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Abstract—Radar is an extremely valuable sensing technology
for detecting moving targets and measuring their range, velocity,
and angular positions. When people are monitored at home,
radar is more likely to be accepted by end-users, as they
already use WiFi, is perceived as privacy-preserving compared
to cameras, and does not require user compliance as wearable
sensors do. Furthermore, it is not affected by lighting condi-
tions nor requires artificial lights that could cause discomfort
in the home environment. So, radar-based human activities
classification in the context of assisted living can empower an
aging society to live at home independently longer. However,
challenges remain as to the formulation of the most effective
algorithms for radar-based human activities classification and
their validation. To promote the exploration and cross-evaluation
of different algorithms, our dataset released in 2019 was used
to benchmark various classification approaches. The challenge
was open from February 2020 to December 2020. A total of
23 organizations worldwide, forming 12 teams from academia
and industry, participated in the inaugural Radar Challenge,
and submitted 188 valid entries to the challenge. This paper
presents an overview and evaluation of the approaches used
for all primary contributions in this inaugural challenge. The
proposed algorithms are summarized, and the main parameters
affecting their performances are analyzed.

Index Terms—Human activity classification, radar, machine
learning, convolutional neural networks
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I. INTRODUCTION

WHY is radar considered a viable technology for ambient
assisted living and monitoring of human activities

and well-being? Radar technology is rising at the forefront
in fields such as commerce, defense, and security. Indeed,
the advancement allowed by the integration of radar in the
automotive industry has driven radar technology in more and
more civilian applications (medical, human-machine interac-
tions, food security, smart environments, assisted living) as it
now has a small form factor, is low-power, works with solid-
state integrated chips, and is reconfigurable using software-
defined architectures. Due to the common deployment of wifi
in home environments, schools, hospitals and other public
infrastructures, we know that electromagnetic waves are very
efficient indoors and penetrate through walls and non-metal
obstacles which alleviate obscuring problems encountered
in vision/optical-based technologies. Radar is also a well-
established technology and with low-powers of the order
of Wi-Fi emissions, it is a safe, affordable and dependable
technology. Radar can be seen as a sensor in a suite of sensors
(video, infrared, acoustic, pressure, and wearable sensors) in
the context of human activity recognition. Radar is a contact-
less technology that can operate in any lighting condition and
as well as haze. The paradigm shift of “aging in place” is being
pushed by governments in developed countries ad the number
of people over the age of 65 will be greater than 1 billion
by 2030. This shift is necessary to provide elderly people
and their families a sense of security and a way to monitor
their health while remaining in a comfortable and familiar
setting. Current assistive technologies such as wearables allow
human activity recognition and the detection of critical events
such as falls but they are battery operated and may not be
suitable for cognitively impaired people as they would need
to remember to wear them and recharge them to remain
operational. Radar however does not rely on the subject’s
compliance and is a non-obstructive contactless human activity
recognition technology that can alert emergency services to
critical events for a timely response to ensure the health and
welfare of the subjects under observation. This technology can
also be further expanded to create smart environments where
the elderly interacts through gestures with the environments
and control appliances. Compared with wearable devices,
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video, or ambient sensor technologies, radar does not record
plain images of the subjects or environments and does not
require the users to wear, carry, or interact with additional
devices. Radar can provide rich information and is perceived
as privacy-preserving [1], while avoiding potential issues of
users’ acceptance and compliance. Compared to passive sens-
ing using Wi-Fi emissions or their channel state information
(CSI), modern radar technology provides an additional degree
of freedom in choosing the waveform and beam-forming used
in assisted living applications. For all these reasons, radar has
gained popularity as a sensing technology to support inno-
vative/personalized healthcare services, including monitoring
of daily activity patterns, analysis of gait parameters and
imbalances, and prompt detection of critical events such as
falls [2]–[8].

Indoor human activities can be mainly grouped into three
types based on the extent of movements: action-based, motion-
based and interaction-based. Action-based activities only re-
quire a unidirectional action such as walking and drinking
water. Motion-based activities require connected activities with
multi-types of movements. Interaction-based activities require
two or more individuals or objects involved in the activities. In
this challenge, we set up classification tasks for action-based
activities commonly performed indoors.

Automatic human activities classification with radar has
attracted considerable attention over the past few years, re-
sulting in dozens of different algorithms for this purpose.
Many algorithms exploited features that were specifically de-
signed for the activities to be classified [9]–[11]. For example,
physical parameters are directly estimated from the micro-
Doppler signatures, such as (but not limited to) the center
of mass and bandwidth, or by means of transformations
such as Singular Value Decomposition (SVD) and Discrete
Cosine Transform (DCT), amongst others. Similar techniques
were also applied to the study of human gait [12], [13]
with the objective of detecting abnormal gait (e.g., limping,
imbalances) or extracting parameters such as average speed
and stride length that have important medical significance [14].
Furthermore, time-frequency distributions such as Short Time
Fourier Transform (STFT) or Wavelet techniques were used
to characterize the micro-Doppler signatures of the gaits, from
which features and valuable information were then extracted.
Deep learning techniques have also been proposed, whereby
the feature extraction step is performed by neural networks
that take the spectrograms directly as input or other radar data
representations such as range-time plots or 3D radar cubes [4],
[7], [15]. These networks can be convolutional neural networks
and convolutional auto-encoders [16], [17], which interpret the
radar data as images, or recurrent networks such as LSTM
(Long Short-Term Memory) [18], [19], which interpret the
radar data as a temporal sequence of values, or architectures
based on their combinations.

However, many of these algorithms were typically imple-
mented and evaluated on relatively small, proprietary datasets.
These datasets are largely different from each other with
respect to activity types, input data format, radar character-
istics, the geometry of the data collection, and classification
algorithms, specifically both the extracted features and the

selected classification algorithms. Therefore, it has been diffi-
cult to compare the performance of the proposed radar-based
classification methods on a common benchmark, unlike in
other research fields such as image or audio processing, where
common datasets are routinely used as the benchmarks for
proposed algorithms.

To address the lack of a shared dataset, the University
of Glasgow (UoG) released ’the Radar signatures of human
activities’ dataset [20], [21] in 2019 with the descriptors in the
read me file and sample code to process the database (UoG
dataset for further references). In 2020, the Radar Challenge
“Human Activity Classification with Radar” was organized at
the IET International Radar Conference 2020. Because of the
COVID-19 global pandemic, the event was postponed to 2021
before being canceled altogether. Despite those disruptions, the
challenge carried on as an online event and attracted contri-
butions from several international institutions and researchers.

In this paper, we aim to present the results of this challenge
benchmarked on a common dataset. This is not a review
paper but an analysis of the submissions for the international
radar challenge 2020 and put them in the context of the
state of the art. We will review the main methods/models
and findings from the works submitted to this challenge.
Statistical information on the most successful methods is also
provided, and those models are explained in more detail. Other
sensing modalities can be used for activity monitoring, and
other classification algorithms and neural networks could be
employed too. However, the scope of this paper is not to
provide a comprehensive review of all possible methods but to
discuss in one place all the different proposed algorithms for
the UoG dataset [20], [21] at the challenge event. Furthermore,
while the main focus of this paper is on the analysis of
training methods and classification models, we also present
other aspects such as pre-/post-processing steps, training hy-
perparameters, data augmentation, choice of loss function, and
model ensemble methods.

II. THE DATASET

This section provides a brief description of the dataset
released for the radar challenge. The details of this dataset
can be found in [20], [21]. The radar signatures were recorded
using a COTS FMCW radar from Ancortek model 580-B. The
centre frequency of the chirp was 5800 MHz and the signal
bandwidth 400 MHz. The pulse repetition frequency was set
to 1 kHz and the transmitted output power +18 dBm. The
antennas at the transmitter and receiver were identical - 17 dBi
Yagi. The raw radar data is composed of de-chirped complex
beat frequency samples for each recorded file, with 128 In-
phase and Quadrature (I & Q) samples per sweep or chirp.
These are the so-called ’raw’ data, as no pre-processing has
been applied yet to the data.

Similar to common cross-evaluation approaches for other
data classification challenges, we proposed using these data
for system training and two stages of evaluation: seen dataset
and unseen dataset, as shown in Table I. The seen dataset
is a subset of the training data set. The unseen dataset is
a dataset that was collected from four additional subjects
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Figure 1. Radar spectrograms of five activities [a) A1, b) A2, c) A3, d) A4, e) A5] performed by a 68-year-old male participant. , and 1 activity performed
by a 24-year old student [f) A6] for safety reasons the elderly are not performing the falling activity

and that was not available to participants in the classification
challenge at the stage of training machine learning algorithms.
The motivation was that testing results from the unseen dataset
would indicate how well the classifier or network could
generalize the model as well as avoid overfitting. Furthermore,
by comparing the prediction results from the evaluation of seen
data vs. unseen data, we wanted to see where models could
perform poorly in feature selection and classification for some
of the activities.

As indicated in Table I, it is worth highlighting that the
dataset contained data from 8 different indoor environments:
UoG laboratory room; UoG common room; UoG MAST
lab; Glasgow NG homes (3 rooms); Age UK West Cumbria
(2 rooms). Hence, the radar signatures presented different
background clutter from static furniture and walls, as well
as different distances between the radar and the subjects.
This is an important point, as in the majority of the open
literature on radar-based human activities classification, data
are generally recorded in just one environment, typically in
controlled laboratory conditions.

Furthermore, the recordings involved 72 subjects of which
26 were female,which is substantial compared to the typical
size of radar-based proprietary datasets in human activity
classification literature. The age of these subjects ranged from
21 to 98 years, therefore offering the possibility of analyzing
differences in gait and activity signatures compared with
datasets that only have younger subjects [4], [7], [15]. While
1754 samples is still rather small compared to datasets for
other sensing technologies, to the best of our knowledge the
UoG dataset is a good addition to the research landscape of
the radar community in this application area. The number of
samples per activity are detailed in Table II. The first step of
the challenge consisted in classifying seen data from elderly
volunteers from 60-98 years of age including only activities
A1-A5 as the ederly did not perform the fall activity (A6)
for safety and ethical reasons. There were 20 of each for the
100 sample ”Seen data” for validation used in step 1 of the
challenge. Step 2 in the challenge consisted in 100 samples
taken from 108 recordings with 18 repetitions of each activities
A1 to A6 (details in Table III).

Figure 1 shows an example of the spectrograms (time-
velocity patterns) for a sequence of 6 activities. They are
walking, standing, sitting down, picking up an object, drinking,
and a simulated fall.

Table I
SUMMARY OF THE DATASETS [21]

Dataset No. of samples Participants age
Training dataset 1754 21-98 yrs

Seen dataset for validation 100 60-98 yrs
Unseen dataset for validation 100 24-40 yrs

Table II
SUMMARY OF THE TRAINING/SEEN DATASET [21]

ID Activity description number of samples data length
A1 Walking back and forth 312 10s
A2 Sitting down on a chair 312 5s
A3 Standing up from a chair 311 5s
A4 Picking up an object 311 5s
A5 Drinking water 310 5s
A6 Falling 198 5s

Table III
SUMMARY OF THE UNSEEN DATASET [21]

ID Activity description number of samples data length
A1 Walking back and forth 181 15-30s
A2 Sitting down on a chair 181 10s
A3 Standing up from a chair 181 10s
A4 Picking up an object 181 10s
A5 Drinking water 181 10s
A6 Falling 181 10s

1Volunteer 1 Female executed 3 times each activity, Volunteer 2 Male
executed 6 times each activity, Volunteer 3 Male executed 3 times each

activity, Volunteer 4 Male executed 6 times each activity

Figure 2. Heat map of the world showing the number of participants per
country

III. CLASSIFICATION CHALLENGE TASK DESCRIPTION

The majority of the current research in radar-based human
activity recognition is mainly tested on data from a small
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cohort composed of graduate students or postdocs between
the age of 20-30 in the laboratory or in controlled conditions.
The data collected for this challenge was organised for a more
general-purpose to validate human activities classification in
more realistic environments, including clutter from common
pieces of furniture in the surroundings. For the evaluation,
which ran from February to December 2020, a total of 12
finalist teams made 188 valid submissions out of the many
submitted by participants of the challenge who did not submit
a paper to the conference. Note that the participants processed
the data locally and submitted only the output of their predic-
tions to the radar challenge website for scoring and analysis
purposes. The leader board was used as a portal on the grand-
challenge.ord website to collect the output of the predictions
and rank the entries in order of performance against the ’seen’
blind evaluation in phase 1 and the ’unseen’ blind evaluation
in phase 2.

Fig. 2 displays a heat map representing the number of
participating teams per country, with all information in terms
of country and affiliation of each team as reported by the
participants. Fig. 3 shows the number of valid submissions
to the leader board each week within the evaluation period
of the challenge for the seen data. These submissions were
made only for the 1st round of the ’seen’ data prior to
reasing the ’unseen’ to the teams who submitted papers to the
conference. The term submissions subsequently will refer to
the submissions from the finalist teams who submitted a con-
ference paper explaining their method and results [27]–[38].
The unseen data evaluation results can be found at the follow-
ing link https://humanactivitiyclassificationwithradar.grand-
challenge.org/evaluation/challenge/leaderboard/.

Figure 3. Submission statistics (valid submissions per week) for the first
human activity classification challenge with radar - the submissions include
the finalist submissions and all the other submissions from people who did
not submit to the conference.

Instead of using the F1 score, scoring was done using the
following method to define the leader table ranking. The clas-
sification task considered the combined prediction accuracy.
This included mAPprediction, the prediction accuracy of the same
subject for one of the six activities, and mAPgeneralisation, which
was the prediction accuracy of multiple actions of the same
class conducted by various subjects, as shown in equation 1
adapted from [39].

Sleadertable = α ·mAPprediction+β ·mAPgeneralisation (1)

mAPprediction =
1

|pc|
Σc∈pc

(
TP (c)

(TP (c) + FP (c))

)
(2)

mAPgeneralisation =
1

|gc|
Σc∈gc

(
TP (c)

(TP (c) + FP (c))

)
(3)

α and β are arbitrary parameters to give more or less
importance to the two mAP components in the calculation of
the final score. In this case, to emphasize the performance in
the classification of the different activities, it was chosen to
set β at 0.6 and α at 0.4. pc is the total number of predication
classes for seen dataset and gc is total number of generalisation
class for unseen classes. TP (c) is for true postives for class
c; FP (c) is for false positives for class c.

IV. ANALYSIS OF THE RESULTS

This section presents key results from the finalist sub-
missions to this challenge in terms of performance, pre-
processing, and classification methods reported in Section
IV-A. The submitted papers for this challenge are labeled
and referenced as [27]–[38]. By finalist submissions, we mean
that 12 teams submitted results for the seen data and unseen
data, as well as a paper submission for the online hosting
conference. In Section IV-B, we will give some insight into
some of the pre-processing strategies to prepare the data for
the machine learning algorithms. Among 12 papers that were
submitted to this challenge as part of the IET radar conference,
convolutional neural network (CNN) methods dominated the
best performing models and will be discussed in Section IV-C.
There was also a logic-based supervised learning model
among the submissions, whose results were also outstanding
in comparison to the CNN-based models in the leader table
submission [29]. This logic-based supervised learning and
its combination with ensemble methods will be discussed in
Section IV-D.

A. Challenge Outcomes

The evaluation results reported from the validated 12 sub-
missions can be found in Table IV.

Among these reported results, submission [34] only reported
the best run for individual action accuracy using 10-fold cross-
validation. Submission [35] only reported the best run for
average classification accuracy.

The leader table of unseen data and seen data evaluation
results are shown in Fig. 4. The finalists achieved high accu-
racy > 90% for the seen data, which is very promising for the
challenge of human activities classification, given the results
reported in prior studies ranging from 65% to 99% seen in the
open literature from various datasets [4], [7], [15]. It is worth
emphasizing here that the 1st place holders for the unseen data
[27], [35]–[37] have used various forms of ensemble strategies.
All those methods used cross-entropy loss functions, while
80% adopted learning rates of 0.001. [31] used in the unseen
data evaluation challenges a variety of deep networks derived
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Table IV
THE EVALUATION RESULTS FROM 12 SUBMISSION TEAMS

Paper ID [27] [28] [29] [30] [31] [32] [33] [34]1 [35]2 [36] [37] [38]
Cross-validation 10-fold 10-fold 10-fold 10-fold 10-fold N/A 3-fold 10-fold N/A N/A 5-fold N/A
Walking 100 99 100 100 100 100 100 100 100 99.7 99 100
Standing 97.1 98.7 95.5 98.4 94 100 100 100 100 95.99 97 100
Sitting down 88.9 97.4 95.2 98.5 100 88 100 100 100 98.75 98 100
Picking an object 90.9 87.1 76.9 95.2 83 69 97.82 82 100 94.42 89 90
Drinking 91.4 86.4 84.6 94.4 87 100 97.82 91.3 100 90.56 88 93
Simulated falling 100 99.5 100 90.2 100 100 100 100 100 93.2 99 100
Avg Seen Data 94.27 94.3 92 95.4 95.43 94 99.27 93.9 100 95.4 94.8 97
Seen data
ranking3 8 7 11 5 4 9 2 10 1 5 6 3

Unseen Data 100 93 92 94 95 94 94 94 100 100 100 84
Unseen data
ranking4 1 4 5 3 2 3 3 3 1 1 1 6

The blue color indicates that the best run is shown instead of the average accuracy because the data is missing
1Individual action accuracy best run, average accuracy 10-fold cross-validation 2Individual action and average accuracy – best run 3average accuracy from

the seen data dataset 4best submission submitted to the challenge website on the unseen data dataset

Figure 4. The results for unseen data and seen data evaluation scores from
the leader board submissions

from computer vision to leverage the pre-training of these
networks to boost performances. MobileNetV2, a lightweight
network with 2.23M hyperparameters, achieved the highest
performance amongst their selection of tested models on the
seen data with 95.43% accuracy overall. The model from
submission G0164 [34] and G0121 [30] both used slightly
modified ensemble methods, which achieved the joint 4th
place. Furthermore, Fig.4 shows that the performance trends
of the top 3 teams are generally similar, which results in
substantial gains in classification performance either in unseen
data or seen data.

The summary of the techniques used by these 12 sub-
missions can be found in Table V. Network architectures
and ensemble methods from these validated submissions are
discussed in the following sections.

As illustrated in Table V, RT (range-time), RD (range-
Doppler), and mD (micro-Doppler signature) were generally
used for training neural networks, except for two teams who
proposed to use the 3D data cube. One approach used a range-
Doppler-amplitude time surface to generate a “point-of-cloud”
and the spectrogram phase [27]. A threshold-based iso-surface
extraction method was then used to compress the “point cloud”
[27]. As the authors reported, the time domain complex radar
data (in-quadrature and in-phase) are processed through the

2D Fourier transform with a sliding window to obtain a series
of range-Doppler images. The sequence of range-Doppler
images captures time-domain information as well. Since these
images describe the evolution of the energy distribution in
the range-time domain, the interval between two successive
range-Doppler images is the time step of the sliding window.
So the neural network input data form a 3D format with range,
Doppler, and the phase of a micro-Doppler signature at a given
time. Guo et al. reported a comparison between a simple
convolutional neural network and their proposed Phase-Net
[27]. With traditional Doppler-Time spectrograms as input, this
CNN had almost the same network structure as their proposed
complex field-based fusion network (CFFN). The proposed
“point-of-cloud” inputs showed superior prediction accuracy
over activities like walking, standing up, sitting down, and
falling down, whereas there is a severe confusion between
picking up an object and drinking water.

An alternative approach used range-time maps and micro-
Doppler spectrograms [37]. Liu et al. proposed a feature
extraction method based on motion pattern from singular value
decomposition (SVD) on limbs and torso [36]. The micro-
Doppler features of limbs and torsos were extracted into
principal Doppler patterns and principal human activity timing
patterns.

Finally, a transfer learning method was used as part of pre-
processing to provide weights initialization. It is interesting
to notice that transfer learning did not boost the classification
performance in most cases. However, it provided fast training,
as reported in other works in the literature [25].

Fig.5 shows a box-plot chart from the performance of the
unseen data evaluation submissions. It is interesting to see
that the overall performance for classification in data collected
from volunteer 1 is worse than for the data collected from
the other volunteers. This may be related to the fact that
volunteer 1 is female and the other volunteers in the unseen
data are all males. Furthermore, also the larger training dataset
is collected from a majority of male participants. This suggests
the importance of considering gender balance when planning
data collections on which data-driven approaches will be
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Table V
SUMMARY OF RADAR SIGNAL PRE-PROCESSING, INPUT FORMATS AND CLASSIFICATION TECHNIQUES FROM 12 VALIDATED SUBMISSIONS FOR THE FIRST

RADAR CHALLENGE. EACH COLUMN REFERS TO A DIFFERENT SUBMISSION WITH RELATED PUBLICATIONS REFERENCED IN THE TEXT*

Ref [27] [28] [29] [30] [31] [32] [33] [34] [35] [36] [37] [38]
Leaderboard
ranking 1 4 5 3 2 N/A 3 3 1 1 1 6

Raw radar
data FFT FFT FFT FFT FFT FFT FFT

WT
denoise
SOI
FFT

FFT FFT FFT
(Ham) FFT

RT

MTI1,
STFT
(95,
200,
4x,
rect)

MTI1,
ROI,
STFT
(95,
200,
4x,
Ham)

MTI1,
ROI,
STFT
(95,
200,
4x,
Ham)

MTI1,
ROI,
STFT
(95,
200,
4x,
Ham)

MTI1,
STFT
(95,
200,
4x,
rect)

MTI1,
STFT
(95,
200,
4x,
rect)

MTI1,
ROI,
STFT
(95,
200,
4x,
rect)

STFT
(97.6,
500,
4x,
Han)

MTI2,
adaptive
ROI,
STFT
(95,
200,
4x,
rect)

MTI2,
STFT
(95,
256,
4x,
rect)

MTI2,
ROI,
STFT
(50,
128,
4x,
Ham)

MTI2,
ROI,
STFT
(95,
200,
4x,
rect)

mD N/A N/A N/A N/A N/A N/A N/A N/A ROI ROI ROI N/A

RD Summing
CFAR Summing Summing Summing Summing Summing Summing Summing Summing OS

CFAR Summing Summing

Train 90% 90% 90% 90% 80% 97% 80% 80% 100% N/A 80% 95%
Valid 10% 10% 10% 10% 10% N/A 30% 10% N/A N/A 20% N/A
Test 10% 10% 10% 10% 10% 3% 20% 10% 100% N/A 20% 5%
Convergence
(epochs) 50 400 N/A N/A 4k N/A 50 60 N/A N/A N/A N/A

Method

Pointnet
phase
CNN,
deep
fusion,
voting
of 4
models

GRU

SVM
qua-
dratic
kernel,
Chi-
squared
feature

SVM/LR.
kernel,
feature

Mobile
net
v2,
TL

VGG19
0.7
pruning

Data
Aug.
by
varying
the
ROI,
VGG16

CNN with
deep
fusion

CNN with
leaky
ReLU,
weighted
average
of 6
models
fed
with 6
variations
data

Faster
RCNN

CNN+
LSTM

DTW+
3-NN

Data
domain

*RD(A):
CFAR,
Iso
surface
extr.
Point
cloud.
*mD(ϕ) :
Gray
scale.

*mD(A)
Gray
scale

*RT(A)
*mD(A)
*CVD(A)

*mD(A)
*CVD(A) *mD(A) *mD(A)

*mD(A):
resized
100x100

*RT(A)
mD(A):
Resized
128x128

*mD(A):
Resized
250x250

*mD(A):
crop
±6m/s,
resized
981x800
352x384
800x600

*RT(A):
resized
76x20
*mD (A):
resized
76x32

*mD(A):
175X60,
intensity
scaling
256
levels

1RT: range-time, RD: range-Doppler, mD: micro-Doppler signature, CVD: cadence-velocity diagram, A: amplitude, ϕ: phase, MTI1: 4th-order Butterworth
Infinite impulse response, MTI2: two-pulse canceller, STFT: short-time Fourier transform (overlapping factor in %, window size in ms, zero-padding factor,
window), CFAR: constant false alarm rate, OS-CFAR: order statistic CFAR, ROI: regions of interest, SOI: signals of interest, WT: wavelet transform, rect:

rectangular window, Ham: Hamming window, Han: Hanning window. GRU: gated Recurrent Units, DTW: dynamic time warping, 3-NN: K = 3 Nearest
Neighbour, LR: Linear regression.

* Note that the training/validation/test split for the different techniques presented may vary which may have some statistical influence on the results for the
training accuracy for the ’seen’ data, however it does not influence the inference for the ’unseen’ data set.

based. While, to the best of the authors’ knowledge, detailed
studies on gender-related differences in the radar signatures
of human activities do not exist in the open literature, several
studies hypothesized the fact that such differences occur and
can be perceived with modern radar sensors, as it is possible
for example with cameras [40]. Specifically, [41] is among the
first papers to claim that differences in movements of male and
female can be perceived by radar, whereas [42] presents some
evidence based on quantitative gait parameters extracted from
radar signatures of male and female volunteers.

B. Pre-processing

The participants came up with similar strategies for pre-
processing, with a classic processing chain to generate micro-

Doppler signatures. This followed range compression using a
Fast Fourier Transform (FFT) on the beat frequencies (i.e., raw
data straight from the ADC) to obtain the range profiles. Then
accumulating the range profiles over a time period to process
on every range bin a short-time Fourier transform (STFT) to
obtain a range-Doppler image that is then summed for every
Doppler bin to obtain a slice of the micro-Doppler image and
then repeated to obtain the full spectrograms. There were some
minor variations in this chain, as detailed in Table V.

Denoising
From the raw data, [34] used a wavelet transform ap-

proach to first denoise the signal before reconstructing it
using Daubechy’s db10 wavelet. This had the benefit of
both reducing the noise by retaining only the decompositions
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Figure 5. The leader table submission classification accuracy for unseen
validation data from each volunteer. On each box, the central mark indicates
the median, and the bottom and top edges of the box indicate the 25th and
75th percentiles, respectively. The whiskers extend to the most extreme data
points not considered outliers, and the outliers are plotted individually using
the ’+’ marker symbol.

containing the signals of interest and improving the micro-
Doppler signature as it presented fewer breaks compared to a
classic approach.

Range compression
All contributions used FFT to generate the range profiles;

only [37] used a Hamming window on the raw data to smooth
the range profiles at the cost of widening the range peaks.

Moving target indicator (MTI) approaches were used in all
submissions except [34]. MTI is used to remove stationary
clutter from the environment to improve the contrast between
static and moving targets. [27]–[33] used a 4th-order Butter-
worth high-pass filter with an Infinite Impulse Response (IIR)
with a cut-off at 0.075 Hz. IIR has a lower implementation
cost than FIR filters, and has low latency. However they have
non-linear phase characteristics and can create instabilities
due to the infinite impulse response. Knowing that the phase
information in recovering Doppler information is critical, the
non-linearity of this implementation can affect the quality of
the signatures. An alternative MTI implementation in [35]–
[38] is a 2-pulse canceller that subtracts the pulses in the time
domain and filters out static clutter. It creates a filter in Doppler
speeds for the clutter but also blind speeds at multiples of
the pulse repetition frequency (PRF) of the radar. Luckily for
this application, a human target indoors is not likely to attain
speeds in excess of 45km/h in the C-band. Even though the
Doppler of the foot can be 2-3 times that of the centroid
of a human for a brisk walk or run, the aliasing caused by
such speed is very unlikely to happen indoor, especially in the
context of assisted living where patients are older adults or
patients suffering from a condition such as chronic obstructive
pulmonary disease.

Region of Interest selection
Before moving to the range-Doppler domain, some sub-

missions [27]–[30], [33], [35], [37], [38] selected a region
of interest from the range-time domain to reduce the noise
in the following domain by only incorporating range bins
with sufficient energy present before applying the next pre-
processing step, namely, the STFT. [28]–[30], [33], [37], [38]
set the range bin interval to be used manually. This means

they looked into the database and empirically determined
the region of interest. Note [33] used multiple intervals to
create diversity for training. The others used adaptive methods
that are more pragmatic for real scenarios. [35] determines a
threshold based on the average energy in that range bin and
only keeping values active above that threshold. [27], [36]
use constant false alarm rate (CFAR) and order-statistic (OS)
CFAR, respectively, to determine whether a target is present
or not by testing the cells around the cell under test.

Spectrogram generation
The range-Doppler (rD) domain is now formed using FFT

with various parameters for the overlapping ranging from 50%
to 95%, the number of range profiles used to generate the
rD image ranging from 200 to 500 ms, different window-
ing functions (rectangular, Hamming, Hanning), and a zero-
padding factor of 4x for all contributions. The setting of these
parameters influences the classification results, as shown in
[43] and its optimization for an activity or a set of activities
is an important parameter. The second aspect to consider
is computational load: when an FFT operation is performed
with a number different from a power of 2, then 3 FFTs
are required to produce the DFT results, whereas if a power
of 2 is selected, then the FFT-radix2 algorithm can be used
directly, thus considerably reducing the computational load. A
smaller overlap to generate the rD domain will also reduce
the computational load with longer strides in the data. Even
if this will make the results harder to understand for humans,
machine learning algorithms can still make sense of it better.

From the rD domain, the range cells are added coherently
or incoherently for each Doppler bin to create one slice of
the micro-Doppler (mD) domain. This is repeated until a mD
signature is obtained. [35] and [38] were the only teams who
determined ROIs from the mD domain. [35] aimed to remove
the noise from mD signature by adjusting the dynamic range
of the amplitudes to -40dB to 0dB, as the noise did not offer
salient information for classification. [37] and [36] only kept
a limited range of Doppler bins around the zero-frequency for
classification. This was done by essentially cropping the sig-
natures with a lower and upper limit containing the signatures
to help improve classification accuracy and allow the machine
learning algorithm to only learn from content-rich data.

Radar data domain for classification
It is worth noting that all contributions used the mD

signature for classification. The majority used the amplitude
only, which means they can sum the amplitudes incoherently
to recover the amplitude for the mD signature. However, [27]
used the phase information of the mD signature. The RT
domain amplitude is used in [29], [34], [37] for classification
leveraging the range information for classification, as it may
help to distinguish from mD signatures that are similar but
would have a larger range spread, for example. [29] and [30]
utilize the Cadence Velocity Diagram which is obtained by
applying an FFT on the mD signatures to determine if there
are frequencies repeating themselves across the Doppler bins.
This would indicate periodicity in a motion, such as walking
that is cyclic, as opposed to a fall that is an aperiodic motion.
Finally, [27] used an rD surface. First, a CFAR algorithm was
used to set a threshold to extract the surface in 2D, and then
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they were collated together into a 3D surface for classification,
yielding a range-Doppler time iso-surface.

C. Neural Network Architectures

The popular backbone networks used in this challenge were
VGG [22], AlexNet [23], and mobileNet [24]. VGGNet in-
creased the number of layers to 16 or 19 layers compared with
the conventional 8 layers depth in AlexNet. Another typical
deep learning network is mobileNet, a deep learning network
architecture with around 50 layers. Apart from the higher num-
ber of layers providing more depth in this network, mobileNet
also uses a recurrent neural network (RNN) structure. Three
of the six activities can be recognized almost at 100% when
adopting mobileNet [31], namely fall, walking, and standing
up. The human activities of standing up and sitting down
can also be recognized very accurately and quickly. However,
the “pick up an object” and “drink water” activities are very
difficult to distinguish, with confusion occurring between them
for the majority of the submissions, with the exception of [35]
that got 100% on all activities and [31] that confused sitting
down with picking up an object.

Furthermore, the RNNs used in this challenge were Long
Short Term Memory (LSTM) and Gated Recurrent Unit (GRU)
[28]. This team reported an average accuracy of 94.3% when
using the gated recurrent unit, and 93.9% for the LSTM
network. They also reported a difficulty in distinguishing the
activities of ”picking up an object from the ground” and
”drinking water from a glass” as well. An advantage of using
LSTM or GRU networks is that they can use an arbitrary
length of the sample in time for the inference, as opposed
to vision-based networks that require resizing the samples
to tiles of a specific size, e.g., 128x128 for a ’home-brew’
CNN network. This particular feature can be used for data
augmentation as this means that samples can be truncated
to random sizes as long as they are not under 0.5 s as the
performances decrease in that case. This method yielded the
best performances reported in that submission.

The techniques of data augmentation have shown notable
performance improvements, which can be found in [33]. The
authors reported that the use of data augmentation methods
achieved 99% test accuracy during training and produced a
good generalization of the model. They analyzed the effects of
two data augmentation methods: selecting range bins before
STFT; and varying the amplitude range of the spectrogram
display after STFT before being converted to images. Their
results had demonstrated that data augmentation with range
bins before STFT was more efficient in identifying human
motion activities compared with data augmentation using
spectrogram amplitude variations. [37] used random cropping
and scaling for data augmentation, which would work in the
context of radar given that the cropping does not clip the
signature and that scaling is kept within physical realms.
However, rotations and shearing, as can be found in some
vision-based techniques for images [44] are not suitable for
radar classifications, as a 20° rotation on a signature is not
going to happen in a real system and shearing will create
a skewness in the data distribution that would not happen

either in real-systems. However, adding noise is a good way
of augmenting data. This will create random variations that
will reflect the signal-to-noise ratio (SNR) of the system that
can happen from a lower quality receiver with a higher noise
figure, as well as for a further target away from the receiver,
or maybe occluded behind an obstacle.

[38] is also worthy of notice, as this team implemented a
dynamic time warping (DTW) technique. The DTW algorithm
was originally used to match sequence data that are of different
lengths. In essence, this corresponds to comparing samples
that might be scaled in time to one another and estimating a
distance to other samples present in the database to determine
which class it belongs to. The disadvantage is that it requires
more operations as the size of the dataset increases.

The number of parameters indicates the complexity of
neural network architectures. It is interesting to see that
the network’s performance was not linearly correlated with
the number of parameters. Table VI lists the number of
parameters reported in the main paper submissions. All these
networks achieved an average classification accuracy greater
than 89%. In [32], the authors demonstrated the VGG19
network could achieve higher performances with pruning
(0.7) gaining 1% over the full VGG19 network for less than
one-tenth of the size. Pruning allows reducing the number of
hyperparameters from 20M down to 1.8M in this case.

Table VI
NETWORK PARAMETER NUMBERS FOR TYPICAL NEURAL NETWORK

ARCHITECTURES

Network
Architecture hyperparameters (M)1 average accuracy

VGG-19 [32] 20.02 93%
MobileNetV2 [31] 4 (estimated) 95.43%

CNN (5 layers) [56] 1.72 89%
VGG-19 pruning 0.7 [32] 1.8 94%

Double CNNs [37] 0.0856 94.8%
1M: Million

D. Notable Ensemble Methods
It is worthy to note that ensemble methods are the most

popular methods among the top-ranked teams in the challenge.
The team from Centrale-Supelec [34] reported an ensem-
ble method for neural-network-based supervised learning, as
shown in Table VII. In this method, the range-time and the
spectrogram convolutional networks were identical and formed
branches for a later deep feature fusion. The last convolutional
network layers were global average pooling layers. Prior to
this layer, the inner representations are tiles stacked in 8 x 8
x 64. Two reasons justify the use of global average pooling:
1) feature reduction for the following fully connected layer
and 2) improve generalization by generating more invariant
features. During training, the validation accuracy reached up
to 96.6%.

A second ensemble method was proposed, where the ar-
chitecture used a CNN to capture features from range-time
domain and Doppler-time domain inputs [37]. Those automat-
ically captured features were used to train an LSTM network
(as shown in Fig. 6).
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Figure 6. The architecture of a combined approach of LSTM with 2 CNNs adapted from [37]

Table VII
AN EXAMPLE OF AN ENSEMBLE METHOD USED FOR HUMAN ACTIVITIES

Range time (128 x 128) Spectrogram (128 x 128)
*Conv Kernel *Conv Kernel
BatchNorm X 5 BatchNorm X 5
GlobalAvg,Dropout(0.5) GlobalAvg, Dropout(0.5)

Fully Connected (128), RelU
Dropout(0.5)

Fully connected (6), Softmax
*Conv Kernel included two convolution layers and a max pool layer

The third notable ensemble model was based on six CNNs
[35]. By initializing the parameters of these models and
setting the number of training iterations, the authors used
six trained CNNs that correspond to the six variations of
the pre-processing. A weighted voting step was then used to
produce the prediction score for unseen data. Thanks to this
weighted voting system, this team was the first to report 100%
predictions in the unseen evaluation leader table.

V. DISCUSSION AND PERSPECTIVES

In this paper, the results from the inaugural challenge of
radar-based human classification organized as part of the IET
International Radar Conference 2020 were presented. The
paper discussed the proposed top-performing classification
models across the leader board submissions and their key
results on the common database used for benchmarking.

A. Insight into the training dataset
Most of the teams used micro-Doppler spectrograms for

classification, a data domain for which the six activities

in the dataset could generally be distinguished clearly. For
example, “sitting down” produced negative Doppler, “standing
up” positive Doppler, and “drinking water” ’almost random’
Doppler as the arm movement to grab the glass was not tied
to a specific direction. Leveraging these differences from the
predefined directions at which the activities were recorded,
even simple classifiers (e.g., a 5-layer CNN) could achieve an
average of over 90% in classification accuracy. However, the
two activities, “pick up an object” and “drink water,” were
the hardest to classify for most teams and proposed methods.
Besides the varying direction of the arm movement for the
”drinking” activity, one should also notice that these two are
not single actions but more interaction activities consisting of
several actions in sequences. For example, ”drinking” included
stretching the arm, grabbing the glass, flexing the arm back,
and in many cases stretching the arm again to put back the
glass after one or more sips of water. ”Bending” meant moving
the upper body forward towards the radar (similar to some
extent to standing up) and then moving back up with the object
in the hands (similar to moving back when sitting and also to
bringing the glass to the mouth for drinking).

In other words, activities labeled as separated classes may
present kinematic similarities between each other, resulting
in less distinguishable radar signatures. Furthermore, in some
cases, especially for some of the older participants, the extent
of the bending of the body and stretching of the arm for
drinking was accordingly limited to reduce their physical ef-
fort. This created intra-class differences between signatures of
activities having the same label, hence an additional challenge
for automatic classification. This highlights the fact that algo-
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rithms need to be trained on the intended target population, as
20-30 year volunteers working in labs do not perform activities
in the same way as 70+ years old adults. A potential solution
could also be to decompose such actions into atomic elements
that constitute a more complex activity, thus developing a
semantic representation of atomic actions that then form more
complex ones from their combination.

B. Prospective classification methods

Recent achievements of CNN-based models on image clas-
sification tasks have encouraged scholars to modify such
models for many other tasks. This includes radar-based clas-
sification tasks, as also extensively seen in the analysis of
the methods proposed for this challenge. In the convolutional
neural network, as sigmoid is easily leading to the exploding
gradient problem, more than half of the teams chose to use
the ReLU in CNN-based architectures [33]. Since ReLU has
“black spots” of negative hyper-dimensional planes, which
sometimes become inactive for all inputs, one team chose
LeakyRelU instead [36]. As the number of layers of the neural
network deepens, the stochastic gradient cannot propagate
down into deeper layers; for this issue, a “highway” system,
such as ResNet, was chosen by the team in [30]. Another
way of avoiding exploding stochastic gradients is to add batch
normalization [33]. However, in recurrent neural networks,
adding batch normalization is not stable, so the solution is to
add dropout or gate control to/from LSTM and the simplified
LSTM (i.e. the GRU). With the latest success of generative
adversarial neural networks (GANs), we hope to see some
applications of using GANs to improve the unbalanced data
classification for some activities [58]. GANs use adversarial
methods to train generator networks for synthetic data. Some
very interesting literature using physics-aware GAN is emerg-
ing for increased fidelity radar signatures [45].

According to the analysis in this paper, of all CNN-based
models that have been reported, the most successful results
in the challenge leader board were based on an ensemble
method. Ensemble learning aims to build a prediction model
by combining the strengths of a collection of simpler weaker
learners. Ensemble learning can be broken down into two
tasks: developing a population of base learners from the
training data and then combining them to form the composite
predictor. In the previous section’s analysis, We observed
several examples falling into this paradigm. For example,
the ensemble of six trained networks for six activities cast
one vote each for the classification [36]. Any dictionary
method using weak learner basis functions could be considered
an ensemble method. These methods could be Bayesian,
regression splines, or non-parametric methods. The general
idea is to combine/average the outputs of different classifiers
to boost the prediction performances. In the future, we hope to
see automated optimizers that conduct a multi-variate search
within weak classifiers and the voting structure for ensemble
methods that will maximize performances in accuracy and the
other key indicators for the application constraints.

C. Future work

Compared to statistical based machine learning methods,
one of the most challenging problems in the current applica-
tions using artificial neural networks is the non-deterministic
nature of the non-linear regularization used in activation layers,
.

Compared with linear counterparts, artificial neural net-
works must deal with the existence of multiple local minima
on the error function surface (i.e., multiple solutions). Linear
regression models present one global minimum. However, AI
algorithms may find a multitude of local minima that may
be satisfactory from the cost function perspective. However,
the generalization of those models depending on the selected
local minimum will vary widely and need to be evaluated
individually. This is why cross-validation is important to
ascertain the average behavior of proposed AI models.. This
creates a generalization problem for human activities clas-
sifications. Each human subject has different body shapes
and individual walking gait, which is especially evident with
multiple activities to be classified simultaneously.

Designing neural networks where all parameters such as ini-
tialization weights, network architecture, batch size, and many
more are properly set to ensure robustness and generalization
for radar-based automatic human activities classification re-
mains an open challenge.

Feature extraction from radar data can leverage the in-
creasing dimensionality of radar signals (e.g., higher range
resolution), frontends with multiple input and multiple out-
put capabilities, increasing angular and spatial diversity, and
on the various data representations ranging from raw IQ
data directly sampled by the radar directly to range-time,
range-Doppler, range-azimuth, angle-of-arrival, spectrograms,
cadence velocity diagrams, cepstrograms, phase plots [46],
[47], cyclostationarity signatures [48], radon transform sig-
natures [49], and other composite views e.g., range-Doppler
surfaces [30]. Thus, open research questions remain as to what
format or combination of formats are most suitable for the
classification process, perhaps exploiting forms of cognition
that modify accordingly such processes depending on the
specific activities to be classified. To enable better feature
extraction, the importance of the role of pre-processing should
not be ignored for the final classification accuracy. We saw
in [34] that de-noising of the raw radar data improved the
overall performance. We also saw different parameters for
the STFT (window size, overlap, window selection) from
the different submissions, suggesting that optimization can be
found in those parameters or exploring other time-frequency
transforms. We also note that participants usually tried in
one way or another to identify regions of interest either
from observation or using adaptive methods to improve the
accuracy of classification. The focus of future research should
be on methods to render pre-processing adaptive to be more
robust to variations in signal-to-noise ratio and signal intensity.
An example of the range of possibilities when extracting
features from multiple radar data domains is increasing from
the increase in dimensions and the range of features that can
be defined. The classification accuracy using range-Doppler-
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time representations into a volume before extracting features
in [27] exhibited a faster convergence, leading to a shorter
time training the network. This can enable the deployment of
deep learning classifiers onto resource-constrained platforms.
The effect of the precision of the representation for signal
processing and classification (full/half-precision floating point,
fixed precision) and the reduction of the general footprint
(hardware resources, energy) are still open challenges for real-
time implementation with works emerging in this area [50]–
[52].

To ensure consistency in the inferences of the network and
their measures, the proposed machine learning algorithms must
be stress-tested under different conditions. Various strategies
are proposed in [57] to get the best out of neural networks and
determine the source of underperformance. Recently, different
strategies such as training with a dynamic gradient, using the
Levenberg-Marquardt training function, cross-validation, and
hold out are evaluated on the same datasets to understand
the effect of initialization and the architecture on the key
performance indicators. Our challenge proposed a two-stage
cross-validation method, which is a step forward to benchmark
models in terms of generalization. Further benchmarks for
evaluation training kernels will be needed in future work
using the classification algorithms across different datasets
e.g., [21], [53], [54]. Furthermore, this will provide the basis
for reproducible state-of-art baselines for radar-based human
activity classification challenges.

VI. CONCLUSION

We organized the ’Human Activity Radar Challenge’, a
classification challenge for radar-based human activities where
raw radar data (i.e., without any pre-processing) were provided
to participants as input to further processing in view of the ap-
plication of machine learning for classification. This Challenge
was open in 2020 and affiliated with the IET International
Radar Conference of the same year, later postponed to 2021
and then canceled because of the COVID-19 pandemic.

In this paper, we presented a summary of the main methods
proposed in the Challenge, including the task, data, perfor-
mance metric, results, and performance analyses. The primary
objectives were to systematically measure the recent progress
in human activities classification in radar, particularly in the
machine learning classification domain, and stimulate new
ideas and collaborations. This paper’s results and analyses
indicate great progress in human activities classification in
radar data, with the performance for walking as accurate
as 100% for the leading methods. This opens the way for
further gait analysis to extract parameters for timed-up and
go test and balance tests that rely on gait features and speed
[55]. Nevertheless, the performance gap in certain activities
remains relatively large, at least for motion-based activities.
This motivates further research towards developing a more
robust technology that can maintain performance across a wide
range of activities, also leveraging on the increasingly available
public datasets [59] such as [60]–[69].

Future benchmark challenges should consider more com-
prehensive metrics to define a figure of merit to better gauge

the performances of various software especially in terms of
deployment and footprint considerations. The metrics that
should be considered in the future are convergence, train-
ing time, inference time, number of hyperparameters, pre-
processing and classification (Giga Operations / second), Ac-
curacy, Sensitivity, Precision and F1 score. This would en-
compass both the machine learning performance and the pre-
processing required to format the data prior to classification for
resource-constrained embedded platforms. Furthermore, the
teams will need to adhere to prescribed data splits for machine
learning and cross-validation to ensure that the comparisons
are statistically equivalent for the ’seen’ dataset addressing
one of the shortcomings of this challenge. Authors will be
asked to submit their algorithms as well to run the training
time and inference time on the same platform to have fairer
performances comparison using the same implementation for
an improved benchmarking.
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