝑗𝐾(𝒙𝒌, 𝒙𝒋)         

𝐾

𝑗=1

𝐾

𝑘=1
 

(26) 

The optimal value of 𝜆𝑘 can be obtained by solving (26), and 

𝑤 can be expressed as: 

𝑤 =∑ 𝜆𝑘𝑦𝑘𝛷(𝒙𝒌)
𝐾

𝑘=1
 

(27) 

The support vectors are the data points with nonzero 𝜆𝑘 value 

and the result can be written as: 

𝑙(𝑥) = 𝑠𝑖𝑔𝑛(𝒘𝑇Φ(𝒙) + 𝑤0) 
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                       = 𝑠𝑖𝑔𝑛 [∑𝜆𝑘𝑦𝑘𝐾(𝒙𝒌, 𝒙)+𝑤0

𝐾

k=1

] 
(28) 

Next, we determine the optimal feature set to be used in the 

proposed FC-SVM classifier in different scenarios. The 

classification performance of empirical model parameters is 

poor in CCP classification which includes various CCPs such 

𝜀𝑟 ,  𝜎𝑟  , 𝜏𝑀𝐸𝐷 , κ, and 𝑡𝑟𝑖𝑠𝑒 . Aiming at the two misjudgment 

environments that we have proposed namely M-MP and M-FP, 

we further propose its corresponding classifiers FCSVMMP and 

FCSVMFP whose feature sets include the three proposed CCPs 

are shown in TABLE II. The proposed FC-SVM additionally 

introduces the fuzzy credibility M(∙,∨) and M(^,+) of the whole 

CCP set to optimize results further. Moreover, we propose 

another FCSVMEntire  to further process the data whose pre-

classification result is a mixture of M-FP & M-MP in some 

cases. When the pre-classification result is a mixture of M-FP 

& M-MP, both classifiers FCSVMMP and FCSVMFP will be used. 

If the recognition results obtained by FCSVMMP and FCSVMFP 

are consistently the same, it will be regarded as the final result. 

Else, the final result needs to be determined by  FCSVMEntire 

with its optimal CCPs set is also in TABLE II: 
TABLE II 

CLASSIFIER AND CORRESPONDING PARAMETERS 

 Feature vector X 

FCSVM𝑀𝑃 𝑋𝑀𝑃 = [𝐹𝑃𝐸, 𝐹𝐶𝑁,𝐹𝐷𝐸, 𝜀𝑟 , 𝜎𝑟 ,𝑀(∙,∨),𝑀(∧,+)]
𝑇 

FCSVM𝐹𝑃 𝑋𝐹𝑃 = [𝐸𝑆, 𝐷𝐹𝑅, 𝜏𝑀𝐸𝐷 , κ, 𝑡𝑟𝑖𝑠𝑒, 𝑀(∙,∨),𝑀(∧,+)]
𝑇 

FCSVM𝐸𝑛𝑡𝑖𝑟𝑒 𝑋𝐸𝑛𝑡𝑖𝑟𝑒 = [𝐹𝑃𝐸, 𝐹𝐷𝐸,𝐷𝐹𝑅, 𝜏𝑀𝐸𝐷, κ, 𝑡𝑟𝑖𝑠𝑒 , 𝜎𝑟 ,𝑀(∙,∨),𝑀(∧,+)]
𝑇 

D. Ranging error compensation and position estimation 

In NLOS conditions, TFP is weakened by obstacles or hidden 

in ENS. It is recorded in S of (5), which increases L and causes 

the RFP used to calculate TOF to be later than TFP, resulting in 

a positive offset-ranging error. Traditionally, location methods 

that combined corrected I-NLOS and I-LOS ranging have the 

following problems. Firstly, some NLOS data being included in 

the I-LOS due to the recall of LOS cannot reach 100 %. 

Secondly, the existing TFP estimation techniques are complex 

and time-consuming. According to the attenuation degrees of 

TFP in Fig. 8, we take the FCN=0 as the boundary to distinguish 

the difficulty of identifying TFP. As shown in Fig. 8, there are 

two typical scenarios. As such, TFP estimation and TFP energy 

back-calculation correction algorithms are used respectively. 

  
(a) (b) 

Fig. 8. NLOS waveforms with two different TFP weakening degrees. 
1) TFP estimation  

The CIR of the weakened TFP in Fig. 8(a) is significantly 

different from that of the ENS and higher than FCN-Thre, 𝐹. At 

this point, the ranging error with FCN>0 is due to fixed NTM 

in LDE, which cannot differentiate the TFP. The error model is 

as follows: 

𝑑̃ = 𝑑̂ − ∆𝑑𝐹𝐶𝑁>0 (29) 

where 𝑑̃ and 𝑑̂ represent the corrected and measured distances, 

respectively; ∆𝑑𝐹𝐶𝑁>0  is the ranging correction value. The 

ranging correction value is based on the difference between the 

real FP and the measured FP of the arrival time of POLL, RESP 

and FINAL signals as shown in Fig.1. Eq. (6) is used to re-judge 

FP and use this proposed FPE to measure the above difference 

and bring into Eq. (1) and Eq. (2).  According to [12, 53, 54], 

the ∆𝑑𝐹𝐶𝑁>0 is formed as shown in equation (30): 

∆𝑑𝐹𝐶𝑁>0 = 𝑓(𝑒, 𝑑̂) = 𝑐 ∗ ∆𝑡𝑜𝑓 = 𝑐 ∗ (𝑡𝑜𝑓̂ − 𝑡𝑜𝑓) 
(30) 

= 𝑐 ∗
𝑒(𝑠𝑙𝑜𝑡 + 𝑒)

2𝑠𝑙𝑜𝑡
+
(𝑠𝑙𝑜𝑡 − 𝑒)

𝑠𝑙𝑜𝑡
𝑑̂   

where 𝑒 = 𝐹𝑃𝐸 ∗ 𝑡𝑖𝑚𝑒𝑠𝑡𝑎𝑚𝑝 𝑟𝑒𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛[47] and slot is the 2 

way round trip transmission time value as obtained in Fig. 1 ; 

𝑡𝑜𝑓̂, tof and ∆tof represent measured time of flight, true time of 

flight, and the difference between 𝑡𝑜𝑓̂  and tof, respectively. 

The proposed TFP estimation algorithm in (30) can correct both 

true LOS under M-FP and some NLOS misjudgment in I-LOS 

2) TFP energy back-calculation 
As shown in Fig. 8(b), the difference between the weakened 

TFP below 𝐹  and ENS is small. We need to introduce 

additional parameters in the error correction with the following 

proposed model: 

𝑑̃ = 𝑑̂ − ∆𝑑𝐹𝐶𝑁=0 (31) 

where ∆𝑑𝐹𝐶𝑁=0 is the ranging correction. In this scenario, our 

proposed CCP, namely the FPE can find the signal arrival time 

closer to TFP, which is an NLOS multipath signal. In this case, 

we adopt the weighted least squares algorithm combined with 

FPE and the FP energy with the proposed model as: 

∆𝑑𝐹𝐶𝑁=0 = 𝑔(𝑓(𝑒, 𝑑̂), 𝐹𝐷𝐸, 𝛽0, 𝛽1) 
(32)                            = 𝛽0 ∗ 𝑓(𝑒, 𝑑̂) + 𝛽1 ∗ 𝐹𝐷𝐸 + 𝜀 

                                 = 𝛽0𝑋1 + 𝛽1𝑋2 + 𝜀, , 𝜀~𝑛(0, 𝜎
2)  

where 𝑋1 and 𝑋2 are matrix representations of the FPE and 

FDE respectively with 𝛽0 and 𝛽1 as their respective coefficient. 

The matrix expression of (32) is: 

𝐲 = 𝐗𝐛 + 𝒛 (33) 

𝐗 = [

𝑋11 𝑋12
𝑋21 𝑋22

⋮
𝑋𝑃1 𝑋𝑃2

] , 𝐲 =

[
 
 
 
 ∆𝑑𝐹𝐶𝑁=0

𝑛𝑙𝑜𝑠1

∆𝑑𝐹𝐶𝑁=0
𝑛𝑙𝑜𝑠2

⋮

∆𝑑𝐹𝐶𝑁=0
𝑛𝑙𝑜𝑠𝑃 ]

 
 
 
 

, 𝐛 = [
𝛽0
𝛽1
] , 𝐳 = [

𝜀1
𝜀2
⋮
𝜀𝑃

] (34) 

where 𝑃 is the number of offline measurements between anchor 

and tag. The pseudo-inverse least square solution of (34) is : 

𝐛 = (𝐗𝑇𝐗)−1𝐗𝑇𝐲 
(35) 

where 𝐲 is obtained from offline measurement campaigns in 

various environments. 

Based on waveform analysis, we use the following proposed 

model to re-calibrate the whole I-NLOS and part of I-LOS with 

FCN>0. 

{
 
 

 
 𝐿𝑂𝑆 {

𝐹𝐶𝑁 = 0 𝑑̃ = 𝑑̂                                
𝐹𝐶𝑁 > 0 𝑑̃ = 𝑑̂ − 𝑓(𝑒, 𝑑̂)             

                

𝑁𝐿𝑂𝑆 {
𝐹𝐶𝑁 = 0 𝑑̃ = 𝑑̂ − 𝑔(𝑓(𝑒, 𝑑̂), 𝐹𝐷𝐸, 𝛽0, 𝛽1)

𝐹𝐶𝑁 > 0 𝑑̃ = 𝑑̂ − 𝑓(𝑒, 𝑑̂)                              

 (36) 

3) Position estimation 

After obtaining the corrected ranging results, 𝑑̃, the position 
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is solved by the pseudo-inverse least square solution to further 

suppress the influence of ranging error on positioning accuracy. 

The coordinates of the anchors and the tag are 

(𝑥1, 𝑦1); (𝑥2, 𝑦2);⋯ ; (𝑥𝑁 , 𝑦𝑁) 𝑁 ≥ 3  and(𝑥0, 𝑦0) respectively; 

The distances between the tag and different anchors are 

calculated by the following formula is {𝑑̃𝑛}, 𝑛 = 1,2,⋯ ,𝑁: 

𝑑̃𝑛 = √(𝑥𝑛 − 𝑥0)
2 + (𝑦𝑛 − 𝑦0)

22
     (37) 

Written in matrix form: 

𝐛(N−1)x1 = 

[
 
 
 

𝑑̃1
2 − 𝑥1

2 − 𝑦1
2 − 𝑑̃𝑁

2 + 𝑥𝑛
2 + 𝑦𝑛

2

𝑑̃2
2 − 𝑥2

2 − 𝑦2
2 − 𝑑̃𝑁

2 + 𝑥𝑛
2 + 𝑦𝑛

2

⋮
𝑑̃𝑁−1
2 − 𝑥N−1

2 − 𝑦N−1
2 − 𝑑̂𝑁

2 + 𝑥𝑁
2 + 𝑦𝑛

2]
 
 
 

= [

𝑏1
𝑏2
⋮

𝑏𝑁−1

] 
(38) 

𝐀(N−1)x2 = −2 [

𝑥1 − 𝑥𝑁 𝑦1 − 𝑦𝑁
𝑥2 − 𝑥𝑁

⋮
𝑥N−1 − 𝑥𝑁

𝑦2 − 𝑦𝑁
⋮

𝑦𝑁−1 − 𝑦𝑁

]  (39) 

𝐩2x1 = [
𝑥0
𝑦0
] 

(40) 

To obtain 𝑎𝑟𝑔𝑚𝑖𝑛||𝐀𝐩 − 𝐛||2
2 

||𝐀𝐩 − 𝐛||2
2 = 𝐩𝑇𝐀𝑇𝐀𝐩 − 2𝐩𝑇𝐀𝑇𝐛 + 𝐛𝑇𝐛 (41) 

Equating to 0, the optimal global solution will be: 

𝐩 = (𝐀T𝐀)−1𝐀T𝐛 
(42) 

V. EXPERIMENTS 

A. Experimental Setup 

To verify the performance of the proposed NLOS/LOS 

identification and ranging error correction algorithms, 

Decawave DW1000 UWB module system based on 

IEEE802.15.4-2011 has been used. The UWB system has also 

been configured to send the parameter data to the mobile phone 

acquisition software in real time. Its effective communication 

distance is 50 m, communication rate is 110 kb/s, transmission 

power is -41.3 dBm/MHz with operating center frequency as 

3.5 GHz. Experimental campaigns in various test scenarios are 

conducted at the UWB test site of the School of Environment 

and Spatial Informatics, China University of Mining and 

Technology (CUMT), and State Key Laboratory of Satellite 

Navigation System and Equipment Technology, 54th Research 

Institute of China Electronics Technology Group Corporation 

(LAB) as shown in Fig. 9 (a)&(b) and Fig. 9 (c)&(d). The 

distances between the anchor and tag pairs are shown in 

TABLE III.   
TABLE III 

THE DISTANCE BETWEEN THE ANCHOR AND THE TAG IN FIVE SCENARIOS 

 Location Obstacle Distance 

STA-1 CUMT Human [1.096,3.147,5.128,6.126,7.143,8.155, 
9.181,10.203] 

STA-2 CUMT Wall [3.370,5.370,7.370,9.370,11.370, 

13.370,15.370] 

STA-3 CUMT Mix [5.525,6.521,8.126,10.054,12.151, 

14.343,16.593,18.879] 

STA-4 LAB Human [1.237,2.421,3.666,4.833,6.042,7.236, 
8.426,9.603,10.868] 

STA-5 LAB Glass [1.644,2.864,4.064,5.264,6.464,7.664] 

 

As shown, Fig. 9 (a) and Fig. 9 (b) are office environment of 

30.90 m x 36.20 m using cartesian coordinate system of relative 

coordinates while Fig. 9(c) and Fig. 9 (d) are a typical 3-level 

building of 24.00 m x 30.50 m to mimic a commercial building 

such as shopping mall. Fig.9 (a) and Fig.9 (c) depict LOS 

scenarios in the two environments while Fig 9 (b) and Fig. 9 (d) 

depict the NLOS scenarios in the two environments. The 

obstacle of STA-2 in Fig. 9 (b) is a single wall (Wall I), and the 

obstacle of STA-3 is a group of walls (Wall II, Wall III and 

Wall IV). All walls are made of reinforced concrete and their 

thickness is in order 0.20 m, 0.23 m, 0.20 m and 0.24 m 

respectively. In Fig. 9(d), the material of the obstacle in STA-5 

is tempered frosted glass and its thickness is 0.13 m. The red 

and blue marks in Fig.9 represent the location of anchors and 

tags respectively. Fig. 9 (a) and Fig. 9 (b) experimental 

campaign are mainly groups of static experiment with the tag 

having incremental movement one at a time, and its distance 

from the fixed anchor is recorded in TABLE III. Fig. 9 (c) and 

Fig.9 (d) includes dynamic tag trajectory to measure the 

accuracy of the proposed UWB system in motion. In addition, 

the tag's position in STA-2 coincides with the anchor's position 

in STA-3 in Fig.9 (b). Under the China national standard 

requirement of centimetres accuracy imposed on the UWB 

localization system, the ground truth must be measured with 

millimetres resolution. However, the measuring tape can only 

provide centimetres measurement resolution with parallax error 

in human reading. Furthermore, considering ground 

unevenness and the distance between the UWB tag and anchor 

is measured in the mid-air rather than on the ground as shown 

in Fig.9 (d), the measuring tape will suffer bending due to 

gravity when the distance measurement is too long in the 

experimental campaign area. Therefore, the measuring tape was 

used on the ground to determine the approximate distance 

between the anchor and the tag as shown in Fig.9 (d). The laser 

rangefinder Leica DISTO D510 [55] which has average ranging 

error of ± 1.0 mm, a maximum ranging error of ± 2.0 mm and 

a range of 200 m is then employed to provide high accuracy 

ground truth. As shown in Fig.9 (d), the anchor and the tag are 

aligned to each other so that the laser emitted by the laser 

rangefinder at the anchor reaches the tag surface at the right 

angle so that Time of Flight is measured accurately by the laser 

rangefinder to provide the exact real distance between the tag 

and anchor. In summary, in the experimental measurement 

campaign, the ground truth is firstly approximated by the 

measuring tape to determine the approximate location of the tag 

and baseline distance between the tag and anchor. This is 

followed by precise pinpoint of the ground truth by the laser 

rangefinder through the measurement of the distance between 

the tag and anchor five times and take the averages as the real 

distance. This real distance will use to verify the measured 

distance performed by the proposed UWB system. The two 

environments are mainly Rician and Rayleigh channel in nature 

for LOS and NLOS scenarios respectively. In the data 

acquisition process of STA-1&4, we collect LOS data first and 

keep the anchor and tag position unchanged to collect NLOS 

human interference data. 10 minutes of CIR data collection is 

obtained for each pair of anchor and tag distance at a resolution 

of 50 LOS CIR data/minute and 50 NLOS CIR data/minute 

totaling 100 CIR/minute at each point. As shown in Fig.9, there 

are myriad obstacles between the STA-3 anchor and tags such 

as walls, wooden doors, and various room furniture, namely 

mix. In STA-2, 3 & 5 experimental campaigns, with 

corresponding obstacles wall, mix, and glass, as the anchor and 
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all tags are in NLOS with each other, we also simultaneously 

position another LOS tag that is having the same distance 

separation to the anchor, equidistant with the NLOS tag to the 

same anchor. This facilitates the collection of both LOS and 

NLOS data. The training and testing data set was split into 70: 

30 that is arisen from these acquired data to obtain the existing 

and proposed CCPs (FPE, FCN, FDE) using. 

 
(a) (b) 

 
(c) (d) 

Fig. 9. Static and dynamic experimental equipment devices layout. 

B. LOS/NLOS identification performance 

We use the following equations to evaluate the identification 

accuracy: 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝐿𝑅 + 𝑁𝑅

𝐿𝑅 + 𝑁𝑅 + 𝐿𝑊 +𝑁𝑊
 

(43) 

𝑅𝑒𝑐𝑎𝑙𝑙𝐿𝑂𝑆 =
𝐿𝑅

𝐿𝑅 + 𝐿𝑊
 

(44) 

𝑅𝑒𝑐𝑎𝑙𝑙𝑁𝐿𝑂𝑆 =
𝑁𝑅

𝑁𝑅 + 𝑁𝑊
 

(45) 

where LR/NR is the number of data correctly identified as 

LOS/NLOS; LW/NW is the corresponding misjudgment data 

for LOS/NLOS. The above parameters are overall recognition 

accuracy, LOS recall, and NLOS recall. 

1) SVM identification accuracy with signal CCP  

As shown in TABLE IV for the identification accuracy of the 

single CCP with a standard LS-SVM [16] in various scenarios, 

the proposed CCP’s performances (FPE, FDE, and FCN) are 

generally outperformed all existing CCPs. As shown, existing 

CCPs suffer inconsistent performance throughout the 5 

experimental campaigns while the proposed CCPs’ 

performances are robust and consistent in all 5 experimental 

campaigns. One of the proposed CCPs always has the best 

accuracy in these 5 experimental campaigns and the remaining 

two CCPs are within approximately 10 % accuracy 

performance from the best achiever as compared to existing 

CCPs. 
TABLE IV 

THE RECOGNITION ACCURACY OF THE SINGLE PARAMETER 

          Scene 

CCP 

STA-1 

(Scene 1) 

STA-2 

(Scene 2) 

STA-3 

(Scene 3) 

STA-4 

(Scene 4) 

STA-5 

(Scene 5) 

DFR 62.67 % 68.74 % 50.69 % 63.00 % 65.94 % 

𝑡𝑟𝑖𝑠𝑒  63.02 % 60.64 % 50.69 % 66.28 % 75.50 % 

𝜀𝑟 38.03 % 41.77 % 29.33 % 55.87 % 56.79 % 

𝜎𝑟 61.98 % 60.30 % 50.69 % 60.72 % 57.33 % 

κ 61.98 % 58.24 % 51.69 % 78.26 % 65.40 % 

ES 65.61 % 61.74 % 50.69 % 70.05 % 62.75 % 

𝜏𝑀𝐸𝐷 61.98 % 58.24 % 51.69 % 65.66 % 64.64 % 

FPE 63.65 % 64.30 % 59.69 % 73.26 % 68.89 % 

FDE 67.68 % 70.82 % 59.69 % 82.58 % 77.41 % 

FCN 64.99 % 65.64 % 59.69 % 72.75 % 67.04 % 

2)DTC-FCSVM identification accuracy 

Next, we investigate the performance of the proposed DTC-

FCSVM algorithm in LOS/NLOS identification in these 5 

different scenarios. The result is illustrated in Fig. 10. Our 

proposed DTC-FCSVM has the highest mean accuracy of about 

93.27 % in all scenarios as compared to LS-SVM and KNN. 

The mean Recall LOS is about 94.27 % as compared to LS-

SVM of 80.33 % in LOS identification. As shown, the Recall 

NLOS for DTC-FCSVM is guaranteed to be above 90 % with 

a mean of 92.57 % as compared to LS-SVM and KNN of 89 % 

and 76 % respectively.  

 
Fig. 10. Three algorithms’ classification performance in five scenarios. 

The percent numbers are the accuracy of DTC-FCSVM. We use the 

same identification vector {𝜀𝑟,κ,𝑡𝑟𝑖𝑠𝑒} as that used in [25]. The feature 

vector of K-NN is the same as [30]. 

C. Ranging mitigation evaluation 

Contrary to traditional algorithms that focus on the correction 

of I-NLOS data, our algorithm is capable in the correction of 

both I-NLOS and partial I-LOS data. We evaluate the measured 

correction performance using mean, standard deviation (STD), 

and root means square error (RMSE). These two types of data 

correction effects are illustrated in TABLE V and TABLE VI, 

respectively. 

Existing algorithms do not correct I-LOS data, but from 

TABLE V, it is noteworthy to observe the importance to correct 

I-LOS errors as the error correction improvement is more than 

40 %. Fig. 11 illustrates the LOS CDF of original LOS ranging 

error (OE-LOS), DTC-FCSVM predicted LOS classification 

error (PE-LOS), and mitigated LOS error (ME-LOS) using 

ranging error compensation in section D.  As shown, the CDF 
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performance of the ME-LOS is more than 90 % at ranging error 

less than 0.5 m in all scenarios and outperforms the raw OE-

LOS without correction and PE-LOS after DTC-FCSVM LOS 

classification. 
TABLE V 

ERROR CORRECTION EFFECT IN DIFFERENT SCENARIOS OF I-LOS 

 Mean(m) STD(m) RMS(m) 

 Original Mitigate Original Mitigate Mitigate Mitigate 

Scene1 0.0407 0.0288 0.1115 0.0628 0.1187 0.0691 

Scene2 0.0422 0.0282 0.1299 0.0617 0.1366 0.0678 

Scene3 0.0542 0.0317 0.1437 0.0653 0.1536 0.0726 

Scene4 0.1409 0.0714 0.4145 0.2358 0.4377 0.2464 

Scene5 0.1068 0.0630 0.3603 0.2043 0.3760 0.2138 

TABLE VI 
ERROR CORRECTION EFFECT IN DIFFERENT SCENARIOS OF I-NLOS 

 Mean(m) STD(m) RMS(m) 

 Original Mitigate Original Original Mitigate Original 

Scene1 1.1262 0.6305 1.6898 0.9652 2.0306 1.1528 

Scene2 1.2468 0.5762 1.6519 0.7532 2.0695 0.9482 

Scene3 1.1194 0.6505 1.1738 0.8848 1.6219 1.0981 

Scene4 2.7985 1.1895 4.4284 1.8082 5.2380 2.1642 

Scene5 0.8421 0.4498 1.4278 0.8341 1.6575 0.9476 

Similarly, as shown in TABLE VI, our proposed ranging 

error compensation algorithm outperforms OE-NLOS and PE-

NLOS with a reduction of the STD and RMSE by an average 

of 44.53 % and 46.24 % respectively. It is noteworthy to 

observe more than 53 % improvement when the NLOS 

environment is severe, demonstrating the excellent 

performance and robustness of the proposed ranging error 

compensation algorithm. Fig. 12, also demonstrates the CDF 

out performance and robustness of the proposed ME-NLOS 

ranging error compensation algorithm, achieving 90 % CDF in 

all scenarios except scenarios 4 and 5. Scenario 4 has the most 

severe NLOS environment with various obstacles and human 

interaction. It has at most 80 % CDF at the ranging error of 

fewer than 2.5 m but nevertheless the mean, STD, and RMSE 

are improved by 57.50 %, 59.17 %, and 58.68 %, respectively 

using ME-NLOS as compared to PE-NLOS. In scenario 5, the 

UWB signal is refracted through the glass as a blocked LOS 

path (NLOS) with refraction loss and minimum ranging error.  

It is interesting to note the impact of human presence and 

obstacle in STA-4 error in Table V and VI. In LOS scenarios in 

Table V, the human group in the proximity of the STA-4 anchor 

and tag, causing some Fresnel zone phenomenon and 

constituting in comparable multipath caused by human 

reflection/diffraction to the receivable LOS component. This 

resulted its LOS error correction performance is slightly 

inferior as compared to the scenarios STA-5 where there is no 

human movement except glass and wall obstacles. The 

operating UWB center frequency is 3.5 GHz, and both anchor 

and tag are positioned at a height of 1.5 m causing some Fresnel 

radius of between 15.32 cm and 63.6 cm. In NLOS scenarios of 

STA-4, the human obstacle effect is exacerbated since there is 

a human obstacle in between the anchor and tag in addition of 

surrounding human. Human has a higher dielectric constant that 

causes high signal attenuation as compared to the glass 

obstacles in the STA-5 NLOS scenarios. However, our 

proposed mitigation scheme has helped to reduce such human 

effect error tremendously as shown in Table V and VI. 

As shown in Fig. 13, the average LOS and NLOS max errors 

are reduced by 0.229 m (9.53 %) and 1.880 m (44.71 %) 

respectively as compared to the original dataset. Fig. 14 shows 

the different algorithms’ ranging error optimization in multiple 

scenarios. The corrected mean error of the proposed ranging 

mitigation algorithm is better than traditional  LS-SVM[25] and 

K-NN[30] in all scenarios. On STD and RMSE performance 

indicators, only LS-SVM in Scene 4 is slightly better than the 

proposed ranging mitigation, while K-NN perform 

unsatisfactory in all scenarios. In summary, the proposed 

ranging mitigation algorithm has demonstrated better 

robustness and correction effect as compared to traditional LS-

SVM and K-NN. Fig. 15 depicts the Cumulative Distribution 

Function (CDF) of the ranging errors between Ranging 

Mitigation in this paper and those in KNN and LS-SVM. As 

shown, LS-SVM algorithm outperforms both KNN and LS-

SVM in all scenarios, achieving around or less than 1m for 90 % 

of the times. 

 
Fig.11. The original/predict/mitigation LOS data's error distribution under 
five scenarios and obstacles. In CUMT, the obstacles of three 
experiments are (a) Human; (b) Mix; (c)Wall (d) Human/Mix; (e) Glass. 

 
Fig.12. Under different scenarios and obstacles, the 
original/recognized/mitigation NLOS data's error distribution. a) Human; 
(b) Mix; (c)Wall (d) Human/Mix; (e) Glass are in LAB. 
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Fig. 13. Maximum error correction effect of all distances in five scenes.  

 
Fig. 14. Three algorithms’ error correction performance in five scenes. 

The ranging mitigation vector of LS-SVM is {𝜀𝑟 , κ, 𝑡𝑟𝑖𝑠𝑒 , 𝜏𝑀𝐸𝐷, 𝜏𝑟𝑚𝑠, 𝑑̃} 
[25]. The feature vector of K-NN is the same as [30]. 

 
Fig. 15. The Cumulative Distribution Function (CDF) of three ranging 
mitigation algorithms in five scenes. 

D. Positioning experiment 

To verify the improvement of positioning accuracy by the 

DTC-FCSVM identification algorithm and ranging error 

correction with position estimation, we set up three groups of 

obstacle experiments (Human, Glass, and Wall) on the LAB in 

Fig. 16, namely DYN-1-DYN-3 in Fig 9(b). In DYN-1 (S1), the 

anchors are fixed on the LAB’s first floor along the reference 

trajectory (RT) as shown in Fig. 16(a). Due to human blockage, 

the deviation between the original trajectory (OT) and the RT 

is much higher than the mitigated trajectory (MT) using the 

proposed algorithm (DTC-FCSVM + Ranging Mitigation + 

Positioning). It is worth noting that although the LOS OT in the 

lower right corner of Fig. 16(a) highly coincides with RT, our 

proposed algorithm can provide better and further correction 

and improvement effect. In Scene 2, the tester raised the tag to 

ensure that there is always a Glass obstacle between the tag and 

the second-floor anchor during the formation of Fig. 16(b)’s RT 

without much human interference. As the UWB signal 

communication between the tag and anchor is only mainly 

obstructed by glass penetration, the OT’s deviation is very 

small due to strong LOS signal penetration through glass and 

the MT is basically consistent with the RT. The proposed 

algorithm reduces the positioning error from 0.576 m to 0.148 

m achieving 74.3 % improvement. In Fig. 16(c), there is a wall 

obstacle at one of the anchors. This results in positive deviation 

ranging error due to strong NLOS.  Most of the OT points are 

located on the right side of the RT. After correction with the 

proposed algorithm, all positioning errors are less than 1 m. As 

shown in Fig. 16(d), the average CDF error performance using 

proposed algorithm for the three scenarios outperforms the 

original trajectory positioning by more than 40 % at error less 

than 0.4 m. The Mean and Max errors are reduced by more than 

60 %, while the STD is reduced by 55 %. Compared with the 

KNN, the proposed DTC-FCSVM reduces the positioning error 

of Mean, STD and RMSE by 42.79 %, 28.34 % and 13.19 %, 

respectively. Compared with LS-SVM, the proposed algorithm 

outperformed by 50.45 %, 28.40 % and 35.79 % in mean, 

standard deviation and RMSE. The detailed performance of the 

proposed algorithm for the 3 sets of experimental setup is 

shown in TABLE VII.  

 
(a) (b) 

   
(c) (d) 

Fig. 16. Dynamic positioning experiment and error distribution in three 

obstacle scenes. a) Human; b) Glass; c) Wall; d) CDF. 
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TABLE VII 
POSITIONING PERFORMANCE OF DIFFERENT OBSTACLES 

Obstacles Method Mean(m) STD(m) RMSE(m) 

 

Human 

Original 0.1584 0.1903 0.2474 

DTC-FCSVM 0.0567 0.1314 0.1430 

K-NN 0.1231 0.1539 0.1773 

LS-SVM 0.1035 0.1438 0.1807 
 

Glass 

Original 0.1733 0.2240 0.2830 

DTC-FCSVM 0.0619 0.0774 0.0991 

K-NN 0.1163 0.1615 0.1118 

LS-SVM 0.1224 0.1245 0.2029 
 

Wall 

Original 0.3366 0.3625 0.4944 

DTC-FCSVM 0.1116 0.1600 0.1950 

K-NN 0.1543 0.1959 0.2140 

LS-SVM 0.2579 0.2613 0.3017 

VI. CONCLUSION 

This paper proposed the UWB sensor positioning in three 

novel approaches. Firstly, three new novel CPPs is proposed to 

improve performance robustness in the classification of LOS 

and NLOS signal. Secondly, a DTC-FCSVM identification 

algorithm with higher utilization of parameter classification 

information including the proposed CCPs is proposed through 

the combination of threshold comparison and fuzzy credibility 

evaluation in SVM. Its Accuracy, Recall for LOS, and NLOS 

outperform the existing algorithms by at least 92.57 % in 

different scenarios. Finally, in the ranging error correction stage, 

the proposed approach leverages new CCPs to classify and 

correct the ranging error in both LOS and NLOS scenarios. The 

average errors for the corrected I-NLOS and I-LOS are less than 

1m and 0.1 m respectively, resulting in more than 90 % of high-

precision-ranging accuracy. Combined with the above 

NLOS/LOS identification and error correction, the system can 

improve the multi-scene dynamic positioning accuracy by 

63.49 % with the mean error of about 0.1 m. 
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