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Pitkow [1] raises several points about our “Degrees of equivalence between the brain and its 
DNN models” Opinion Article [2]. Here, we clarify our position before delving into the elusive 
argument of the “suitably rich” stimulus ensemble that Pitkow suggests as an alternative to 
our 2nd degree of algorithmic equivalence (see also section Is the 2nd degree really 
necessary? in our Opinion Article [2]). 
 
Remember that we seek to explain the inaccessible algorithms of the brain using the more 
accessible DNN models. At their 1st degree of equivalence, we follow current practice, ask 
whether DNN models can predict responses, and compare Stimulus-Response relationships 

⟨S, R⟩ across systems, necessarily using a finite sample of stimuli S–effectively only very 

few when imaging the brain. 
 
Pitkow’s argument refers to the practical problem of selecting this finite S. To do so, he 
wisely recommends that we should not “[lose] sight of fundamental challenge for intelligence: 
generalization to new things.” And, most importantly, that the utility of S is defined by its 
diversity and relevance to the tuning of the system. For example, a set of 2D images of trees 
would likely have low utility to test a system tuned to categorize the 3D shapes of noses in 
faces. 
 
Though we can only agree with such general recommendations (see Box 1), how will we 
resolve the practical problem? That is, how can we select S with the desired utility? Our 
solution samples a generative model of the stimulus, whose features (F) are formal 
hypotheses about the tuning of the brain. At the 2nd degree of algorithmic equivalence, we 
can then effectively test whether the brain and DNNs produce the same R to these same 
generated S, because, within the limits of what the generative model can decorrelate, both 
process the same categorization features F–in the example, the F that generate differently 

shaped 3D noses in faces. That is, we test ⟨S, R⟩F equivalence. 

 

Importantly, the 2nd degree ⟨S, R⟩F is relative to the hypothesized F that the stimulus model 

can control and decorrelate. Thus, we should test the 2nd degree using different, explicit 
stimulus models (i.e. different hypotheses on F), just as we test the 1st degree using different 

DNN models of the ⟨S, R⟩ relationship. The key advantage of sampling from stimulus models 

over sampling from 2D images of databases is that the utility of S (cf. its diversity and 
relevance to the tuning of the system) becomes an optimizable cost function that depends 

on the hypothesized F, rather than solely on the amount of naturalistic images, as Pitkow 

suggests. 
 
To illustrate the pivotal role of the 2nd degree, we used the counterexample of an 
impoverished stimulus sample S, where the eyes and mouths of faces are correlated, 
leading to identical “face” responses across systems that process either the eyes or the 
mouths. Pitkow suggests increasing the utility of S with stimuli that decorrelate eyes and 
mouths. This suggestion is indeed at the centre of the hypothesis-testing epistemology of 
our pivotal 2nd degree, where F-hypotheses (here, the brain is tuned to eyes and mouths) 
are required to quantify the “suitable richness” of S, and are, in fact, the first step to formalize 
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generative models of the stimulus. This formalization then enables systematic testing of the 

psychophysical generalization gradients of systems along the generative F–e.g., controlled changes 

of only 3D generative F of shape, illumination, orientation, shapes of eyes, noses and mouths, etc., 

and their interactions (see section Generalization Gradients of our Opinion Article [2]). In 

contrast, blind sampling of uncharacterized naturalistic images might never deliver a “suitably 

rich” S [3–5]. 
 
In sum, Pitkow’s “suitably rich” S remains an elusive (and experimentally impractical in 
neuroimaging) black-box compared to the S gathered from sampling formal generative 
models of 3D stimuli–where different models with different generative F can also compete to 

account for the 2nd degree ⟨S, R⟩F. Psychophysics modelled the generative process of 

simple luminance contrasts with sinewave gratings a long time ago. Neuroimaging of visual 
cognition and its DNN modelling should embrace this approach with timely generative 
models of complex 3D faces, bodies, objects and scenes (see [6] for the same argument 
coming from DNN modelling). These are now within grasp [7,8]. 
 
To complete the argument, when the brain and DNN models are equated at the 2nd degree 

of equivalent categorization features (i.e. satisfy the ⟨S, R⟩F relationship), it becomes 

meaningful to compare across systems the algorithmic computations that process these 
same features at the 3rd degree of equivalence. 
 
Box 1 
Are naturalistic stimuli more important than synthetic stimuli?  
We agree with Pitkow that the “tuning relevance” and “richness” of S affect the conclusions that 

can be drawn from an experiment using S. We also agree that covering a “wide range of 

naturalistic stimuli” is an interesting starting point to explore the ⟨S, R⟩ relationship, to allow for a 

distribution of responses related to the distribution stimuli [9]. However, Pitkow’s conclusion, 

that sampling naturalistic stimuli is “more important,” reflects the fallacy at the core of adversarial 

examples [10], which occur in locations in stimulus space that were not part of the naturalistic 

training set. Counterintuitive DNN predictions to adversarial examples reveal counterintuitive 

algorithmic differences between humans and DNN models, that remain hidden when we only test 

with naturalistic stimuli. Underappreciating such non-naturalistic locations in stimulus space can 

therefore overestimate the generalization capabilities of a DNN model (cf. the “complete 

functional description” [11]). Taken together, exploratory approaches relying on naturalistic 

stimuli and testing the specific hypotheses of generative stimulus features are both useful for their 

respective purposes [12]. Thus, we disagree that one is in principle “more important” than the 

other. We however also believe that vision sciences have matured enough for the testing of 

specific hypotheses. 
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