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We explore the electromagnetic properties of a structure composed of two optically active 

materials—each layer contains a hyperbolic crystal with its anisotropy axis rotated with respect 

to the crystal surface.  Through this, we can control the transmission spectra where at one 

frequency, light with a positive incident angle is transmitted while it is absorbed for a negative 

incident angle and the reverse occurs at a second frequency.  Using a Gaussian beam analysis, 

we determine in which material layer the absorption occurs.  In a radiating line current source 

study, we obtain tunable output collimated beams.  From these discoveries, our structure can 

be applied as an efficient frequency or angle selector, demultiplexer or filter. 
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1. Introduction 

First observed in 1902,1 a polariton is an interaction between light and matter, where the matter 

is excited by and coupled to a propagating electromagnetic wave.2  Theoretical work on 

polaritons began in the 1950s3–7 and since then they have been well studied in many different 

physical systems such as antiferromagnets,8–10 metallic thin films,11–13 gratings,14–16 

superlattices,17–20 Bose-Einstein condensates,21–23 optical transistors24 and amplifiers.25,26  

Recently, polaritons have been studied in cavities,27–29 topological insulators30,31 and lasers32–

34 and are still at the forefront of technology as they are excellent candidates to open access to 

terahertz imaging and the next generation of wireless communication.35 

A class of polaritons that has recently gained considerable interest is that of hyperbolic 

polaritons.36–39 They have the hyperbolic name because their bulk dispersion relation looks like 

a hyperbola40 and to obtain such behavior anisotropic materials are required. More specifically, 

hyperbolic dispersion requires that the sign on one of the diagonal components of the 

permeability or permittivity tensor is opposite from the others.41–43  Crystal quartz is known to 

be a natural hyperbolic material and it has several regions of frequency—in the infrared band—

where its ordinary and extraordinary permittivity tensor components have opposite signs due 

to active phonons.44   

Recent work has shown that a rotation of the anisotropy direction with respect to a crystal 

surface can yield several unusual effects including asymmetric transmission patterns. In these 

single crystals, there are narrow ranges of frequencies where this asymmetry occurs.45  Later 

work exploited the asymmetric transmission in quartz to enhance absorption patterns44 and 

since then other nanostructures have also been created to elucidate the same effects.46 

In this paper, we investigate the case of a multi-layered system, comprising two hyperbolic 

media layers (both crystal quartz), each with a different anisotropy direction with respect to the 
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surface. We find that by combining positive and negative rotations of the anisotropy axis, we 

gain more control in the location of the asymmetry in the transmission compared to what is 

possible with a single film. For example, we show that waves with a positive incident angle 

can be blocked at one frequency while waves with a negative incident angle are transmitted. 

By choosing a different frequency we find that negative incident angles can be blocked while 

positive incident angles are now transmitted. We explore how the asymmetry is correlated with 

different attenuations, depending on the inversion of the direction of propagation.   

Furthermore, since the introduction of metamaterial super lenses, hyperbolic materials have 

been used as flat lenses which focus radiation from a point source--a phenomenon which can 

be modelled using an oscillating line current source placed above the material and as the 

radiation travels through the layers it is focused into a point.37,45,47–49 Here, in stark contrast, 

when radiation from a point source is incident on our layered structure a collimated beam can 

be generated as the output. Thus, this concept is similar to that of a slit, but there are key 

differences.  With a slit, diffraction patterns are generated, and the angle of the output beam is 

entirely dependent on the location of the source.  We will see that with the quartz layers, the 

existence and angle of the output beam depends on the direction of the anisotropy axis of the 

quartz films and the frequency of the source. This effect could be used as a demultiplexer where 

light incident at all angles, such as that from a point source, is collimated in a particular 

direction which can be controlled with the frequency of the incident waves.   

2. Background: Hyperbolic Nature of Bulk Quartz with a Rotated Anisotropy Axis 

We start by revisiting the hyperbolic nature of single crystal quartz in order to understand the 

values of 𝜔 and 𝑘 for which propagation is allowed in the quartz layers.  If we take the 

anisotropy axis to be along 𝑧, the uniaxial permittivity tensor can be written as,45 
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휀⃡(𝜔) = (

휀⊥ 0 0
0 휀⊥ 0
0 0 휀∥

) . (1) 

In the frequency range we will explore here, 410 cm-1 < 𝜔/2𝜋𝑐 < 610 cm-1, there are multiple 

regions where 휀⊥and 휀∥ have opposite signs, the key feature of a hyperbolic material.50 

The simple tensor shown above changes quite substantially when we rotate the anisotropy axis 

in the 𝑥𝑧 plane by an angle 𝜑. It gains new off-diagonal elements. Using Maxwell’s equations51 

we can find a dispersion relation for transverse magnetic (TM) modes where the wavevector 

perpendicular to the surface of the film, 𝑘⊥, in crystal quartz is given by  

𝑘⊥ =
−휀𝑥𝑧𝑘∥ ± √(휀𝑥𝑧

2 − 휀𝑧𝑧휀𝑥𝑥)𝑘∥
2 + 𝑘0

2(휀𝑥𝑥휀𝑧𝑧
2 − 휀𝑥𝑧

2 휀𝑧𝑧)

휀𝑧𝑧
. (2)

 

Here, 𝑘∥ is the parallel wavevector and can take any value and 𝑘0 = 𝜔/𝑐 where 𝑐 is the speed 

of light.  It is important to note that the 𝑘⊥ value depends on the sign of the wavevector 𝑘∥.  

This will lead to asymmetric transmission as we will see later on.  We proceed by noting that 

each dielectric constant is a complex number so in general, and when taking damping into 

account, 𝑘⊥ will always have real and imaginary components.  In the absence of damping, and 

assuming no rotation of the anisotropy axis, 𝑘⊥ is either wholly real, allowing for propagation 

to take place, or wholly imaginary where propagation is not allowed.   

When a rotation of the anisotropy axis is introduced however, this condition no longer holds 

true. For instance, in the absence of damping, the term outside the square root in Eq. (2) always 

exists and is always wholly real. This means that even if the square root yields a wholly 

imaginary number, the value of 𝑘⊥ can still have both real and imaginary parts, meaning waves 

are still attenuated in this region. In Fig. 1., we create a map of propagation regions (where 𝑘⊥ 

is wholly real) and attenuation regions (where 𝑘⊥ is complex) as a function of 𝑘∥ and 𝜔 for 
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rotation angles of 𝜑 = 60° and 𝜑 = −10°.  This clearly indicates the edges of the bulk bands, 

i.e. the regions where propagation is allowed.  

 

Fig. 1.  Bulk band edges for bulk crystal quartz with its anisotropy direction rotated by (a) 

𝜑 = 60° and (b) 𝜑 = −10°.  The light regions correspond to the presence of an imaginary 

part of 𝑘⊥ while the darker regions correspond to a 𝑘⊥ wholly real.  

From Fig. 1., we can identify the regions where transmission is expected to be large, i.e. the 

propagation regions (𝑘⊥ is wholly real), and where the transmission is expected to be small, 

i.e. the attenuation regions (𝑘⊥ is complex). In the absence of damping, the bulk bands are 

symmetric, i.e. the values for +𝑘∥ and −𝑘∥ are identical. More generally, positive or negative 

rotations of the anisotropy axis are equivalent, for example, a rotation of 𝜑 = −60° would have 

the same bulk band edges as the rotation of 𝜑 = +60° does. 

3. Results 
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To investigate wave propagation, and as a way to control it, we consider a four-layered 

structure comprising two layers of crystal quartz sandwiched between air as seen in Fig. 2. 

   

Fig. 2.  Geometry for reflection, transmission and absorption calculations.  𝑧 = 0 is chosen to 

be at the Air/Quartz1 interface, the Quartz1/Quartz2 interface is at 𝑧 = 𝑑1 and the bottom 

Quartz2/Air interface is at 𝑧 = 𝑑.  Quartz1 is rotated to 𝜑1 = 60° and is 1.25 microns thick 

and Quartz2 is rotated to 𝜑2 = −10° and is also 1.25 microns thick. 

 

The 𝑧 direction is chosen to be perpendicular to the interfaces and the 𝑥𝑦 plane is the plane of 

incidence. The first crystal quartz layer, Quartz1, extends from 𝑧 = 0 to 𝑧 = 𝑑1, and the second 

quartz layer, Quartz2, extends from 𝑧 = 𝑑1 to 𝑧 = 𝑑.  Through this paper, we will use Quartz1 

always to refer to the top quartz layer and assume it to have a rotation of 𝜑1 = 60° and 

thickness of 1.25 microns. Similarly, Quartz2 always refers to the bottom quartz layer with a 

rotation of 𝜑2 = −10° and thickness of also 1.25 microns. We consider the electromagnetic 

waves propagating through this system to be TM so that their behavior can be expressed as a 

function of the 𝑯 field, more specifically, as a sum of upward and downward propagating 
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waves.  With this, we can find our electric fields from Maxwell’s equations51 and subsequent 

transmission, reflection, and even absorption coefficients. Full details are given in Appendices 

A and B. 

3.1 Transmission, Reflection, and Absorption in Quartz Films 

We start exploring wave propagation by looking at differences in transmission between single 

quartz films and the structure with two quartz layers shown in Fig. 3. In Fig. 3(a), we show 

transmission for a single quartz film of thickness 2.5 μm as a function of incident angle and 

frequency for the case where the anisotropy axis is rotated by 𝜑1 = 60°. Irrespective of the 

incident angle, there is a large transmission for wavenumbers between 410 cm-1 and 460 cm-1 

or between 550 cm-1 and 610 cm-1.  This corresponds to the propagation regions in Fig. 1(a).  

For wavenumbers between 460 cm-1 and 500 cm-1 we have a band gap and there is no 

transmittance, this corresponds to an attenuation region in Fig. 1(a).  An interesting case occurs 

for wavenumbers between 500 cm-1 and 550 cm-1 where there is transmittance for some 

incident angles and not for others.  At the upper limit of this frequency range, there is signficant 

transmission for negative incident angles, but at the lower bound, the transmission occurs for 

large positive incident angles, with a smooth transition between the two. This asymmetric 

transmission is explained in Ref. 45. 

Fig. 3(b) plots a transmission map for a thin quartz film, again as a function of frequency and 

incident angle and of thickness 2.5 μm, but now the anisotropy axis is rotated by 𝜑2 = −10°.  

Similar to Fig. 3(a) there are high transmission frequencies which match with the propagation 

regions in Fig. 1(b).  From 490 cm-1 to 550 cm-1, we have high transmission across all incident 

angles except near 550 cm-1, where there is only a bottleneck region of small positive incident 

angles with high transmission.  This bottleneck has interesting consequences.  If we imagine 

incident light coming in at all possible angles, there will be only transmission at a small set of 
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output angles, from about 10∘ to 20∘.  For wavenumbers between 450 cm-1 and 500 cm-1 there 

is a band gap and with no transmittance, which corresponds to an attenuation region in Fig. 

1(b).   

Fig. 3.  Energy transmission coefficient as a function of wavenumber and incident angle for 

various structures. (a) Air/Quartz/Air where the quartz is rotated to 𝜑1 = 60° and is 2.5 

microns thick, (b) Air/Quartz/Air where the quartz is rotated to 𝜑2 = −10° and is 2.5 microns 

thick and (c) Air/Quartz1/Quartz2/Air.  Here each of the quartz films is 1.25 microns thick.  

 

In Fig. 3(a), we found that a positive rotation of the anisotropy axis results in transmission for 

negative incident angles for wavenumbers near 550 cm-1.  In general, this is true for any 
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positive anisotropy axis rotation at wavenumbers near 550 cm-1.  In contrast, in Fig. 3(b), where 

there is a negative rotation of the anisotropy axis, this same frequency region has transmission 

only for positive incident angles.. Similarly, this occurs, in general, for all negative anisotropy 

axis rotations. Fig. 3(c) shows the transmittance for a structure of two quartz films, each 1.25 

microns thick (for an overal thickness of 2.5 𝜇m), with the upper quartz film having a rotation 

of the anisotropy axis of +60∘ and the lower film having a rotation of −10∘. The results in Fig. 

3(c) illustrate that it is possible to use the features of the individual films to engineer a 

frequency selector where at one frequency (𝜔/2𝜋𝑐 ≈ 550 cm-1) there is transmission for 

positive incident angles and the waves at negative incident angles are blocked, while the 

opposite occurs at a second, nearby, frequency (𝜔/2𝜋𝑐 ≈ 530 cm-1).   

To better understand the transmission results for Fig. 3(c), in Fig. 4., we present the reflection 

and absorption spectra of the structure with the two quartz layers.  In Fig. 4(a), we find that the 

two quartz film structure gives a symmetric reflection spectrum.  The reflection is generally 

small but can be large in the attenuation region, which is located between 480 cm-1 and 500 cm-

1.  The reflection is also large for very large positive and negative incident angles (𝜃 ≈ ±90°) 

where the incident wave is nearly parallel to the surface.  

Fig. 4(b), shows the absorption spectrum. The absorption is large for wavenumbers between 

450 cm-1 and 480 cm-1.  Interestingly this is where the transmission map of one quartz film is 

in an attenuation region and the other is in a propagation region.  We point out however that 

Fig. 1. is for the special case where there is no damping in the material and thus is limited in 

its applicability.  The absorption is also large for positive angles around 530 cm-1 and for 

several spectral regions, but more prominetly also at around 530 cm-1, the absorption is largely 

asymmetric with respect to the incident angle. This is consistent with the fact that the 

reflectivity for the system is symmetric. Therefore, indicating that for asymmetric transmission 
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such as that shown in Fig. 3(d), radiation needs to be absorbed by the material in an asymmetric 

manner.  

Fig. 4.  Reflection and absorption results for the two-quartz structure. (a) Energy reflection 

coefficient map as a function of incident angle and wavenumber; (b) absorption map as a 

function of incident angle and wavenumber.  The reflection results are independent of the sign 

of the angle of incidence; however, the absorption is not.  

 

3.2 Propagation of a Beam 

To further explore the nature of the asymmetric transmission, we consider the behavior of a 

Gaussian beam incident on the two-quartz structure. The magnitude of the time-averaged 

Poynting vector will be used to quantify these effects with further details for the calculation 

given in Appendix D. 
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The result of whether a beam is transmitted or absorbed by the two-layered system is already 

known from the transmission map calculation. The analysis of the Gaussian beam, which is 

constructed with a plane wave Fourier sum, adds information about what occurs in each quartz 

film i.e. the location of the absorption, which the transmission map cannot give for the multi-

layered quartz structure. We present results of this calculation for four cases (two angles at two 

frequencies) in Fig. 5. 

 

Fig. 5.  Intensity profiles in the double quartz structure, with a Gaussian beam of width of 𝑔 =

20 μm at (a) 𝜃 = −45°, wavenumber of 525 cm-1, (b) 𝜃 = 45°, wavenumber of 525 cm-1, (c) 

𝜃 = −45°, wavenumber of 551 cm-1 and (d) 𝜃 = 45°, wavenumber of 551 cm-1.  The thicker 

white lines are the path of the beam obtained from geometry and the incident and refracted 

angles, given in Eq. (D.7).  The horizontal white lines are the Quartz layers.  The top line is at 

𝑧 = 0 μm, the middle line is at 𝑧 = 1.25 μm and the bottom line is at 𝑧 = 2.5 μm.  Quartz1 is 

between the top two lines and Quartz2 is between the bottom two lines. 
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Fig. 5(a) shows the behavior of a Gaussian beam at 525 cm-1 and an incident angle of 𝜃 =

−45°.  Interestingly, the magnitude of the time-averaged Poynting vector is largest in the top 

quartz film, Quartz1, instead of the incident air. To explain this, consider the components:  𝐻𝑦, 

𝐸𝑥 and 𝐸𝑧, which are used to calculate |⟨𝑺⟩| (see Eq. (D.6) in Appendix D).  Here, the 𝑧 

component of the electric field drives the large power flow, and it corresponds to the 𝑥 

component of the power flow, as the magnetic field is only in the 𝑦 direction. Thus, in addition 

to transmission of the beam through the structure, there is a lot of power traveling parallel to 

the surface at the Air/Quartz1 interface and throughout Quartz1. Another feature of note is that 

the beam undergoes negative refraction as it passes between the quartz layers. We note that 

negative refraction is key to planar slab lens structures.52,53 

In contrast, in Fig. 5(b), a beam also at 525 cm-1, is shown to be absorbed when incident at the 

opposite angle of 𝜃 = +45°.  The absorption occurs in Quartz1 and the beam is negatively 

refracted into this medium.  Similarly, to Fig. 5(a), there is a lot of power traveling parallel to 

the surface of the Air/Quartz1 interface.  Interestingly, this behavior can be readily reversed 

when the wavenumber is changed to 551 cm-1, as in Fig. 5(c), where the beam incident at 𝜃 =

−45° is negatively refracted into Quartz2 and absorbed.  On the other hand, the beam is 

transmitted when incident at 𝜃 = +45°. These two frequencies where transmission is not only 

strongly asymmetric and direction-dependent but also reversible, enable our two-layered quartz 

structure to function as a frequency selector.   

The lack of transmission in Figs. 5(b) and 5(c) is remarkable.  To understand this, it is helpful 

to look at the wavelengths and penetration depths in the films for the different cases.  The 

effective wavelength normal to the films is calculated by 𝜆 = 2𝜋/Re|𝑘⊥|. We find for all the 

various cases that these wavelengths range from 3 microns to over 100 microns.  Since these 

values are larger than the film thicknesses, we do not expect that the lack of transmission is 
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due to destructive interference.  In contrast, the penetration depth, given by 𝛿 = 1/Im|𝑘𝑏⊥|, 

for the top quartz film in Fig. 5(b) is 0.6 microns and is 24.3 microns for the bottom quartz 

film.  These values are consistent with the lack of transmission for that case.  In Fig. 5(a) the 

penetration depth for the top quartz film is 32.4 microns and for the bottom quartz film it is 

41.1 microns; these large penetration depths indicate why transmission occurs in this case.  

Similar behaviors occur for the cases shown in Figs. 5(c) and 5(d).  

3.3 All-Angle Propagation  

Now that we have examined how a beam travels through our structure, we turn to the behavior 

of a radiating line current source47, which accounts for beams travelling at every incident angle. 

While this is typically used to explore radiation focusing and image formation due to all-angle 

negative refraction,37 here the outcome is not so obvious due to the asymmetric nature of the 

propagation with respect to the travelling direction. To investigate this, we model an oscillating 

source centered at 𝑥 = 0, 𝑧 = −20 𝜇m, so that it is placed 20 microns above the two-quartz 

structure with details of the calculation provided in Appendix D. We use this approach to probe 

behavior at the two wavenumbers considered in Fig. 5., which are the wavenumbers at which 

there are narrow regions of transmission angles [see Fig. 3(c)]. 

In Fig. 6(a), incident light at 525 cm-1 is transmitted only at negative angles and collimated into 

a beam of light.  We note that due to the different length scales for the vertical and horizontal 

axes, the transmitted beam looks nearly normal to the interface; the actual angle is centered 

around −60∘.  In contrast, at 551 cm-1, transmission only occurs at positive angles as seen in 

Fig. 6(b).  Here, the output collimated beam is centered around +20∘.  Hence, the angle of the 

output collimated beams depends on the frequency of the source and anisotropy axis angles of 

the layered quartz structure.  This is remarkable because the incident source is composed of 

light with every incident angle, and it uniformly illuminates the quartz structure. The result is 
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a collimated, transmitted beam that flows with a distinct angle. It is interesting to note that the 

collimated beam is actually slightly narrower than the uniformly illuminated surface region.  

Again, the structure with two quartz films allows this to be used as a frequency selector.  

 

Fig. 6. Power flow through the double quartz structure from a radiating line current source 

centered at 𝑥 = 0, 𝑧 = −20 𝜇m for the wavenumbers (a) 525 cm-1 and (b) 551 cm-1. The 

magnitude of the time-averaged Poynting vector is in arbitrary units.  As with the geometry in 

Fig. 2., Quartz1 is between the white lines at 𝑧 = 0 and 𝑧 = 1.25 𝜇m and Quartz2 is between 

the white lines at 𝑧 = 1.25 and 𝑧 = 2.5 𝜇m. Note the transmission directions in the figure are 

somewhat misleading because of the different scales for the horizontal and vertical axes. 

3.4 Other Geometries 
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The two-quartz structure sandwiched between air layers is an ideal configuration to explore 

effects that are related to high transmission. If effects related to high reflection instead of 

transmission are of interest, other geometries are better suited for this investigation.  For 

instance, a geometry that allows wavevectors to be greater than the light line will maximize 

these effects. The attenuated total reflection (ATR) experiment54 in an Otto-like configuration55 

is one such geometry.   

The ATR experiment emphasizes surface polaritons, which occur outside of the light line. To 

calculate propagation in an ATR geometry, a dielectric prism is placed above the 

Quartz1/Quartz2 structure with the thicknesses considered earlier.  The prism is chosen to have 

a dielectric constant of 5.5 and is placed 2.5 microns above Quartz1.  Since the dielectric prism 

has a permittivity much greater than that of air, this yields total internal reflection for angles 

larger than the critical angle of 𝜃 = arcsin(1/√5.5) = ±25.24∘. For these larger angles, any 

dips in the reflectivity spectra can have two origins.  They can be caused by an evanescent 

wave in the gap region below the prism coupling to a surface polariton of the quartz structure 

or when the thin quartz films act as a waveguide and the evanescent wave couples to bound 

polariton states inside the thin films. The reduction from the usual total internal reflection arises 

because these waves carry energy away from the incident beam. Here, the energy transmission 

coefficient cannot be calculated by simply using 𝑇 = 𝑡𝑡⋆ because the incident (prism) and 

transmitted (air) media are different.  The details of the calculation are outlined in Appendix 

C. 
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In Fig. 7(a), the ATR reflection map as a function of incident angle and wavenumber is plotted 

for the geometry indicated in the paragraph above. One sees both surface and guided wave 

modes indicated by dips in the reflectivity outside the critical angle. These modes, with 

wavenumbers between 450 cm-1 and 550 cm-1, are important for signal processing applications 

and biological sensing applications56,57 and correspond to band gaps in the transmission 

spectra.58  As seen in Fig. B.1. in Appendix B, this reflection map is a combination of the two 

single quartz ATR maps. Thus, it is easy to engineer a structure to have modes at any desired 

frequency by using quartz films with different rotation angles.   

Fig. 7.  Reflection, transmission and absorption results for the two-quartz structure in the ATR 

geometry. (a) Energy reflection coefficient map (b) energy transmission coefficient map 

(plotted with a different color bar scale); and (c) absorption map, each as a function of incident 



17 
 

angle and wavenumber.  The reflection results are independent of the sign of the angle of 

incidence; however, the transmission and absorption are not.  The dashed, white vertical lines 

represent the critical angle. 

The energy transmission coefficient is considered in Fig. 7(b) for the ATR configuration. The 

coefficient is small everywhere and only nonzero for light incident at an angle smaller than the 

critical angle. In this restricted region, the asymmetric transmission pattern is found to be 

similar to what was found previously in Fig. 3(c), however the intensity is much weaker (note 

that the scale here is much smaller than the other panels). 

The absorption in the ATR geometry is depicted in Fig. 7(c). It is large for all bulk, surface and 

guided modes present in the reflection spectrum of Fig. 7(a). We also notice that it is 

asymmetric for angles between ±𝜃, consistent with the asymmetric transmission spectra. 

4. Conclusion and Discussion 

Greater control over the asymmetric transmission in crystal quartz structures was found by 

using a double quartz film system.  This is possible by combining positive and negative 

rotations of the anisotropy axis within two thin quartz films. The thicknesses are chosen so that 

the structure is not too thick as to block transmission and not too small as to transmit everything. 

This led to new transmission patterns where multiple frequencies were found to have bottleneck 

regions i.e. only allowing propagation of a small section of incident angles. The asymmetry in 

the propagation direction of the transmitted light can be used to separate the frequencies and 

create a demultiplexer. 

  Because the asymmetry observed seems to stem from highly asymmetric absorbing regions, 

we expect that this can lead to asymmetric heating as energy is stored inside the material. As 

such, it would be worthwhile to consider temperature effects and the subsequent ramifications 

on the properties of the thin quartz layers in a future study. For instance, this could be an avenue 



18 
 

for investigations of angle-controlled, near field radiative heat transfer.59,60 Even more fruitful 

would be to consider magneto-optical materials such as indium antimonide (InSb), a 

magnetised plasma that has temperature dependent dielectric constants.61 For example, an 

incident laser light might initially be absorbed by an InSb film, which in turn would cause the 

film to heat up and its permittivity to change. At a later time, the new permittivity could permit 

transmission of the light. There are many other intriguing possibilities such as stacking InSb 

and quartz films. These possiblities may lead to self-induced transparency where the incident 

pulse propagates through the material without disperision or decay.62  These photothermal 

effects have been demostrated in microscopes63 and a dielectric microcavity.64 

In the current study, the selected output angle is controlled by the frequency of the incident 

light and the rotation of the anisotropy axis.  However, once the structure is created, there is no 

more tunability due to the rotation of the anisotropy axis rotation.  More tunability can be 

achieved in other hyperbolic materials like liquid crystals with applied fields.65  This would be 

a worthwhile endeavor as liquid crystals have already been proven to create fast, tunable 

filters.66 

Lastly, in the Otto-like ATR configuration, control over the location and quantity of surface 

and guided modes was observed.  While, this system also displayed a faint asymmetric 

transmission pattern, all reflection spectra were symmetric.  An asymmetric, angle controllable 

reflection spectra, can be introduced by considering reflections where the plane of incidence is 

not simply the 𝑥𝑧 plane.  In this case, the reflection asymmetry comes from a cross-polarization 

conversion between TM and transverse electric (TE) waves.67  It would be noteworthy to 

discover the kinds of asymmetric transmission and absorption possible with an asymmetric 

reflection spectrum. 
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Appendices 

SI units are used throughout this paper and temperature effects are neglected. 

Appendix A.  Determining the Relative Permittivity 

The components of the permittivity tensor can be found using 

휀𝑢 = 휀∞,𝑢 ∏ (
𝜔𝐿𝑚,𝑢

2 − 𝜔2 − 𝑖𝜔𝛾𝐿𝑚,𝑢

𝜔𝑇𝑚,𝑢
2 − 𝜔2 − 𝑖𝜔𝛾𝐿𝑚,𝑢

)

𝑚

, (𝐴. 1) 

where 𝑢 represents either the ∥ (extraordinary) or ⊥ (ordinary) axis, 𝜔 is the frequency, 휀∞,𝑢 is 

the dielectric constant at infinity, 𝜔𝑇𝑚,𝑢 is the frequency of the transverse optical phonons, 

𝜔𝐿𝑚,𝑢 is the frequency of the longitudinal optical phonons and 𝛾𝑇𝑚,𝑢 and 𝛾𝐿𝑚,𝑢 are the damping 

parameters of the 𝑚th transverse or longitudinal optical phonon mode, respectively 48.  In this 

work we have used the parameters found by Gervais and Piriou,68 neglecting their experimental 

artefact,48,68,69 to evaluate the dielectric constants in Eq. (A.1). 

To take into account the rotation of the crystal axes with respect to the surface, the relative 

permittivity tensor given in Eq. (1) is rotated in the 𝑥𝑧 plane by an angle 𝜑.  This transformation 

is done by:  휀′ ⃡ (𝜔) = 𝑅(𝜑)휀⃡(𝜔)𝑅−1(𝜑) where 𝑅(𝜑) is the rotation matrix and 𝑅−1(𝜑) is its 

transpose.  The result is45,70 

휀′ ⃡ (𝜔) = (

휀𝑥𝑥 0 휀𝑥𝑧

0 휀𝑦𝑦 0

휀𝑧𝑥 0 휀𝑧𝑧

) , (𝐴. 2) 

where the rotated dielectric tensor components are: 

휀xx = 휀⊥ cos2 𝜑 + 휀∥ sin2 𝜑 (𝐴. 3𝑎) 

휀zz = 휀⊥ sin2 𝜑 + 휀∥ cos2 𝜑 (𝐴. 3𝑏) 

휀xz = 휀zx = (휀⊥ − 휀∥) cos 𝜑 sin 𝜑 (𝐴. 3𝑐) 
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휀yy = 휀⊥ (𝐴. 3𝑑) 

Appendix B.  Fresnel Reflection and Transmission Coefficient Determination 

To find the reflection and transmission coefficients using the geometry of 

Air/Quartz1/Quartz2/Air from Fig. 2., and assuming a TM mode, the 𝑯-field above and below 

the sample can be written as  

𝑯 = �̂�𝑒𝑖(𝑘∥𝑥−𝜔𝑡)(𝑎𝑛𝑒𝑖𝑘𝑛⊥𝑧 + 𝑏𝑛𝑒−𝑖𝑘𝑛⊥𝑧) (𝐵. 1) 

where 𝑎𝑛 and 𝑏𝑛 are the amplitudes for the waves in layer 𝑛 (for the air this 𝑛 = 1 and 𝑛 = 4) 

propagating along the +𝑧 and −𝑧 directions, respectively.  The amplitude of the incident wave 

is set as 𝑎1 = 1.  As the lower air layer is semi-infinite, there is there is only a transmitted 

wave, which means that 𝑏4 = 0.  Additionally, 𝑘∥ = 𝑘0√휀 sin 𝜃, where 𝜃 is the incident angle 

and 휀 is the dielectric constant of the incident medium. 

The perpendicular wavevectors can be derived from the dispersion relation and, in the air are 

given by 

𝑘⊥
2 = 𝑘0

2 − 𝑘∥
2. (𝐵. 2) 

The situation is different inside the quartz layers because, as can be seen from Eq. (2), there 

are two different values for the perpendicular wavevector in each film. Thus for 𝑛 = 2 and 𝑛 =

3  

𝑯 = �̂�𝑒𝑖(𝑘∥𝑥−𝜔𝑡)(𝑎𝑛𝑒𝑖𝑘𝑛𝑎⊥𝑧 + 𝑏𝑛𝑒𝑖𝑘𝑛𝑏⊥𝑧) (𝐵. 3) 

where 𝑘𝑛𝑎⊥ and 𝑘𝑛𝑏⊥ indicate the two values generated by Eq. (2). 

The electric field in each film can be uniquely derived from Maxwell’s Equations ∇ × 𝑯 =

𝜕𝑫/𝜕𝑡 and the constitutive relation 𝑫 = 휀0휀⃡(𝜔)𝑬, where 휀0 is the vacuum permittivity.71  

Doing so, the component of 𝑬 tangential to the surface and interface layers is found to be 
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𝐸𝑥 =
−1

𝜔휀0
𝑒𝑖(𝑘∥𝑥−𝜔𝑡)(𝑎𝑛𝑘𝑛⊥𝑒𝑖𝑘𝑛⊥𝑧 + 𝑏𝑛𝑘𝑛⊥𝑒−𝑖𝑘𝑛⊥𝑧) (𝐵. 4) 

 in the air layers.  Similarly, the tangential components in the quartz layers are given by 

𝐸𝑥 =
−1

𝜔휀0
𝑒𝑖(𝑘∥𝑥−𝜔𝑡)(𝑎𝑛𝛼𝑛𝑒𝑖𝑘𝑛𝑎⊥𝑧 + 𝑏𝑛𝛽𝑛𝑒𝑖𝑘𝑛𝑏⊥𝑧) (𝐵. 5) 

where  

𝛼𝑛 =
𝑘∥휀𝑥𝑧 + 𝑘𝑛𝑎⊥휀𝑧𝑧

휀𝑥𝑧
2 − 휀𝑥𝑥휀𝑧𝑧

(𝐵. 6𝑎) 

𝛽𝑛 =
𝑘∥휀𝑥𝑧 + 𝑘𝑛𝑏⊥휀𝑧𝑧

휀𝑥𝑧
2 − 휀𝑥𝑥휀𝑧𝑧

(𝐵. 6𝑏) 

While the permittivities are not explicitly subscripted, they are, in general, different because 

the quartz layers have different directions for the anisotropy axes.   

The reflection and transmission coefficients are found by equating the tangential components 

of the electric and magnetic fields at each layer boundary.  Doing so the following matrix (for 

the geometry in Fig. 2.) of the form 𝐹𝑥 = 𝐺 is obtained, 

(

 
 
 
 

−1 1 1 0 0 0
𝑘1⊥ −𝛼2 −𝛽2 0 0 0

0 𝑒𝑖𝑘2𝑎⊥𝑑1 𝑒𝑖𝑘2𝑎⊥𝑑1 −𝑒𝑖𝑘3𝑎⊥𝑑1 −𝑒𝑖𝑘3𝑏⊥𝑑1 0
0 𝛼2𝑒𝑖𝑘2𝑎⊥𝑑1 𝛽2𝑒𝑖𝑘2𝑎⊥𝑑1 −𝛼3𝑒𝑖𝑘3𝑎⊥𝑑1 −𝛽3𝑒𝑖𝑘3𝑎⊥𝑑1 0

0 0 0 𝑒𝑖𝑘3𝑎⊥𝑑 𝑒𝑖𝑘3𝑏⊥𝑑 −𝑒𝑖𝑘1⊥𝑑

0 0 0 𝛼3𝑒𝑖𝑘3𝑎⊥𝑑 𝛽3𝑒𝑖𝑘3𝑏⊥𝑑 𝑘1⊥𝑒𝑖𝑘1⊥𝑑)

 
 
 
 

(

 
 
 

𝑏1

𝑎2

𝑏2

𝑎3

𝑏3

𝑎4)

 
 
 

=

(

 
 
 

1
𝑘1⊥

0
0
0
0 )

 
 
 

. (𝐵. 7) 

Solving Eq. (B.7) for 𝑏1 gives the reflection coefficient 𝑟.  The reflectance 𝑅 is found by 𝑅 =

|𝑟|2 = 𝑟𝑟⋆.   Similarly, Eq. (B.7) is used to solve for 𝑎4 which is the transmission coefficient 

𝑡. The transmittance 𝑇 is found by 𝑇 = |𝑡|2 = 𝑡𝑡⋆.  The solution to Eq. (B.7) is used to create 

the transmission and reflection maps in Fig.s 3 and 4.   

It is straightforward to extend the above discussion for the ATR geometry discussed in Fig.s 7 

and 8.  Here, for the dielectric prism, Eq. (B.2) becomes  
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𝑘⊥
2 = 휀𝑝𝑘0

2 − 𝑘∥
2. (𝐵. 8) 

The ATR results in Fig. 7. are complicated.  Many surface and guided modes were found in a 

100 cm-1 interval of wavenumbers.  To help explain where these modes originate, the ATR 

results for single quartz films is now presented in Fig. B.1.   

 

Fig. B.1.  Energy reflection coefficient for reflection spectra where the air gap is 2.5 microns 

thick in the geometries (a) Prism/Air/Quartz1/Air and (b) Prism/Air/Quartz2/Air.  The text and 

arrows identify the modes as surface or guided waves. 

 

These thin films are combined to create the geometry illustrated in Fig. 2.  Fig. B.1(a) plots the 

reflection spectrum for a single 1.25 micron quartz film with an anisotropy axis rotated to 60°.  
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There are surface and guided modes in the range of wavenumbers between 475 and 540 cm-1.  

We know that the surface modes occur in the attenuation regions and guided modes occur in 

the propagating regions, where the bulk polaritons were 72.  A comparison with Fig. 1., easily 

identifies the modes as such. An anisotropy axis rotation of −10° for a single 1.25 micron 

quartz film is considered in Fig. B.1(b).  Again, a comparison with Fig. 1. shows that there are 

surface modes in the attenuation regions and guided modes in the propagation regions.  There 

are fewer modes than in Fig. B.1(a).  This is because there are more regions in Quartz1 where 

only one of the components of the dielectric tensor are negative.73  It is easy to see that these 

reflection spectrum combine to the spectrum in Fig. 7(a). 

Appendix C.  Transmission in the ATR Geometry 

In the ATR geometry, the incident and transmitted media are different.  Consequently, the 

energy transmission coefficient must be calculated by 

𝑇 =
𝑍𝑖 cos 𝜃𝑡

𝑍𝑡 cos 𝜃𝑖

|𝑡|2, (𝐶. 1) 

where 𝜃 is the angle of the light with respect to the surface normal and the impedance is 𝑍 =

√𝜇/휀 where the subscripts 𝑖 and 𝑡 denote incident and transmitted, respectively.74  All materials 

considered in this paper are nonmagnetic, so the impedance reduces to 𝑍 = 1/√휀.  

The correction to |𝑡|2 is necessary to ensure that energy is conserved.  Therefore, any media 

sandwiched between the incident and transmitted layers are irrelevant for this calculation.  

Energy conservation requires that the frequency 𝜔 and parallel momentum 𝑘∥ are also 

conserved.  The only unknown in Eq. (C.1) is the transmitted angle, which is determined below. 

In the ATR geometry, the dispersion relations are 𝜔 = 𝑐𝑘/√휀𝑝 in the incident prism and 𝜔 =

𝑐𝑘 in the transmitted air.  This gives parallel momenta of:  𝑘∥ =
𝜔

𝑐
√휀𝑝 sin 𝜃𝑖 in the prism and 
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𝑘∥ =
𝜔

𝑐
sin 𝜃𝑡 in the air.  From conservation of parallel momenta, the incident and transmitted 

momenta are equated to find a transmitted angle of 𝜃𝑡 = arcsin(√휀𝑝 sin 𝜃𝑖).   

It is obvious that there is a critical angle for any media whose dielectric constant is greater than 

unity as arcsin is only defined from −1 to +1, which is the range of sin 𝜃.  Physically, this is 

the case of total internal reflection where there is no transmission (aside from an evanescent 

wave) and corresponds to a transmitted angle of 90°.  In the ATR geometry, it is apparent that 

the quantity |𝑡|2, in Eq. (C.1), can be larger than unity, as the pre-factor is proportional to 휀𝑝
−1/2

 

and is smaller than unity.   

When the incident and transmitted media are the same, the incident and transmitted angles are 

the same.  This condition reduces Eq. (C.1) to 𝑇 = |𝑡|2, as given in the main text.  A correction 

is never necessary to the energy reflection coefficient 𝑅 because the incident and reflected light 

propagate in the same medium and the angles are equal in magnitude due to the law of 

reflection.   

Appendix D.  Power Flow 

Appendix D.1.  Gaussian Beams 

The Gaussian beam calculation uses the magnitude of the time-averaged Poynting vector. The 

electric and magnetic fields of the finite beam are similar to what was previously used to 

calculate the reflection and transmission coefficients, but there are two key differences. Here, 

the fields are Fourier sums of plane waves.  This leads to an integration over all parallel 

wavevectors. The second difference is that the wave shape must be accounted for. 

For a TM mode, in the geometry of Air/Quartz1/Quartz2/Air from Fig. 2., the 𝑯-field above 

and below the sample is  
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𝐻𝑦 = ∫ 𝜓(𝑘∥)(𝑎𝑛𝑒𝑖𝑘𝑛⊥𝑧 + 𝑏𝑛𝑒−𝑖𝑘𝑛⊥𝑧)𝑒𝑖(𝑘∥𝑥−𝜔𝑡)𝑑𝑘∥

𝑘0

−𝑘0

(𝐷. 1) 

where the wave shape 𝜓(𝑘∥) for a Gaussian beam is given by  

𝜓(𝑘∥) =
−𝑔

2 cos 𝜃 √𝜋
exp [

−𝑔2(𝑘∥ − 𝑘0 sin 𝜃)2

4 cos2 𝜃
] (𝐷. 2) 

where 𝑔 is the beam width, 𝜃 is the beam’s incident angle and the beam is centered at 𝑥 =

0, 𝑧 = 0.  Note that 𝜓(𝑘∥) is the same in each layer.47,48,75 

The corresponding 𝑬-fields above and below the sample are uniquely determined from 

Maxwell’s equations51 to be 

𝐸𝑥 = ∫
𝑘𝑛⊥

𝜔휀0
𝜓(𝑘∥)(𝑎𝑛𝑒𝑖𝑘𝑛⊥𝑧 − 𝑏𝑛𝑒−𝑖𝑘𝑛⊥𝑧)𝑒𝑖(𝑘∥𝑥−𝜔𝑡)𝑑𝑘∥

𝑘0

−𝑘0

(𝐷. 3𝑎) 

𝐸𝑧 = ∫ −
𝑘∥

𝜔휀0
𝜓(𝑘∥)(𝑎𝑛𝑒𝑖𝑘𝑛⊥𝑧 + 𝑏𝑛𝑒−𝑖𝑘𝑛⊥𝑧)𝑒𝑖(𝑘∥𝑥−𝜔𝑡)𝑑𝑘∥

𝑘0

−𝑘0

, (𝐷. 3𝑏) 

and for the same reasons presented in the Fresnel coefficient calculations section, it is assumed 

that 𝑎1 = 1 and 𝑏4 = 0.   

In the quartz films, the fields are given by 

𝐻𝑦 = ∫ 𝜓(𝑘∥)(𝑎𝑛𝑒𝑖𝑘𝑛𝑎⊥𝑧 + 𝑏𝑛𝑒𝑖𝑘𝑛𝑏⊥𝑧)𝑒𝑖(𝑘∥𝑥−𝜔𝑡)𝑑𝑘∥

𝑘0

−𝑘0

(𝐷. 4𝑎) 

𝐸𝑥 = ∫
−1

𝜔휀0
𝜓(𝑘∥)(𝛼𝑛𝑎𝑛𝑒𝑖𝑘𝑛𝑎⊥𝑧 + 𝛽𝑛𝑏𝑛𝑒𝑖𝑘𝑛𝑏⊥𝑧)𝑒𝑖(𝑘∥𝑥−𝜔𝑡)𝑑𝑘∥

𝑘0

−𝑘0

(𝐷. 4𝑏) 

𝐸𝑧 = ∫
1

𝜔휀0
𝜓(𝑘∥)(𝛼𝑛𝑧𝑎𝑛𝑒𝑖𝑘𝑛𝑎⊥𝑧 + 𝛽𝑛𝑧𝑏𝑛𝑒𝑖𝑘𝑛𝑏⊥𝑧)𝑒𝑖(𝑘∥𝑥−𝜔𝑡)𝑑𝑘∥

𝑘0

−𝑘0

(𝐷. 4𝑐) 

where 𝛼𝑛 and 𝛽𝑛 are still defined by Eqs. (B.6a) and (B.6b), respectively, and 
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𝛼𝑛𝑧 =
𝑘∥휀𝑥𝑥 + 𝑘𝑛𝑎⊥휀𝑥𝑧

휀𝑥𝑧
2 − 휀𝑥𝑥휀𝑧𝑧

(𝐷. 5𝑎) 

𝛽𝑛𝑧 =
𝑘∥휀𝑥𝑥 + 𝑘𝑛𝑏⊥휀𝑥𝑧

휀𝑥𝑧
2 − 휀𝑥𝑥휀𝑧𝑧

. (𝐷. 5𝑏) 

where 𝑘𝑛𝑎⊥ and 𝑘𝑛𝑏⊥ are again obtained from Eq. (2) and 𝑘⊥ is given by Eq. (B.2).  Again, as 

in Eqs. (B.6a) and (B.6b), while the permittivities are not subscripted, they are, in general, 

different because the quartz layers have different anisotropy axes.   

As was done previously, the coefficients in Eqs. (D.1), (D.3) and (D.4) are determined by 

solving the set of linear equations obtained by equating the tangential 𝑬 and 𝑯 fields at each 

boundary. 

In principle, the integrals in Eqs. (D.1), (D.3) and (D.4) are over all wavevectors, but 

practically, the integral can be restricted to −𝑘0 ≤ 𝑘∥ ≤ 𝑘0.  The restriction excludes the 

evanescent 𝑘∥ values because the incident Gaussian beam propagates in air.53,76  However, this 

restriction will not always give a symmetric Gaussian for 𝜓(𝑘∥).  That is not problematic 

because a shifted Gaussian would include evanescent 𝑘∥ values and miss important 𝑘∥ values.  

The inclusion of evanescent parallel wavevectors would yield unphysical solutions. 

To evaluate the integrals numerically, the interval is split into an odd number of equally spaced 

sites, which gives an even number of divisions.  This allows their computation by Simpson’s 

1/3 Rule.77  Additionally, it is done for a time 𝑡 = 0 and time evolution is neglected.  The 

Gaussian beam result is quantified with the magnitude of the time-averaged Poynting vector 

given by:75 

|⟨𝑆⟩| =
1

2
√Re(𝐸𝑧𝐻𝑦

⋆)
2

+ Re(𝐸𝑥𝐻𝑦
⋆)

2
. (𝐷. 6) 
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The direction of the power flow is determined by considering the angle of refraction between 

each media.  This must be done with the Poynting vector78 and not from the angle between 𝑘⊥ 

and 𝑘∥, as 𝒌 and 𝑺 are not generally in the same direction.48,76  From the time-averaged Poynting 

vector, ⟨𝑺⟩ = 1/2 Re(𝑬 × 𝑯⋆), the angle of refraction is  

tan 𝜃 =
⟨𝑆𝑥⟩

⟨𝑆𝑧⟩
=

Re(𝑘∥휀𝑥𝑧 + 𝑘⊥휀𝑧𝑧)

Re(𝑘∥휀𝑥𝑥 + 𝑘𝑛𝑏⊥휀𝑥𝑧)
, (𝐷. 7) 

where 𝑘⊥ is given in Eq. (B.2). 

Appendix D.2.  Radiating Line Current Source 

Our oscillating line current source is an infinite source in the 𝑦 direction that radiates in every 

direction of the 𝑥𝑧 plane. This source is composed of an oscillating line of magnetic current 𝐾 

directed along the 𝑦 axis at 𝑥 = 0, 𝑧 = −20 𝜇m.  The implementation is the same as with the 

Gaussian beam, but with a wave shape of 47,79 

𝜓(𝑘∥) = −
𝜔휀0𝐾

4𝜋𝑘⊥
, (𝐷. 8) 

where 𝑘⊥ is given by Eq. (B.2).  Note that Eq. (D.8) goes to infinity at the source’s center.  

Additionally, the 𝑒𝑖𝑘⊥𝑧 terms in Eqs. (D.1), (D.3) and (D.4) are shifted to account for the initial 

height of the source. 
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