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ABSTRACT The oral microbiota is essential to the health of the host, yet little is known
about how it responds to disturbances. We examined the oropharyngeal microbiota of 30
individuals over 40 weeks. As the oropharynx is an important gateway to pathogens, and as
smoking is associated with increased incidence and severity of respiratory infections, we com-
pared the microbiota of smokers and nonsmokers to shed light on its potential for facilitating
infections. We hypothesized that decreased species diversity, decreased community stability,
or increased differences in community structure could facilitate invading pathogens. We
found that smoking is associated with reduced alpha diversity, greater differences in commu-
nity structure, and increased environmental filtering. The effects of short-term perturbations
(antibiotic use and participants exhibiting cold symptoms) were also investigated. Antibiotic
use had a negative effect on alpha diversity, irrespective of smoking status, and both antibi-
otic use and cold symptoms were associated with highly unique bacterial communities. A sta-
bility analysis of models built from the data indicated that there were no differences in local
or global stability in the microbial communities of smokers, compared to nonsmokers, and
that their microbiota are equally resistant to species invasions. Results from these models sug-
gest that smoker microbiota are perturbed but characterized by alternative stable states that
are as stable and invasion-resistant as are the microbiota of nonsmokers. Smoking is unlikely
to increase the risk of infectious disease through the altered composition and ecological func-
tion of the microbiota; this is more likely due to the effects of smoking on the local and sys-
temic immune system.

IMPORTANCE Smoking is associated with an increased risk of respiratory infections.
Hypothetically, the altered community diversity of smokers’ pharyngeal microbiota, together
with changes in their ecological stability properties, could facilitate their invasion by patho-
gens. To address this question, we analyzed longitudinal microbiota data of baseline healthy
individuals who were either smokers or nonsmokers. While the results indicate reduced bio-
diversity and increased species turnover in the smokers’ pharyngeal microbiota, their eco-
logical stability properties were not different from those of the microbiota of nonsmokers,
implying, in ecological terms, that the smokers’ microbial communities are not less resistant
to invasions. Therefore, the study suggests that the increased propensity of respiratory infec-
tions that is seen in smokers is more likely associated with changes in the local and sys-
temic immune system than with ecological changes in the microbial communities.

KEYWORDS microbiota, smoking, community stability, perturbation, invasion, cold,
antibiotics, microbiome, oropharynx, stability

The oral microbiota comprises a large number of species that are found in high den-
sities, occurring in several distinct habitats, including the teeth, tongue, buccal mucosa,

and oropharynx (1). It is well-established that a stable microbiota contributes to a healthy
status for the host (2). Correspondingly, changes in community composition and abun-
dance within these microbial communities are associated with the pathogenesis of several
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diseases (3). These changes can be further linked with environmental stimuli that affect col-
onization and growth, specifically, press perturbations that stay in place for a long time
and pulse perturbations that tend to be of short duration (4).

Smoking is an example of a press perturbation that has been shown to change the oral
microbial community and promote pathogenetic species (5–8). Indeed, a major health out-
come of smoking is the increased propensity for infections (9). There are three possible
pathways of how smoking-related changes in the oropharyngeal microbiota could be asso-
ciated with infection risk: changes in microbiota merely reflect a changed immune response
in smokers, microbiota play an active role in deferring or facilitating invasions of pathogens,
or both of these processes are involved. It is well-established that the harmful components
in smoke mediate the host immune response, affecting, in particular, humoral and cell-
mediated responses, which consequently affects the microbial community composition
(10–13). Moreover, smoking has also been shown to affect many cellular processes, includ-
ing neutrophil chemotaxis, adherence, phagocytosis, and function (14–17). It has been
hypothesized that the main cause of the increased infection risk is associated with a com-
promised anti-bacterial function of leukocytes, including neutrophils, monocytes, T cells,
and B cells (18), as well as pathogen enrichment (8, 19). In addition, the toxic substances
contained in cigarette smoke, as well as oxygen deprivation, have been hypothesized to
contribute to the altered microbiota in smokers (6, 20). Observational and interventional
studies have found that the composition of the intestinal microbiota is also altered in smok-
ers, with some taxa occurring in higher abundances (e.g., Parvimonas, Fusobacterium,
Campylobacter, Bacteroides, and Treponema), while others have been shown to decrease in
abundance (e.g., Veillonella, Neisseria, and Streptococcus) (7, 8, 20). However, there are also
indications that the increased infection risk in smokers could be more directly linked to the
changes in the oropharyngeal microbiota, as the changed community might be more prone
to invasions by pathogens (9, 21, 22). It remains to be determined how smoking affects the
stability and invasibility of these communities in ecological terms.

In addition to the potential effects of long-term perturbations, such as smoking, short-
term perturbations can affect the oral microbiota. Examples of pulse perturbations in
microbiota include short-term antibiotic use or the common cold. Much of the work inves-
tigating the impact of antibiotics on microbial communities has been conducted in the
gut, with findings relating to the oral microbiota remaining ambiguous (23, 24). Those fo-
cusing on the oral microbiota showed that antibiotics can cause shifts in the microbial
community composition and reduce microbial diversity (25, 26). These effects are short-
lived, which the authors suggested may be associated with a greater resilience of oral,
compared to gut, communities (24, 27).

Viral infections, such as the common cold, are gaining interest in the microbiota litera-
ture (28–30), but few studies have investigated their impact on the human oropharyngeal
microbiota (31). Evidence suggests that infection with Rhinovirus, one of the viruses that is
responsible for the common cold, also results in increases in Neisseria and Haemophilus in
the nasopharynx, which possibly leads to secondary bacterial infections (32).

While evidence supports the individual impacts of these perturbations on the oral
microbiota, the purpose of the present investigation is to examine the combined effects of
smoking, antibiotic use, and the acquisition of a common cold on the microbial commu-
nity in terms of community composition, alpha diversity, beta diversity, and environmental
filtering (i.e., abiotic factors preventing species from persisting in a location) (33). Going
beyond those traditional measures, we also investigated stability (local and global stability)
and invasibility in smokers and nonsmokers, providing us with a deeper understanding of
the microbial community dynamics that are associated with pulse and press perturbations.

The relationship between diversity and ecological stability has been a long-standing
question in ecology (34–36). Some studies suggest that more diverse and complex
communities tend to be more stable and are thus generally more resistant to perturba-
tions (37). Species removals or additions (e.g., through invasions), can result in major
shifts in community structure and dynamics, which can thereby result in changes in
community stability and function. In the context of the microbiota, this stability is
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critical for the well-being of the host, as it ensures that beneficial taxa persist over long
periods, providing vital ecosystem functions (38–41).

Here, we test four specific perturbation-related hypotheses. We hypothesize that (i) smok-
ing is equivalent to an ecological perturbation that is likely to decrease alpha diversity and
cause greater differences in community structure and filtering; (ii) the community composi-
tion of the smoker microbiota will be different from that of nonsmokers; (iii) thereby, micro-
bial communities in smokers will be less stable (locally and/or globally); (iv) meaning that the
microbial communities in smokers will be more invasible, compared to those of nonsmokers.

RESULTS

The microbial communities were comprised of 9 phyla, 202 genera, and 1,438 assignments
at the operational taxonomic unit (OTU) level. At the phylum level, 99.7% of reads were taxo-
nomically classified, with the remaining 0.3% belonging to unknown or unclassified bacteria.
Firmicutes, Bacteroidetes, and Proteobacteria dominated both the smoker and nonsmoker
communities.

The relative abundances of the 25 most abundant genera were similar between time
points for each participant, and they were broadly comparable across participants, irrespec-
tive of smoking status (Fig. 1). The three most dominant genera in healthy smokers and
nonsmokers were Streptococcus (mean: 0.470, SD: 0.011), Prevotella (mean: 0.094, SD: 0.004),
and Veillonella (mean: 0.058, SD: 0.002).

The most abundant OTUs in healthy smokers belonged to Streptococcus species, reflect-
ing the general abundance of Firmicutes. These included Streptococcus mitis, Streptococcus
salivarius, and Streptococcus parasanguinis, which were also the most dominant OTUs in the
healthy samples from nonsmoking participants. Further details on the microbial composition
of nonsmokers can be found in our previous publication (42). For plots showing the tempo-
ral changes in the community composition for all participants over the course of the study
period at the phylum, family, and OTU levels, refer to Fig. S2, Fig. S3, and Fig. S4, respectively.

Alpha diversity was significantly higher in healthy nonsmokers, compared to healthy
smokers (Fig. 2). Alpha diversity was significantly lower in nonsmokers exhibiting cold

FIG 1 Relative abundance (%) of the 25 dominant genera for smokers and nonsmokers for each week over the sampling period.
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symptoms, compared to healthy nonsmokers. However, there were no differences in alpha
diversity between healthy smokers and smokers experiencing cold symptoms, suggesting
that cold had little or no effect on alpha diversity in smokers. Antibiotic use resulted in a
decreased diversity in nonsmokers and smokers (with the exception of Simpson’s index),
but the use of antibiotics resulted in a greater similarity in alpha diversity measures
between smokers and nonsmokers.

A beta dispersion analysis suggested that data homogeneity differed significantly with
all factors (smoking status: smoker/nonsmoker, sex, age, and participant), with individual
participants of the study being the single most important factor explaining the data vari-
ability for Bray Curtis (R2: 0.131%), unifrac (R2: 0.159), and weighted unifrac (R2: 0.132%,), and
this was followed by health status (R2 between 0.054 and 0.065 for Bray-Curtis, unifrac, and
weighted unifrac), whereas all of the other factors contributed significantly less (Table 1).

The local contribution to beta diversity (LCBD) is a measure providing insight into the
ecological uniqueness (i.e., unusual species combinations) of a sample. Based on the abun-
dance count (Bray Curtis) (Fig. 3), it was evident that nonsmokers with cold symptoms had
significantly higher degrees of ecological uniqueness, compared to smokers and smokers
with colds. When considering phylogenetic distances only (unifrac) (Fig. 3), nonsmokers on
antibiotic treatments had particularly high LCBD values, which are indicative of relatively
high degrees of ecological uniqueness. Using both abundances and phylogenetic distan-
ces, this pattern disappeared (weighted unifrac) (Fig. 3), but nonsmokers experiencing cold
symptoms generally showed the greatest variability in LCBD.

We subsequently used a subset analysis (BVSTEP routine) to determine which OTUs were
responsible for the changes in beta diversity, comparing samples between smokers and non-
smokers in three groups: healthy participants, participants exhibiting cold symptoms, and
participants on antibiotics. To do so, we collapsed the abundance table to the minimum set

FIG 2 Three alpha diversity measures: species (OTU) richness, Shannon diversity, and Simpson diversity, calculated based on the oropharyngeal microbiota
of smokers and nonsmokers when healthy, expressing cold symptoms, or taking antibiotics. The lines connect two categories if the values are significant
per an ANOVA, with one within subject factor accounting for the participant IDs.
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of OTUs explaining differences in community composition between groups. This resulted in
a reduced-order abundance table that correlated highly with the full OTU table (Supporting
information Table S2; Fig. S1). There were 24 OTUs associated with differences in community
composition between healthy smokers and nonsmokers, 15 OTUs associated with non-
smokers and smokers experiencing cold symptoms, and 17 OTUs driving differences in non-
smokers and smokers on antibiotics. These three groups shared seven OTUs belonging to
different genera. For further information on the relationships between features, the microbial
communities (based on abundance tables), and the sources of variation (age, years smoking,
and cigarettes smoked/week), refer to Fig. S6.

A heat tree analysis revealed OTUs in significantly different abundances across all sam-
ples, based on smokers, nonsmokers, smokers and nonsmokers expressing common cold

FIG 3 Beta diversity measures using Bray-Curtis (counts), unweighted unifrac (phylogenetic distance), and weighted unifrac (phylogenetic distance
weighted by abundance counts) of the oropharyngeal microbiota of nonsmokers and smokers when healthy, expressing common cold symptoms, or
taking antibiotics. Note the difference in scale. Means are given as horizontal gray lines. The lines connect two categories if the values are significant per
an ANOVA, with one within subject factor accounting for the participant IDs.

TABLE 1 Statistics for beta dispersion comparison, based on Bray-Curtis, unifrac, and
weighted unifrac, based on a PERMANOVA analysis

Measure Factor
Degrees of
freedom

Sum of
squares

Mean
square F R2 Pr(>F)

Bray-Curtis Health status 5 7.98 1.60 6.09 0.054 0.001
Sex 1 0.82 0.82 3.11 0.006 0.002
Age 1 1.57 1.57 5.96 0.011 0.001
Participant 28 19.32 0.69 2.63 0.131 0.001
Residuals 447 117.28 0.26 0.80
Total 482 146.96 1.00

Unifrac Health status 5 2.99 0.60 7.75 0.065 0.001
Sex 1 0.35 0.35 4.49 0.008 0.001
Age 1 0.89 0.89 11.52 0.019 0.001
Participant 28 7.35 0.26 3.40 0.159 0.001
Residuals 447 34.53 0.08 0.75
Total 482 46.11 1.00

Weighted unifrac Health status 5 0.81 0.16 6.40 0.055 0.001
Sex 1 0.09 0.09 3.57 0.006 0.006
Age 1 0.47 0.47 18.76 0.033 0.001
Participant 28 1.91 0.07 2.71 0.132 0.001
Residuals 447 11.24 0.03 0.77
Total 482 14.52 1.00
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symptoms, and smokers and nonsmokers on antibiotics (Fig. 4) (refer to a high resolution
rendering in Fig. S5). A heat tree analysis of healthy smokers and healthy nonsmokers
showed greater a relative abundance of Fusobacteriaceaes, Neisseriales, and Spirochaetidea
in nonsmokers and a greater abundance of Actinobacteria in smokers.

Healthy nonsmokers had a greater abundance of Bacteroidales and Fusobacteria, com-
pared to nonsmokers with colds. Moreover, healthy nonsmokers showed a greater abun-
dance of Spirochaetidae and Porphyromonadacea, compared to nonsmokers on antibiot-
ics. Interestingly, there were no differences in abundance between nonsmokers with colds
and nonsmokers on antibiotics. Healthy smokers and smokers with cold symptoms showed
no differences in microbial community abundance, whereas smokers on antibiotics had
greater abundance of Klebsiella and Enterobacter but lower Porphyromonas, compared to
healthy smokers.

Next, we explored whether the microbial assemblage composition was driven by the
host environment or by competition via the use of the nearest-relative-index (NRI) and the
nearest-taxon-index (NTI). Values greater than 2 indicate strong phylogenetic clustering
(driven by environmental filtering), whereas those less than 2 indicate phylogenetic over-
dispersion (indicating the role of ecological interactions, rather than the environment, in
shaping the communities). Our analysis suggested that environmental filtering (rather than
competition) was the process driving community composition in the oropharynx (Fig. 5).
Moreover, for NTI, environmental filtering was greater in smokers than in nonsmokers. It is
worth considering that NRI reflects phylogenetic clustering in a broad sense (considering
the whole phylogenetic tree), with the negative values representing an evenly spread com-
munity. Non-smokers on antibiotics had the greatest NRI values, suggestive of the highest
degree of environmental filtering, when considering the phylogenetic tree as a whole. NTI
focuses on the tips of the tree, with positive values indicating that species co-occur with

FIG 4 Heat tree matrix comparing the OTUs of the bacterial core of the oropharyngeal microbiota of smokers and nonsmokers when healthy, expressing
common cold symptoms, or taking antibiotics. The lower left-hand side diagram shows the phylogeny of the pooled data set, and the sizes of the circles
associated with different taxa indicate their relative abundances. The brown and cyan colors indicate significant differences across pairwise abundances,
with the color indicating in which group the abundances were greater (with deeper colors indicating higher abundances). The gray color represents no
significant difference in relative abundance. Refer to a high resolution rendering in Fig. S5 in the supplementary materials.
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more closely related species than expected and negative values indicating that closely
related species do not co-occur. Evidently, when showing cold symptoms, environmental
filtering was significantly higher in smokers than in nonsmokers, suggesting that more spe-
cies co-occurred with closely related species. In general, environmental filtering was greater
in relation to closely-related species (NRI), compared to when accounting for the whole
phylogenetic tree (NTI).

For each participant, the core microbiota was identified to infer interaction matrices.
These were used to determine the dynamical properties of communities by inferring the
Jacobian matrix and its dominant eigenvalue, indicating that all communities were locally
stable. We subsequently determined whether the local stability of the smokers and non-
smokers’ oropharyngeal microbiota differed by comparing their dominant eigenvalues (non-
smokers mean = 25.908, SD = 13.537; smokers mean = 26.953, SD = 12.989). An analysis
of variance (ANOVA) indicated no difference between them (F1,21 = 0.495, P = 0.490).

To determine whether they were globally stable (i.e., permanent), interaction matri-
ces were then tested for the existence of an average Lyapunov function. Out of the 15
inferred interaction networks from nonsmokers, 6 (40%) were globally stable. Out of
the 8 smoker networks, 4 (50%) were globally stable. Thus, our results provide no evi-
dence for differences in local or global stability between smokers and nonsmokers.

With the exception of one nonsmoker interaction network, all smoker (n = 8) and non-
smoker (n = 14) communities were locally stable after a new species was added to the
Jacobian matrix, indicative of resistance to species invasion, irrespective of smoking status.

DISCUSSION

The oral microbiota plays a vital role in the maintenance of oral health, and dysbiosis is
associated with a number of diseases, including periodontal disease (43, 44). Findings of

FIG 5 Nearest-taxon-index (NTI) and nearest-relative-index (NRI), considering the presence/absence of OTUs
in the microbiota samples of smokers and nonsmokers when healthy, expressing common cold symptoms,
or taking antibiotics. Note the difference in scale. The lines connect two categories if the values are
significant per an ANOVA, with one within subject factor accounting for the participant IDs.
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studies investigating the effects of smoking on the oral microbiota have been inconsistent,
with some reporting changes in community composition that are associated with varying
taxa (5, 20, 45, 46), while others reported no association between the oral microbiota and
smoking (47–49). Variability in the definition of smoking, sample site selection, methodol-
ogy, study population, and inclusion/exclusion of samples based on preconditions are
likely to account for at least some of these inconsistencies. Here, we collected longitudinal
samples of the oropharyngeal microbiota of 30 healthy participants (18 nonsmokers and
12 smokers), using a standardized sampling approach by sampling the same site and using
the same methodology (as described above) in the same participants and study popula-
tion, avoiding the issues noted above.

Smoking constitutes a press perturbation that could result in changes in the richness,
composition, and abundance of the microbiota. As hypothesized, in our results, smoking
decreased alpha diversity in line with that reported by other studies (50, 51), similar to anti-
biotic use, which we consider to be a short-term pulse perturbation (52, 53). Our results
suggest that this process results in lower diversity in communities undergoing a simultane-
ous, significant press perturbation (i.e., smoking). Fewer niches being available due to a
relatively more hostile microclimate may result in a lower species richness and a loss of
protection by mutualistic species and, thus, disease (21, 54). However, others (6) have
found that smokers had increased alpha diversity (Shannon diversity), compared to non-
smokers, arguing that smoking decreases the niche saturation abilities of a community
that selects for a specific group of organisms.

As hypothesized, our study provided evidence that press perturbations, such as smok-
ing, impacted beta diversity, even within the context of short-duration pulse perturbations
(cold or antibiotic use). Our results showed that the seven OTUs that were responsible for
the changes in the beta diversity patterns were shared across smokers and nonsmokers,
regardless of their health status. The effect of the short-term pulse perturbations in the
form of cold and antibiotic use was evident when measuring the local contribution to beta
diversity (LCBD), which indicated a high uniqueness of the bacterial community composi-
tion. Our analysis showed that nonsmokers exhibiting cold symptoms and participants on
antibiotics (irrespective of smoking status) displayed the greatest LCBD values. Colds only
affected undisturbed communities (i.e., nonsmokers), whereas sufficiently large pulse per-
turbations (antibiotic treatment) impacted smokers and nonsmokers (i.e., disturbed and
undisturbed communities) equally, as evidenced by the alpha diversity values becoming
more similar between smokers and nonsmokers. This suggests that disturbed communities
become more similar to one another, irrespective of smoking status.

High values of the nearest-relative-index (NRI) and nearest-taxon-index (NTI) pro-
vide evidence that these oropharyngeal communities are dominated by environmental
filtering. This may be related to nutritional, spatial, and metabolic factors selecting for
species that possess suitable traits to exist within specific conditions (55). As hypothe-
sized, smokers show greater environmental filtering, compared to nonsmokers, and
participants on antibiotic treatment show the greatest degree of environmental filter-
ing, irrespective of smoking status, suggesting that these forms of environmental per-
turbations are strong enough to override the importance of ecological interactions in
shaping the microbial communities. Smoking is likely to affect the microenvironment,
specifically, the oxygen, pH, and acid production, thereby resulting in the selection of
specific microbial community members of microaerophilic and anaerobic bacteria that
can dominate due to the lower oxygenation (6, 56).

Studies have shown that more diverse and complex communities tend to be gener-
ally more resistant to perturbations (37). Contrary to our expectations, stability models
based on our data indicated that local and global stability did not differ between
smokers and nonsmokers, suggesting that microbial communities of smokers are re-
sistant and resilient to small and large perturbations. Moreover, our results indicated
no differences in invasibility between smokers and nonsmokers when invasibility was
measured as instability.

The human microbiota is often found to be stable and generally able to maintain
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homeostasis, even in the face of perturbations (57). Other authors have argued that
the oral cavity is characterized by an even greater degree of stability, compared to that
of other body sites (58). The heterogeneity of the oral cavity increases niche space, in
which many microbial community members live on surfaces in biofilms, which likely
allows them to survive adverse conditions, such as smoking and antibiotic exposure
(24, 51, 59). Moreover, others have found that even upon smoking cessation, the differ-
ences in microbial community composition generally persisted over the time period of
this study, suggesting that smoking can introduce an alternative but stable state (22).

The microbiota is not just a passive passenger; its modification can play a key role in
contributing to or causing many pathophysiological processes (21, 42, 60). Others have
shown that smoking creates pathogen-rich and commensal-poor communities (5, 6).
Similar to the findings of others, there were decreases in the relative abundance of
Prevotella and Neisseria spp. (61, 62) and an increased relative abundance of Veillonella spp.
in smokers, compared to nonsmokers (50). These differences may be associated with differ-
ences in oxygen tension, with smoking promoting the presence of anaerobes (63). Overall,
we found no evidence suggesting that smoking communities in this particular group of
participants were characterized by pathogen-rich and commensal-poor species. It may be
worth noting, however, that the excess of Gram-negative Klebsiella and Enterobacter in
smokers on antibiotics are increasingly seen in aspiration pneumonia (64), which could
suggest that smoking/antibiotics are possible risk factors for aspiration pneumonia caused
by these organisms in older age groups.

In conclusion, our study provides evidence that microbiota changes with smoking are
likely a combination of parts of the microbiota not surviving the direct toxicity of cigarette
smoke and its indirect consequences via the associated changes in the immune system
and cellular processes, in general. This manifested in the analyses as the importance of
environmental filtering in the structuring of the microbial communities. This suggests that
environmental filtering dictates which OTUs may be present in the community, resulting in
the perturbed communities’ final, alternative states. Even though the oropharyngeal micro-
biota of smokers is reduced in terms of diversity, compared to that of nonsmokers, it is eco-
logically no less stable or more invasible. Therefore, the increased risk of infectious diseases
in smokers is not necessarily facilitated by the effect of smoking on ecological changes in
the composition or function of the oropharyngeal microbiota but is more likely due to its
effects on the local and systemic immune system (65), which may alter the susceptibility to
contract an infection and the course of disease (66, 67). A next step to support the findings
from these analyses would be to conduct experiments or generate empirical data that
investigate the stability and invasibility of microbiota in response to cigarette smoke, cold-
symptoms, or antibiotic disturbances.

MATERIALS ANDMETHODS
Participants and sample collection. 30 participants (18 nonsmokers and 12 smokers) were recruited

for this study, representing both genders (21 females, 9 males) and ranging in age from 18 to 40 (mean =
25.18 years, SD = 6.71). 10 of the females were smokers (smoking on average 32.25 [SD = 25.76] cigarettes
per week, having smoked for 5.1 [SD = 3.70] years on average), and 2 of the male participants were smokers
(smoking on average 43.14 [SD = 24.12] cigarettes per week, having smoked for 9.5 [SD = 9.19] years on aver-
age). Further information on sample sizes is provided in Table S1.

All participants were healthy (without illnesses or undergoing medical treatment), not on any long-
term medication, and had not stopped smoking recently. The study was approved by the University of
Glasgow Ethics Committee (Ethics Applications 2012107 and 200140021).

Participants were provided with Sigma Transwabs swabs in liquid amies (Medical Wire Ltd., United
Kingdom) for bacterial detection, and samples were taken from the tonsils and the posterior wall of the
tonsil, as suggested in the literature (68). Participants were asked to take a swab once weekly, early in
the morning, prior to brushing their teeth and having breakfast, as well as to keep a diary providing in-
formation about their health status, self-reporting any changes there. Samples were collected weekly,
and bacterial swabs were processed, after being kept on ice, within 2 h after collection. Sampling
occurred in Glasgow (United Kingdom) for the nonsmokers from January until May of 2013, and sam-
pling recommenced from September until December of 2013. The sampling period for the smokers took
place from November of 2014 to June of 2015, giving a sampling period of 30 weeks. Staffing constraints
did not allow for the sampling of smokers and nonsmokers within exactly the same time period. While
we recognize this issue, we argue it unlikely that the differences observed between the smokers and
nonsmokers are driven solely by annual fluctuations in microbiota.
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DNA extractions. DNA was extracted using a QIAamp DNA Minikit (Qiagen Ltd., United Kingdom),
following the manufacturer’s instructions. The extracted DNA was quantified using a Qubit 2.0 (Thermo
Fisher Scientific, Q32866) and a Picogreen HS DNA Assay (Invitogen Ltd., United Kingdom). 5 mL of DNA
were mixed with 2 mL of loading dye on a 1% agarose gel (1 g agarose to 100 mL TBE), along with a
1 kb Invitrogen DNA ladder, and run at 100 V for 60 min to check purity, and they were subsequently
stored at –20°C until required (69). The details on processing the samples are given in Chapter 2 of
http://theses.gla.ac.uk/8163/, and they have also been described in Rani Ram (2017) (70).

A clone library was prepared using an Invitrogen Topo-Seq Kit (Invitrogen Ltd., United Kingdom) as a
quality control step to produce a mock community for future Illumina MiSeq runs. The purpose of the mock
community was to act as a positive control for each MiSeq run so as to ensure that the correct sequences
were being sequenced. To reduce PCR biases, all of the template DNA was diluted to the same concentration,
and the minimum number of cycles was used in each PCR run to reduce nonspecific binding, with appropri-
ate controls in place. A positive control (DNA from the mock community) and a negative control (for each dif-
ferent reverse barcode, using nuclease free water) was set up for each PCR run. To ensure that the source of
bacterial sequences was not the swab itself or the DNA isolation reagents, PCR was performed on DNA iso-
lated from an unused swab. To confirm that the PCR reagents were not sources of bacterial sequences, a PCR
of the no-template extraction control was also performed.

Bioinformatics. Abundance tables were obtained by constructing OTUs (a proxy for species) as pre-
viously described (42) and as follows. The trimming and filtering of the paired-end sequencing reads
was performed using Sickle (version 1.2) by applying a sliding window approach and trimming the
regions where the average base quality dropped below 20 (71). This applied a 10 bp length threshold to
discard reads that fell below this length. BayesHammer (72) was used from the SPAdes assembler (ver-
sion 2.5) to error correct the paired-end reads, and this was followed by PANDAseq (version 2.4) with a
minimum overlap of 50 bp to assemble the forward and reverse reads into a single sequence that
spanned the entire V1-V2 region (73). The above choice of software showed a reduction in substitution
errors by 77 to 98%, with an average of 93.2% for the MiSeq data sets (74). UPARSE (version 7.0.1001)
was used for OTU construction (75). The approach pools together the reads from different samples and
adds barcodes to keep an account of the samples from which these reads originate. The reads are then
dereplicated and sorted by decreasing abundance, discarding singletons. The reads were clustered
based on 97% similarity, discarding any reads that were shorter than 32 bp. The original barcoded reads
were then matched against OTUs with 97% similarity (a proxy for species-level separation) to generate
OTU tables for different samples. The representative OTUs were then taxonomically classified against
the RDP database, using the standalone RDP classifier (version 2.6) (76). The phylogenetic distances
between OTUs were produced by first using MAFFT (version 7.040) (77) to align the OTUs against each
other and then by using FastTree (version 2.1.7) on these alignments to generate an approximately max-
imum likelihood phylogenetic tree (78). Potentially contaminating amplicon sequence variants were
identified and removed using the decontam package in R (79). The OTU table, phylogenetic tree, taxo-
nomic information, and metadata were then used in a statistical analysis. Chimeras were removed using
two approaches: an external Chimera Slayer Gold database and a de novo approach in which the abundant
reads served as a reference database. Traditional pipelines were modified to get the optimum accuracy for
amplicons, based on benchmarking studies (73, 80, 81). Subsequently, the OTU table, phylogenetic tree,
taxonomic information, and metadata were used in a multivariate statistical analysis. While the de novo
chimera removal step removes reads that have chimeric models that are built from more abundant reads,
a few chimeras may be missed, especially if they have parents that are absent from the reads or are pres-
ent in low abundance. To deal with that, we used a reference-based chimera filtering step from a Gold
database (http://drive5.com/uchime/uchime_download.html) that is derived from the ChimeraSlayer refer-
ence database in the Broad Microbiome Utilities (http://microbiomeutil.sourceforge.net/).

Statistical analysis. Statistical analyses were performed in R, using the tables and data that were
generated as well as the metadata associated with the study. All samples that contained less than 5,000
reads were discarded in the analysis to allow for the comparison of all samples with sufficient statistical
power.

For the community analysis (including the alpha and beta diversity analyses), we used the vegan package
(82). For the alpha diversity measures, which provided us with an insight into the changes in richness and even-
ness with smoking, antibiotic, and cold status, we calculated: OTU richness (the estimated number of OTUs per
sample), Shannon entropy (a commonly used index by which to measure the richness and evenness of a com-
munity within a sample), and Simpson diversity, which takes both sample richness and evenness into account
but is less sensitive to species richness, using Renyi-Hill numbers (83). The alpha diversity measures were calcu-
lated after rarefying the abundance table to the minimum library size by using rarefaction curves that were
obtained for each participant to approximate the OTUs that were detected as a function of the sequencing
depth. As a result, the samples were rarefied to the minimum number of reads (5,118) to test for alpha diversity,
and the relative abundance of taxa for each sample was calculated by dividing the read counts of a taxon by
the sample size. This value ranges from 0 to 1. Rarefaction curves can be found in Rani Ram (2017) (70). The
data were analyzed using an ANOVA with Tukey’s post hoc test, after checking the assumptions (normality, het-
erogeneity of variance, and independence). To adjust for patient IDs, all of the pairwise statistics were done
using one within subject factor in anova, as aov(value ; Groups 1 Error(ParticipantID/Groups)), by incorporat-
ing Error().

In order to investigate the multivariate homogeneity of the group dispersion (i.e., how variable the
groups are) between multiple conditions (i.e., smoking, antibiotic, and cold status) we used vegan’s
betadisper() function to calculate three different distance measures: Bray-Curtis (which considers the
species abundance count), unweighted unifrac (which considers the phylogenetic distance between the
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branch lengths of OTUs that are observed in different samples without taking into account the abundan-
ces) and weighted unifrac (unweighted unifrac distance, weighted by the abundances of the OTUs),
using the metamds() function in vegan. The distances between objects and group centroids are handled
by reducing the original distances to principal coordinates and subsequently performing an ANOVA on
them, according to a four-factor design, including health status (six levels: nonsmoker, smoker, non-
smoker with cold, smoker with cold, nonsmoker on antibiotics, smoker on antibiotics), sex (two levels:
male, female), age (continuous), and participant (30 levels). We used vegan’s adonis() function for an
analysis of variance using distance matrices to partition sources of variation. This function will be
referred to as PERMANOVA, and it fits linear models to distance matrices and uses a permutation test
with pseudo-F ratios (84).

To measure beta diversity, we performed a local contribution to beta diversity (LCBD) analysis (85).
In the context of this longitudinal study, LCBD provides a means by which to show the difference of the
microbial community structure from a single sample, based on the average of all samples (with higher
LCBD values representing communities with greater beta diversity values or outliers). We used the
LCBD.comp() function from the adespatial package (86) to calculate three different measures: Hellinger
distance (abundances), unweighted unifrac (phylogenetic distance), and weighted unifrac (phylogenetic
distance weighted by abundance) dissimilarities. LCBD gives the sample-wise local contributions to beta
diversity, which are derived from the proportions of the total beta diversity.

We subsequently used the BVSTEP routine to complement the beta diversity analysis, as it is an algo-
rithm that allows for the identification of the OTUs that are causing the major shifts in beta diversity.
The BVSTEP algorithm (87) searches for the highest correlation between the dissimilarities of fixed and
variable multivariate data sets using the bvStep() function from the sinkr package, using a permutation
of the 2n-1 features in the data set (i.e., OTUs) (88). Testing all feature combinations is unrealistic and
computationally intractable when the species richness in the data set is high. To deal with this, we used
the abundance table with the 1,000 most abundant OTUs to best correlate with the overall similarities in
the features (i.e., grouping factors, smoking, cold, and antibiotic status), given all of the OTUs, assuming
that the most abundant species may play a significant role.

To determine whether the phylogenetic community structure in each sample was driven by compe-
tition among taxa or by strong environmental pressure (i.e., the host environment) we calculated the
mean-nearest-taxon-distance (MNTD, using the mntd() function), nearest-taxon-index (NTI, using the
ses.mntd() function), mean-phylogenetic-diversity (MPD, using the mpd() function) and nearest-relative-
index (NRI, using the ses.mpd() function) in the picante package in R (89). NTI and NRI are the negative
outputs from the ses.mntd() and ses.mpd() functions, respectively.

NTI and NRI quantify the number of standard deviations that the observed MNTD and MPD values,
respectively, is from the mean of the null distribution (999 randomizations using null.model = “richness”)
in the ses.mntd() and ses.mpd() functions, only considering the taxa as present/absent, without taking
their abundances into account. Based on recommendations, we used the top 1,000 most abundant
OTUs for the calculation of these measures (90).

Subset regression is a model selection approach that provides evidence for the important factors
that are associated with changes in the microbial community composition, including the effects of dif-
ferent disturbances (e.g., smoking, cold, and antibiotic status), thereby providing further support for the
above analysis. Subset regression was performed against different microbiota metrics, testing all possi-
ble combinations of explanatory variables and subsequently selecting the best model, according to sta-
tistical criteria, based on recommendations (91). The code is available at (http://www.sthda.com/english/
articles/37-model-selection-essentials-in-r/155-best-subsets-regression-essentials-in-r/) (91). We used the
regsubsets() function from the leaps package (92) to identify the best models of different sizes by speci-
fying the option nvmax set to the maximum number of predictors to be incorporated in the model.
After having obtained the best subsets, the k-fold cross-validation consisted of first dividing the data
into k subsets, of which each subset (10%) served successively as test data and the remaining subset
(90%) as training data, using a custom function that utilized the train() function from the caret package
(93). The average cross-validation error was calculated as the model prediction error. We used the tab_-
model() function from the sjPlot package to obtain the statistics for each model (94).

There has been no single standardized approach by which to identify the core microbiota, with most
studies reporting the core based on the presence/absence of taxa at specific threshold values of abundance
and prevalence (95). Here, we defined the core microbiota by setting a detection threshold of 0.001 (i.e., 0.1%
compositional abundance threshold in a sample) and a prevalence of the OTUs to be found in samples
between 85 and 92% (depending on the total sample size available for each longitudinal data set) for each
participant of this study, following advice given in Shetty (96) and using the microbiota package (97).

We subsequently used the heat_tree_matrix() function in the metacoder package (98) to detect dif-
ferences in the relative abundances in the core OTUs (based on the log2 median ratio) between partici-
pants, using a Wilcoxon test.

Local and global stability and invasibility. Here, we refer to stability in the context of ecological
community dynamics, defined broadly as the ability of an ecosystem to persist through perturbations,
which is influenced by changes in the interactions between different species. Understanding under
which conditions the species in a community coexist in the long term is a central question in ecology
that can be addressed by investigating local and global stability. Local stability is a measure of the per-
sistence of communities subjected to small perturbations, whereas global stability (also referred to as
permanence) refers to a global property of a community that only requires the densities of species to
increase when they are rare (99, 100). To address the question of whether the potentially reduced stabil-
ity of smokers’ microbiotas could be involved in pathogen invasions, we characterized the ecological
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stability of the microbiotas of both smokers and nonsmokers by using two methods, namely, local and
global stability analysis, working under the assumption that microbiotas, including the pharyngeal
microbiotas, are stable over time (45, 101, 102).

The calculation of these stability measures requires the inference of the microbial core for each partici-
pant as described above; we used the limits() function in the seqtime package (103, 104), which utilizes
time-series data, to infer the microbial interaction matrices that corresponded to the classical generalized
Lotka-Volterra dynamics through deterministic model fitting. We only selected participants for which we
had at least nine samples (after discussion on sample size and network inference with the package
authors). This resulted in estimated interaction matrices for 15 nonsmokers and 8 smokers.

Interaction matrices can be used to determine the dynamical properties of communities by inferring
the Jacobian matrix and its dominant eigenvalue, where the equilibrium is locally stable if all of the
eigenvalues of the interaction matrix have negative real parts (100, 105, 106). For each inferred interac-
tion matrix, we computed the dominant eigenvalue (the most positive eigenvalue) to evaluate local
stability.

Local stability applies only to small perturbations, and its ecological relevance has been debated
(100, 107, 108). A dynamical system is globally stable if it does not experience extinction following arbi-
trarily large stochastic perturbations. Communities are defined as globally stable if an average Lyapunov
function exists near the boundary of the state space and if the system is dissipative (109), meaning that
even if a system experiences a large perturbation, it will return to some form of equilibrium without
resulting in species extinction. To determine whether the interaction matrices were globally stable, we
tested our interaction matrices for the existence of an average Lyapunov function using (110) “sufficient
condition”, as laid out prior (111), solving the problem as a linear programming problem in MATLAB.
Here, we calculated both measures of stability for the interaction matrix estimated for the core commun-
ities of each participant to determine if those in smokers were less stable, globally and locally, compared
to those of nonsmokers (110, 111).

To test whether the microbial communities in smokers were more invasible, for each participant, we
recomputed the equilibrium point of the Jacobian matrix by adding a new species to the community (where
all of the rows and columns of the “invader” OTU were zero) and calculating the dominant eigenvalue of this
augmented interaction matrix. If stable, then the species were at equilibrium and were not increasing in
abundance (i.e., the community was not invasible). If unstable, then the community is invasible, with the in-
vader increasing in abundance.

Data availability. The following data: otu_table.biom, otus.fasta, otus.tre, and meta_data.csv file are
available on GitHub (https://github.com/umerijaz/pharynxmicrobiome). The scripts are available as part
of microbiomeSeq (https://userweb.eng.gla.ac.uk/umer.ijaz/projects/microbiomeSeq_Tutorial.html) and
at https://userweb.eng.gla.ac.uk/umer.ijaz/bioinformatics/ecological.html.
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SUPPLEMENTAL FILE 1, XLSX file, 0.01 MB.
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