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Abstract

Motivation: The assembly of contiguous sequence from metagenomic samples presents a particular challenge, due
to the presence of multiple species, often closely related, at varying levels of abundance. Capturing diversity within
species, for example, viral haplotypes, or bacterial strain-level diversity, is even more challenging.

Results: We present MetaCortex, a metagenome assembler that captures intra-species diversity by searching for
signatures of local variation along assembled sequences in the underlying assembly graph and outputting these
sequences in sequence graph format. We show that MetaCortex produces accurate assemblies with higher genome
coverage and contiguity than other popular metagenomic assemblers on mock viral communities with high levels
of strain-level diversity and on simulated communities containing simulated strains.

Availability and implementation: Source code is freely available to download from https://github.com/SR-Martin/
metacortex, is implemented in C and supported on MacOS and Linux. The version used for the results presented in
this article is available at doi.org/10.5281/zenodo.7273627.

Contact: richard.leggett@earlham.ac.uk

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

The well-documented increase in yield and reduction in the cost of
DNA sequencing technologies has led to a rapid increase in the use
of shotgun approaches for studying metagenomic samples (Mitchell
et al., 2018). A first analysis step is often the taxonomic classifica-
tion of reads by comparison with reference databases. However,
deeper analysis is enabled by assembling sequence data to form a
longer contiguous sequence (contigs). Such assembly may facilitate
improved classification, clustering of sequences (particularly where
reference genomes are unavailable) or analysis at the scale of genes.

There are two fundamental approaches for the assembly of
sequencing data: overlap-layout-consensus (OLC) assembly and de
Bruijn graph assembly. We recommend the reader consult (Ayling,
2020) for a more thorough overview. In OLC assembly, each read is
compared to every other read and reads that overlap well are
merged together to form contigs. The de Bruijn graph technique uti-
lizes directed graphs to represent the k-mers (short sequences of
length k) present in a set of reads, and this representation of the read
set turns the assembly problem into a graph traversal problem.

Traversing a graph has a lower order of time complexity than OLC
and so the computational time to perform an assembly can be sig-

nificantly reduced. Furthermore, the amount of memory required to
build the graph is proportional to the total k-mers present in the
sample, rather than the total number of reads. This is particularly
important as new generations of sequencing technologies are
producing ever greater amounts of data.

Metagenomic assembly presents several challenges beyond those
of de novo genomic assembly. The main additional difficulties are
unknown diversity and unknown species abundance (Ayling, 2020).
Given two sufficiently distinct genomes, one can find a (possibly

very large) k-mer size such that the genomes do not share k-mers.
Thus, it can be inferred that for large enough k, subgraphs represent-
ing distinct species are mostly disconnected and existing assembly
techniques from de novo genome assembly may be used on each dis-
connected subgraph. However, in practice, such a k is likely to be

far larger than the read size, and so impractical for de Bruijn graph
construction. Furthermore, it is often not the case that a metage-
nomic sample consists solely of diverse species, and separating
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closely related species, or many strains of a single species, is a diffi-
cult task, particularly at low abundance.

The problem of capturing diversity below the species level in an
assembly presents an even bigger challenge. The genomes of differ-
ent strains from a single species can differ by single nucleotide poly-
morphisms (SNPs), large-scale structural variation and anything in
between. In many ways, the challenges faced here are similar to
those faced when separating haplotypes in de novo assembly, where
much of the same sequence is shared between haplotypes. In this
case, one can use the ploidy of the organism and the k-mer coverages
to guide the assembly. However, in the metagenomic case, we do
not necessarily know what the expected coverage of each strain is,
and in low abundance cases, it will be difficult to distinguish a SNP
from a sequencing error (Quince, 2021). The challenge is at its most
stark when studying viral metagenomes. Due to their short replica-
tion times, large population sizes and lack of proofreading mecha-
nisms [coronaviruses are a notable exception (Denison, 2011)],
viruses can evolve extremely rapidly. As such, viruses are often
referred to as a quasispecies consisting of a set of related strains; and
the genome sequence of a strain is sometimes referred to as a haplo-
type (Gregori, 2016).

Due to the throughput of current next-generation sequencing
technologies, it is possible to have a metagenomic dataset consisting
of several terabytes of reads [e.g. the NovaSeq 6000 is capable of
producing up to 6000 Gb of sequencing data in a single run (https://
www.illumina.com/systems/sequencing-platforms.html, accessed
September 2022)]. Many assemblers are incapable of assembling
such large datasets within realistic time and memory constraints.
One strategy to make the problem tractable is to subsample the read
set to obtain a much smaller one which can then be assembled. This
process will usually not affect the assemblies of high-abundance spe-
cies in the sample [in fact, it can improve them (Hug, 2016)], but
there is evidence that the assemblies of the low-abundance species
will be incomplete and of poorer quality (Cattonaro, 2018).

Many current short-read metagenomic assemblers utilize the de
Bruijn graph paradigm. Popular examples include Ray Meta
(Boisvert, 2012), MEGAHIT (Li, 2015), MetaVelvet (Namiki,
2012) and metaSPAdes (Nurk, 2017). A key part of the implementa-
tion of all these tools is to collapse an assembly graph into linear
sequences (usually in the form of a FASTA file). This facilitates easy
downstream analysis, but the act of converting the assembly graph
into a linear sequence has the effect of removing the understanding
of sequence diversity that is implicit in the graph (Brown, 2020).
Several assemblers have been created specifically for the assembly of
viral quasispecies, such as SAVAGE (Baaijens, 2017) and VICUNA
(Yang, 2012). These tools are able to assemble the haplotypes pre-
sent in an isolated sample but may be less effective at assembling
quasi-species from metagenomic samples. Within the genome assem-
bly world, there is a growing awareness of the importance of captur-
ing the genome graph in the output from assembly tools. This has
resulted in the development of the FASTG format (http://fastg.sour
ceforge.net, accessed 25 May 2021) and, more recently and with
wider adoption, the graphical fragment assembly (GFA) format for
assembly graph files (https://github.com/GFA-spec/GFA-spec,
accessed 25 May 2021). These have been implemented in a number
of tools including recent versions of ABySS (Jackman, 2017),
SPAdes (Bankevich, 2012), metaSPAdes and SDG (Yanes, 2019).
Other tools have addressed the problem of analysing the quantity of
sequencing data that is currently available, particularly in metage-
nomics. For example, MetaGraph can construct a de Bruijn graph
from petabases of sequencing data for sequence querying and assem-
bly (Karasikov, 2020). Within the metagenomics world, several re-
cent tools have focused on identifying and assembling strain-level
variation from assembly graphs. STRONG uses multiple metage-
nome samples from a time series to identify strains de novo from an
assembly graph, and performs coassembly and genome binning
(Quince, 2021). The tool spacegraphcats can perform a local search
of an assembly graph to identify variation that is not present in ref-
erence sequences (Brown, 2020), and the tool KOMB uses assembly
graphs to identify copy number variants and structural variants in a
metagenomic read set (Balaji, 2022).

Here, we introduce MetaCortex, a de Bruijn graph metagenomic
assembler that is built upon data structures and graph-traversal
algorithms developed for the Cortex assembler (Iqbal, 2012). As
well as performing metagenomic assembly with standard FASTA
output, MetaCortex generates sequence graph files that preserve
intra-species variation (e.g. viral haplotypes) and implements a new
graph traversal algorithm to output variant contig sequences. Whilst
MetaCortex can be used to assemble any metagenomic dataset, we
have developed features to specifically target metagenomic datasets
with high levels of strain diversity (e.g. viral communities) and to
represent this diversity in the resulting assembly. MetaCortex cap-
tures variation by looking for signatures of polymorphisms in the de
Bruijn graph constructed from the reads and represents this in se-
quence graph format (both FASTG and GFA v2) and the usual
FASTA format. The sequence graph provides information on local
variation, such as SNPs and indels, along each contig identified by
MetaCortex. By using the efficient data structures from Cortex,
MetaCortex is capable of utilizing all k-mers from large metage-
nomic datasets and able to perform assemblies from these datasets
on a single CPU. One of the novel features of Cortex was to intro-
duce coloured de Bruijn graphs. This is not yet utilized by
MetaCortex, but the code has been written to allow an easy imple-
mentation in future versions.

We show that MetaCortex is able to produce highly contiguous
assemblies capturing almost all genome level diversity and with a
low level of misassemblies. By outputting sequence graph files, we
were able to capture strain-level diversity that is not present in the
contigs and use this to manually assemble contigs that were specific
to individual strains in a sample.

2 Materials and methods

To test MetaCortex, we assembled real Illumina read sets from two
mock communities of 12 viruses, at varying levels of abundance; a
real human gut sample which was subsequently in silico mixed with
real reads from a lab mix of five strains of HIV in equal abundance;
and two simulated read sets from communities with high levels of
strain variation. In each case, we assembled the dataset using the
Subtractive Walk (SW) algorithm with delta value equal to 0.8 (see
Section 3). The minimum coverage parameter was set to 10, except
for the lower coverage simulated datasets, where it was set to 5. The
parameters for the HIV dataset were adjusted to suit this dataset.

To compare MetaCortex’s performance with that of existing de
novo metagenome assemblers, we also assembled the same datasets
using MEGAHIT (v1.1.1), Ray Meta (v2.3.1), MetaVelvet
(v1.2.02), metaSPAdes (v3.14) and IDBA-UD (v1.1.2) (Peng, 2012).
For each assembler, we assembled each dataset using a range of
parameters where these were available. For MetaCortex and Ray
Meta, we used k-mer values equal to 31, 63, 95 and 127. For
MetaVelvet, we used k-mer values equal to 31, 63 and 95. Since
MEGAHIT uses several k-mer values when constructing an assem-
bly, we varied the –min-count parameter (with values default, 5, 10
and 20) for each dataset. The assemblies by metaSPAdes were cre-
ated using the default options. For the real sequence data, we used
trim-galore v0.5.0 (https://github.com/FelixKrueger/TrimGalore,
accessed November 2020) [a wrapper script around Cutadapt
(Martin, 2011)], to trim low-quality bases and adapter sequence
from the reads, with the flags –paired and –retain_unpaired where
appropriate. Since this can break the pairing of paired-end reads and
result in single-ended reads, we assembled these sets using both
‘paired þ unpaired single’ and ‘single only’ modes, for the assem-
blers where this was possible. The assemblies by IDBA-UD either
failed, or were still running after 62 days, so the results for this as-
sembler are not provided.

Statistics on the assemblies were obtained using MetaQUAST
(Mikheenko, 2016), which by default considers only those contigs
greater than 500 bp in length. A position on a contig is considered a
misassembly by MetaQUAST if either the left flanking sequence
aligns over 1 kb away from the right flanking sequence on a refer-
ence genome; flanking sequences overlap on more than 1 kb; or
flanking sequences align to different strands, chromosomes or
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genomes (i.e. chimeric assemblies). We set the flag ‘ambiguity-usage’
equal to one, so that only the best alignment from each contig is
used when calculating certain statistics. Here, for each dataset, we
present a single assembly from each assembler, that we judged to be
the best (based on genome coverage and error rates). Full results for
all assemblies are available in the Supplementary Materials, along
with the commands used.

2.1 Assembly of sequenced mock viral communities
For our first benchmark, we assessed how well MetaCortex per-
forms metagenomic assembly on simple mock communities com-
pared to other current assemblers. Two mock communities of 12
viruses, each containing 2 ssDNA viruses and 10 dsDNA viruses,
were assembled from real Illumina read data made available for
benchmarking purposes (Roux, 2016).

For both mocks, IDBA-UD was still running after 60 days, with
8 CPUs assigned. The assemblies by MetaVelvet were either killed
by the Linux Out of Memory (OOM) killer after running out of
memory, with 3TB of RAM allocated, or they recovered an insignifi-
cant total genome fraction, and so are not reported here. For
MockB, metaSPAdes failed after running out of memory, with 3TB
of RAM allocated. This is beyond the memory limits for many
researchers, and the usual strategy at this point is to either use an as-
sembler with lower resource requirements [such as MEGAHIT, as in
e.g. Kim (2021)] or assemble a much smaller subsample of reads in-
stead. However, recent studies suggest that subsampling can drastic-
ally reduce the length and proportion of conserved genes in the
subsequent assembly when compared to the assembly of the full
dataset (Cattonaro, 2018).

The first community, Mock A, was composed of the dsDNA
viruses each (theoretically) at 9.82% abundance and the ssDNA
viruses at 0.92%. The read set consisted of 2 � 250 bp paired-end
reads, sequenced on the Illumina MiSeq platform, with a total read
count of 96 m, including reads from host DNA. Using MetaCortex
(k¼95), we were able to assemble 99.89% of the viral genomes
with no misassemblies. Mismatch and indel rates were very low, at
4.43 per 100 kb and 3.44 per 100 kb, respectively. Individual gen-
ome coverages ranged from 100% to 99.56%. Eight virus genomes
were each assembled in a single contig, while the assembly of all
other genomes ranged from 8 to 40 contigs. Figure 1B shows that
the assembly by MetaCortex is the most contiguous.

Table 1 shows the assembly statistics as produced by MEGAHIT
(paired, min count¼20), MetaCortex (k¼95), metaSPAdes (de-
fault) and Ray Meta (paired, k¼31). Only the assembly by
metaSPAdes recovers a higher genome fraction than the assembly by
MetaCortex, with an extra 0.012%. However, metaSPAdes recov-
ered only four species at 100% (compared with six for MetaCortex)
and seven in a single contig (compared with eight for MetaCortex).
The assembly by MetaCortex was the most contiguous (Fig. 1B) and
has error rates almost identical to metaSPAdes (which had the low-
est), with only a slightly higher indel rate. The assembly by

MEGAHIT recovered a similar genome fraction across most species
in the mock (Fig. 1A), but the assembly was less contiguous
(Fig. 1B) and had the highest mismatch rate and the most misassem-

blies. Notably, the assembly by Ray Meta failed to assemble any of
the genome of the ssDNA phage alpha3.

The total aligned length of the assembly by MetaCortex was
1.09 Mb, out of a total assembly length of 5.7 Mb. We used BLAST

to query the longest unaligned contigs (greater than 100 kb) against
the nt database. This revealed that each had alignments to one of
Pseudoalteromonas or Cellulophaga baltica. These were host species

that the mock community was grown on, so this represents legitim-
ate assembly of DNA present in the sample. Including these species

in the reference list for MetaQUAST, we had a total aligned length
of 4.96 Mb, of which 3.87 Mb aligned to C.baltica over 143 contigs
(covering 82.03% of the C.baltica genome).

The second community, Mock B, consisted of the dsDNA viruses
at 3.51% abundance, and the two ssDNA viruses each at 32.47%

abundance. The read set consisted of 98m 2 � 250 bp paired-end
reads. Table 2 shows the assembly statistics as produced by
MEGAHIT (single, min count¼20), MetaCortex (k¼ 63) and Ray

Meta (single, k¼31). Using MetaCortex we assembled 99.71% of
the community, with a single misassembly. The percent of individual

genomes recovered ranged from 100% (for five genomes) to
98.744%. Seven virus genomes were assembled in a single contig,
and the assembly of all other genomes varied from between 6 and

25 contigs. As was the case in Mock A, �3.80 Mb of unaligned con-
tigs were found to align to C.baltica, covering 81.804% of its

genome.
MetaCortex recovered the largest genome fraction, with a simi-

lar fraction recovered to Mock A. The assembly by MetaCortex was
also the most contiguous (Fig. 1B), although this time it contained a
single misassembly (one more than Ray Meta) and had error rates

between those in the assemblies by Ray Meta and MEGAHIT
(Table 2).

2.2 Assembly of sequenced HIV lab mix
In order to evaluate MetaCortex’s ability to capture variants in a
real metagenomic sample, we created a read set containing five well-

studied strains of HIV-1 (89.6, HXB2, JR-CSF, NL4-3 and YU2) in
equal abundance that was bioinformatically mixed with reads from
a human preterm baby gut sample. Reads and reference sequences

for each HIV strain were made available in Di Giallonardo (2014)
(SRA run SRR961514). Each strain was between 93% and 97%

identical to the other strains, and the read set consisted of 308 Mb
of Illumina 2 � 250 bp reads. Reads from the human gut sample
were taken from (Leggett, 2020) (ENA run accession

ERR2099157), consisting of 10.5 Gb of Illumina 2 � 250 bp reads.
After mixing, reads from the HIV mix consisted of about 2.8%, rep-

resenting about 0.56% per strain.
To increase the sensitivity of MetaCortex’s ability to capture

strain-level variation, we set the SW delta parameter to 0.4 and the

min coverage parameter to 25. With these values, MetaCortex (SW,
k¼127) assembled 82.563% of the five HIV genomes across 31

contigs with no misassemblies.
Table 3 shows the best assemblies as produced by MEGAHIT

(paired, min count¼5), MetaCortex (k¼127), metaSPAdes (de-
fault), MetaVelvet (k¼95) and Ray Meta (paired, k¼127).
Figure 2A shows the individual coverages for each of the strains in

these assemblies, and Fig. 2B shows the NGA50s. The assembly by
MetaCortex produced the assembly with the highest genome frac-

tion and fewest misassemblies. Only Ray Meta produced an assem-
bly with a significantly lower mismatch rate, but this contained
more misassemblies and a smaller genome fraction. Another assem-

bly by Ray Meta (see Supplementary Materials) contained a smaller
genome fraction (70.089%) with no misassemblies but higher mis-
match and indel rates (76.67 and 11.8, respectively).

Fig. 1. (A) Genome coverages for Mock A and Mock B for assemblies presented in

Tables 1 and 2. Each cross indicates the assembled percent of a genome in the

mock. A cross at 0% indicates that a known genome in the sample was not present

in the assembly. (B) NGA50 by viral species for assemblies presented in Tables 1

and 2
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2.2.1 GFA output captures strain-level variation and facilitates

visualization

As an alternative way to capture strain-level diversity, we assembled
the same dataset as above using MetaCortex’s MC algorithm, with
the sequence graph output enabled and the minimum coverage par-
ameter set to 25. This creates a sequence graph showing
local variation along each contig in the assembly (see Fig. 3B). This
allows us to examine local variation along the contigs identified by
MetaCortex without having to disentangle the larger assembly graph.
For comparison, Figure 3A highlights the contigs from the
metaSPAdes assembly that map to the HIV genomes within the as-
sembly graph output produced by metaSPAdes [and visualized using
Bandage (Wick, 2015)]. These sequences are embedded within a
much larger and more complex connected graph. On the other hand,

Figure 3C represents the FASTA output from the Ray Meta assembly
in sequence graph form. Here, we have no information about local
variation and connectedness without performing further analyses.

Next, we used BLAST (Altschul, 1990) to map each contig
against a database consisting of the reference genomes for each HIV
strain. We found one contig of length 9166 bp (about the length of
the HIV genome) that mapped well to the reference genomes. We
extracted this contig, and the corresponding sequence graph ele-
ments into new files. Figure 2C shows the sequence graph corre-
sponding to this contig from the MetaCortex sequence graph
output, as visualized by GfaViz (Gonnella, 2019).

To demonstrate that this sequence graph contains more informa-
tion than the corresponding contig, we constructed one contig for
each of the five strains present in the sample. First, we created a

Table 1. Summary statistics for assemblies of Mock A

Genome

fraction (%)

Genomes covered

> 50%

Contigs Misassemblies Mismatch

rate

Indel

rate

MEGAHIT 98.233 11/12 1902 3 75.7 3.33

MetaCortex 99.886 12/12 339 0 4.43 3.44

metaSPAdes 99.898 12/12 2259 0 4.43 3.12

Ray Meta 97.652 11/12 1737 0 9.06 3.02

Note: The contigs field describes the number of contigs in the assembly of length greater than or equal to 500 bp. Misassemblies are defined in the text above

and include chimeric assemblies. Mismatch and indel rates are the number of occurrences per 100 kb. The NGA50 for each genome in the sample can be found in

Figure 1B.

Table 2. Summary statistics for assemblies of Mock B

Genome

fraction (%)

Genomes covered

> 50%

Contigs Misassemblies Mismatch

rate

Indel

rate

MEGAHIT 94.15 11/12 1762 2 15.66 3.65

MetaCortex 99.711 12/12 735 1 7.23 3.45

Ray Meta 95.582 12/12 2240 0 4.63 2.91

Table 3. Summary statistics for assemblies of 5-strain HIV mix

Genome fraction (%) Contigs HIV-aligned contigs Misassemblies mismatch rate Indel rate

MEGAHIT 36.153 5075 43 1 2744.27 68.61

MetaCortex 82.563 4635 31 0 508.2 10.1

metaSPAdes 36.153 3409 10 0 1424.3 0

MetaVelvet 2.011 3661 3 0 1747.17 0

Ray Meta 72.597 1243 43 1 74.03 8.54

Fig. 2. Assemblies of HIV-5-strain dataset. (A) Coverage for each viral species for

each assembler. (B) NGA50s for each strain per assembler. (C) Visualization of

GFA sequence graph output from MetaCortex. The sequence graph shows a single

contig assembled by MetaCortex, with local variation shown by branching

sequences

Fig. 3. (A) Portion of assembly graph produced by metaSPAdes. Highlighted area

shows sequences that mapped to the HIV reference genomes. (B) Portion of se-

quence graph produced by MetaCortex. Highlighted area represents the single con-

tig that mapped to the HIV reference genomes. (C) FASTA output from Ray Meta

represented as a sequence graph
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mapping of each sequence in the graph to a database of the reference
genomes using BLAST. Then, we constructed contigs in the follow-
ing way. For each strain, a walk is performed through the sequence
graph, where at each branch, the branch whose sequence has the
highest score for the strain is chosen. Scores are calculated as the
mapping identity multiplied by the proportion of the alignment cov-
ering the query (in ambiguous cases, the branch corresponding to
the original contig is chosen). Each walk corresponds to a contig,
which forms the strain-level contig. A python script to parse the
GFA file and BLAST mapping and construct the individual strain
assemblies is available in the MetaCortex repository, under scripts/
strain_assembly.py.

Next, we used dnadiff [part of MUMmer (Kurtz, 2004)] to com-
pare each strain-specific contig and the original contig to the strain’s
reference sequence. We found that the strain-specific contigs had
alignments with a higher average identity to the corresponding refer-
ence strain and contained far fewer SNPs and indels (Table 4).

2.3 Assembly of simulated viral and bacterial datasets
We tested MetaCortex’s performance on two simulated commun-
ities, one viral and one bacterial, both with a high amount of
strain-level variation and highly variable compositions. For both
communities, we used the software CAMISIM (Fritz, 2019) to simu-
late the community composition, strain-level variants and 15 Gb of
Illumina 2 � 150 bp paired-end reads, with a HiSeq 2500 error pro-
file. The simulated viral reads had variable but very high coverage,
with coverage ranging from 44370� to 143673� for individual
taxa across 10 genomes. Previous studies have suggested that the
ability of assembly tools to deal with ultra-high coverage genomes is
an important but often under-appreciated aspect of virome analysis,
particularly when using library preparation methods that increase
overall sequencing depth in order to improve recovery of low abun-
dance genomes (Sutton, 2019). The simulated bacterial reads had
variable coverage, with coverage ranging from 0.38� to 2557� for
individual taxa.

Using the reference genomes (both real and simulated), we were
able to compare the performance of MetaCortex, MEGAHIT, Ray
Meta, metaSPAdes and MetaVelvet, on these datasets. Since the
reads were simulated without adapter sequence, we assembled them
without adapter trimming and used only the paired-end assembly
mode for Ray Meta and MEGAHIT.

The viral community consisted of six species: Human mastade-
novirus F, Human herpesvirus 5, Human respiratory syncytial virus,
Influenza B virus, Reovirus 3 and Zika virus; and four simulated
strains of Influenza B virus. Each simulated strain had between
99.93% and 99.95% of bases aligned to the genome it was simu-
lated from, with an average alignment identity of between 97.09%
and 99.63%. The composition of the community is shown in
Figure 4A, and we simulated 150 bp long paired-end reads for a
total of 14.7 Gb. The results in Table 5 show the best assemblies
using parameters: MEGAHIT (paired, default parameters),
MetaCortex (k¼63, min coverage¼5), metaSPAdes (default
parameters) and Ray Meta (paired, k¼63).

For this dataset, MetaCortex recovered the highest overall gen-
ome fraction (98.78%), with individual genome fractions ranging
from 95.27% to 99.91% and had no misassemblies. MEGAHIT

recovered a similar genome fraction but had significantly more mis-
assemblies and a higher mismatch rate. Both Ray Meta and
metaSPAdes recovered smaller genome fractions (77–93%), al-
though with lower error rates (Table 5). Individual genome coverage
for each assembler is displayed in Figure 4B. MetaCortex achieved
the highest NGA50 for the simulated strains (which were also the
least abundant) but had lower NGA50 values for some of the other
species (Fig. 4C). The assemblies by MetaVelvet either failed to com-
plete, or recovered an insignificant genome fraction, and so are not
reported.

The bacterial community consisted of four species randomly
chosen from the well-known MBARC-26 mock community (Singer,
2016): Terriglobus roseus, Salmonella bongori, Fervidobacterium
pennivorans and Sediminispirochaeta smaragdinae; plus two strains
simulated from S.bongori, and four strains simulated from
F.pennivorans. Each simulated strain had between 99.98% and
100.00% of bases aligning to the genome it was simulated from,
with an average alignment identity of between 97.76% and
99.44%. Using CAMISIM, we simulated 14.9 Gb of 150 bp paired-
end reads, with the abundances as shown in Figure 4A. Table 6
shows the best assemblies from each assembler we tested, with
parameters: MEGAHIT (paired, default parameters), MetaCortex
(k¼63, min coverage¼5), metaSPAdes (default parameters),
MetaVelvet (k¼95) and Ray Meta (paired, k¼31).

MetaCortex again recovers the highest genome fraction (71%),
with 6 out of 10 genomes recovered at at least 50%. This time, the
assembly by MEGAHIT contained the most misassemblies, with
MetaCortex containing significantly fewer, but still a high misas-
sembly rate. The assemblies by metaSPAdes, MetaVelvet and Ray
Meta contained far fewer misassemblies but assembled a much
smaller proportion of the genomes present in the sample (27–54%).
The assembly by MetaVelvet has the lowest error rates, with no mis-
assemblies, but fails to assemble any sequence for six of the genomes
in the community, and for two of the genomes assembles <5%.
The assembly by metaSPAdes also has low error rates but recovers
significantly less of the genomes than MetaCortex, failing to
assemble any of the least two abundant strains (F.pennivorans.1
and F.pennivorans.2) and <7% of both F.pennivorans.3 and
S.bongori.1.

Table 4. Summary statistics comparing each strain-specific assembly to the base assembly

NL4-3 JR-CSF HXB2 89.6 YU2

Original Strain

specific

Original Strain

specific

Original Strain

specific

Original Strain

specific

Original Strain

specific

Total length 9166 9125 9166 9166 9166 9126 9166 9139 9166 9155

Aligned bases ref (%) 100 100 100 100 100 100 99.98 99.98 100 100

Aligned bases query (%) 100 100 100 100 100 100 99.98 99.98 100 100

Avg identity 96.04 97.17 97.39 99.19 95.81 96.70 93.82 96.41 94.81 95.69

Total SNPs 278 192 180 75 318 259 419 226 394 330

Total indels 83 58 11 1 81 55 72 9 56 33

Fig. 4. (A) Compositions of simulated communities. (B) Coverage per species for

each assembler. (C) NGA50s of each species by assembler (log scale)
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Both MetaCortex and MEGAHIT had a large number of misas-
semblies. The majority of misassembled blocks were in contigs
aligned to S.bongori sim. 2 (the second genome simulated from
S.bongori), at 65% and 66%, respectively. This genome was the
most abundant and had a large read coverage of over 1000�. High
coverage is known to cause misassemblies for single species de novo
genome assembly, with 20�–200� determined the ideal coverage
range (Desai, 2013), so we hypothesized that this was the cause of
the misassemblies. After subsampling the reads at 10% and reassem-
bling with MetaCortex using the same parameters as before, we
found that the number of misassembled blocks belonging to this
genome was reduced by 50%. This highlights the difficulty in having
a great enough sequencing depth to capture the least abundant
genomes. Methods such as digital normalization can be used to ad-
dress this (Howe, 2014).

2.4 Assembly of human gut microbiome sample
The primary focus of MetaCortex is on capturing connected strain-
level variation in metagenomic assemblies. However, like other
metagenome assemblers, MetaCortex can also be used to obtain
metagenome-assembled genomes (MAGs). To demonstrate this, we
assembled whole genome shotgun reads sequenced from a human
gut microbiome sample. We downloaded 25.1 Gb of reads
sequenced using Illumina HiSeq 4000, from the study (Kim, 2021)
(SRA run number SRR13060942). Using Trim Galore, we first
trimmed adapter sequence and low-quality bases and then
assembled the resulting reads using MetaCortex SW (with parame-
ters k¼63, min coverage¼2 and SW delta¼0.8). Contigs of length
<500 bp were discarded, which left 123720 contigs, with an N50 of
5399 and a maximum length 879838. Using BLAST, we aligned the
contigs to the nt database and found 41080 contigs had an align-
ment covering at least 90% of the contig with an average alignment
identity of >95%. Without a ground truth ‘answer’ for this dataset,
we were encouraged by this level of similarity to reference sequen-
ces, particularly considering there are still many uncharacterized
species present in the gut microbiome.

Using Bowtie2 (Langmead and Salzberg, 2012), we mapped the
reads against the assembled contigs and binned contigs using
MetaBAT2 (Kang, 2019), resulting in 155 genome bins. Since in this
case, there was no ground truth to compare our assembly to, we
used checkm (Parks, 2015) to assess the bins. This found 23 bins
with a completeness level of >50% (min 51.33% and max 91.37%)
and maximum contamination of 9.22%. Of these bins, 11 were
reported to have high levels of strain heterogeneity (>50%), suggest-
ing that the majority of contamination in these cases is coming from
multiple closely related organisms.

2.5 Resource usage
We reassembled all datasets and recorded the maximum memory
usage and time taken (both real time and total CPU time) for each
assembler (Table 7). In all cases, MEGAHIT takes the least time to
perform assemblies. This is because MEGAHIT is multithreaded,
but this also means that assemblies with MEGAHIT are non-
deterministic and therefore not completely reproducible.

3 Algorithm

The main innovation that MetaCortex introduces is two new graph
traversal algorithms for metagenomic datasets. The core algorithm,
MetaCortex Consensus (MC) is able to produce FASTA, GFA and
FASTG outputs. This is the option that should be selected to obtain
sequence graphs. The SW algorithm produces only FASTA output
but performs much faster than MC and attempts to write a single se-
quence for each variant that is detected. The user can also choose to
only write unitigs (the maximal paths where each inner node has de-
gree 2) as the FASTA output, by specifying the (existing) PerfectPath
algorithm.

First, reads are decomposed into k-mers, and a de Bruijn graph is
constructed; this graph (which will likely consist of several discon-
nected subgraphs) can be initially pruned to remove nodes which form
short ‘tips’, or which fail to meet a minimum level of coverage. Tips
up to a length of 100 are pruned by default, and the default minimum
coverage is 2 (these values can be modified with command line
options). Following construction of the de Bruijn graph, one of the fol-
lowing metagenomic traversal algorithms is executed. Formal descrip-
tions of the algorithms can be found in the Supplementary Materials.

3.1 MetaCortex consensus algorithm
In theory, in a metagenomic read set and given a large enough k-mer
size, evolutionarily distinct species whose genomes do not share any
k-mers are represented by distinct connected components in the de
Bruijn graph. This algorithm seeks to find consensus paths through
each connected component of the graph, representing the disparate
species in the sample, and then represent the inter-species diversity
by looking for local topological variation (e.g. bubbles) along each
consensus path, and outputting this in sequence graph format (GFA
and FASTQ). Thus, the final output is a sequence graph that repre-
sents several related taxa.

For each node in the graph, the connected component containing
this node is explored to find the highest coverage node and to deter-
mine the size of the component. If it is sufficiently large, it is trav-
ersed starting at the highest coverage node. At each branching point
in the graph, the branch with the highest coverage is favoured if it
meets a minimum coverage threshold (Fig. 5A). However, should

Table 5. Summary statistics for assemblies of simulated viral community

Genome

fraction (%)

Genomes covered

> 50%

Contigs Misassemblies Mismatch

rate

Indel

rate

MEGAHIT 98.709 10/10 1017 17 550.91 1.55

MetaCortex 98.777 10/10 2833 0 370.21 2.33

metaSPAdes 92.550 8/10 23 0 54.12 0.83

Ray Meta 77.241 3/10 14 3 10.59 0

Table 6. Summary statistics for assemblies of simulated bacterial community

Genome

fraction (%)

Genomes covered

> 50%

Contigs Misassemblies Mismatch

rate

Indel

rate

MEGAHIT 65.786 6/10 6602 128 420.37 2.85

MetaCortex 71.276 6/10 5119 94 446.07 5.32

metaSPAdes 54.308 4/10 273 1 110.58 2.13

MetaVelvet 54.027 5/10 6904 8 235.81 4.1

Ray Meta 50.098 4/10 438 4 65.9 0.78
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the paths from two other branches later join together (so that they
form a bubble) and have higher coverage collectively, then the high-
est coverage of these two branches is chosen (Fig. 5B). Traversal
continues until a tip is reached, the highest coverage branch at a
branching point has already been visited (e.g. in repeat regions), or
there are no branches of sufficiently high coverage.

Once a path has been identified, the sequence it represents is
written out to a FASTA file. Coverage statistics for the path are
included in the header line. If the user has selected to have GFA2/
FASTG output, the path is traversed to identify polymorphisms. At
each node along the path, any branches that meet a minimum cover-
age threshold (and are not part of the original path) are explored,
depth-first, with the highest coverage node taken at any subsequence
branches. If at any point we return to a node on the original path at
a position after the original branch, then this new path is written as
an alternative path in the GFA file. The path traversal then contin-
ues from where the alternative path joins the original path.

Next, each node from the connected component is removed
from the graph, and a new connected component is explored. Thus,
we obtain one contig and one sequence graph for each sufficiently
large connected component.

In many cases however (particularly if k is small), disparate spe-
cies will share k-mers, and it is likely to be the case that the de
Bruijn graph consists almost entirely of a single, large, connected
component (e.g. Fig. 2A), with several smaller components. To ac-
count for this, the ‘-M’ flag can be specified. In this case, during the
final node removal step of the algorithm, only nodes in the path are
removed, and the remaining nodes in the connected component will
be reconsidered. Thus, we obtain multiple contigs for each con-
nected component.

3.2 SW algorithm
One of the key difficulties of metagenomic assembly is the presence
of multiple distinct strains (or even distinct species) whose genomes
share k-mers. This means that in the corresponding de Bruijn graph,
some paths may represent portions of the genomes belonging to
multiple strains, so it may be desirable to include these in multiple
output sequences. The SW algorithm addresses this by not simply
removing nodes that have already been traversed, but instead reduc-
ing their coverage, so that they may be traversed multiple times.

Table 7. Resource usage statistics for assemblies

Dataset Assembler Elapsed time Total CPU time Maximum memory usage (GB)

Viral mock A MEGAHIT 02:01:09 16:09:12 15.67

Viral mock A MetaCortex 20:05:38 20:05:38 37.57

Viral mock A metaSPAdes 7-13:33:54 7-13:33:54 142.49

Viral mock A Ray Meta 3-12:29:55 3-12:29:55 49.80

Viral mock B MEGAHIT 01:43:23 13:47:04 16.11

Viral mock B MetaCortex 17:44:49 17:44:49 34.43

Viral mock B Ray Meta 2-17:40:31 2-17:40:31 29.09

HIV lab mix MEGAHIT 01:12:37 09:40:56 7.39

HIV lab mix MetaCortex 05:35:08 05:35:08 31.29

HIV lab mix metaSPAdes 19:48:48 3-07:15:12 67.92

HIV lab mix MetaVelvet 04:02:22 04:02:22 37.01

HIV lab mix Ray Meta 2-00:04:05 2-00:04:05 29.11

Simulated viral MEGAHIT 01:49:01 14:32:08 11.48

Simulated viral MetaCortex 1-12:42:56 1-12:42:56 187.54

Simulated viral metaSPAdes 5-10:30:49 10-21:01:38 113.90

Simulated viral Ray Meta 5-09:31:57 5-09:31:57 282.82

Simulated bacterial MEGAHIT 05:51:51 1-22:54:48 11.64

Simulated bacterial MetaCortex 3-06:13:56 3-06:13:56 150.07

Simulated bacterial metaSPAdes 4-12:53:31 9-01:47:02 189.53

Simulated bacterial MetaVelvet 06:32:27 06:32:27 229.37

Simulated bacterial Ray Meta 4-17:58:07 4-17:58:07 211.61

Note: Times are in the format d-hh:mm:ss.

A

B

C

Fig. 5. Depictions of de Bruijn graphs, with the coverage for each node represented.

(A) The path chosen by MetaCortex Consensus, with the highest coverage node on

the far left (highlighted in brown), and the chosen path following the lower edges of

the graph (highlighted in orange). (B) The path chosen when two of the branches

form a bubble. Because the two bubble branches, added together, represent a com-

bined higher coverage than the top branch, a route through the bubble is selected

for the path. (C) The progression of the SW algorithm. The numbers above the edges

are the normalized coverage difference/delta. The first graph is before coverage sub-

traction, with the path chosen again following the lower edges of the graph (high-

lighted in orange). The second graph is after coverage subtraction. Nodes belonging

to exactly one path are removed (now with coverage 0, shown in grey), whilst nodes

that are shared between paths remain with reduced coverage. (A color version of

this figure appears in the online version of this article)
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The algorithm proceeds as follows. First, each node is examined,
and for any that meet a minimum coverage requirement, the con-
nected component they are contained in is explored to find the node
with locally maximal coverage. (Note that unlike in MC, the whole
component may not be explored, in order to speed up the process.)
From this node, the highest coverage path is obtained and written to
the FASTA file, as in MC, except that at branches, the highest cover-
age branch is always taken (i.e. bubbles are disregarded).

Next, MetaCortex estimates the number of variants covering
each node in the path. First, the lowest coverage node along the path
is found, and this is assumed to have one variant covering it. There
may be more than one node with the same minimal coverage, in
which case, the node closest to the end of the path is chosen. Then,
starting from the minimal coverage node, the path is walked in each
direction, and at each step, the quantity d is calculated, where

d ¼ ccurrent � cprevious

maxðccurrent; cpreviousÞ

and ccurrent is the coverage of the node at the current step, and
cprevious is the coverage of the node at the previous step. This results
in a value between �1 and 1. If this value is less than �DSW (a value
determined by the user with option �W, and set to 0.8 by default)
then the number of variants covering this node is assigned the value
of the number of variants covering the previous node plus 1; if it is
greater than DSW the number of variants covering this node is
assigned whichever is larger of the value of the number of variants
at the previous node minus 1, and 1.

After assigning a value to each node estimating the number of
variants covering that node in the path, the coverage of nodes is
adjusted in the following way. Nodes with 1 variant covering them
are reduced to 0 and are essentially removed from the graph. Nodes
with more than 1 variant covering them are reduced by an amount
which is linearly interpolated from the nearest 1-variant nodes be-
fore and after this node in the path (Fig. 5C). This process is
repeated until all nodes have been examined.

This algorithm is based on the assumption that, for any two ad-
jacent nodes in the graph that represent k-mers that only appear
consecutively in the metagenome (i.e. the first node has outdegree
one, and the second node has indegree one), the change in coverage
between them will be small compared to their coverage values. On
the other hand, for any two adjacent nodes in the graph that repre-
sent k-mers that appear consecutively in the metagenome, but at
least one of which also appears elsewhere (i.e. at least one of the out-
degree of the first node and indegree of the second node is greater
than one), the change in coverage between them may be significant
compared to the coverage values. The relative change in coverage
across the path is what the value d measures. This assumption, how-
ever, is only true for samples that have been sequenced with shotgun
metagenome sequencing, and for regions of low sequence complex-
ity (e.g. repeat regions) this may not be the case.

When choosing a value for the parameter DSW, the user should
choose smaller values if the dataset is expected to have high levels of
strain diversity and the user wishes to capture this in the assembly.
For datasets with less strain diversity, or if the user wishes to capture
only dominant strains, higher values (closer to 1.0) should be chosen.

4 Implementation

MetaCortex uses Cortex’s hash table structure to store k-mer infor-
mation and to encapsulate the de Bruijn graph structure. For reasons
of memory efficiency, the maximum k-mer size must be specified
when building MetaCortex. The default maximum value is 31, with
63, 95, 127, 160 or 192 also possible. The size of the hash table is
user-defined and should be sufficient to contain the totality of the
dataset being assembled (if when loading the reads into the hash
table, it becomes full, the user is warned, but execution continues
and no new k-mers are added to the hash table). Further details
can be found in MetaCortex’s documentation and the cortex_var
manual (http://cortexassembler.sourceforge.net/cortex_var_user_
manual.pdf, accessed November 2021).

After the construction of the hash table from the read files, a bin-
ary representation of the de Bruijn graph can be written to disc and
this can then be used as the input to later assemblies. This can be
used to speed up assembly time for subsequent assemblies of the
same dataset, or to parallelize the reading of FASTA or FASTQ files.
In the latter case, the individual CTX files can be merged to con-
struct a de Bruijn graph from the whole read set. Figure 6 depicts a
typical workflow.

5 Discussion

Compared to the challenge of assembling a single isolate species,
metagenomic assembly presents significant additional hurdles
related to the presence of closely related species and their differing
abundance in a sample. These challenges can be particularly obvious
in viral communities, where a rapid evolutionary rate can make it es-
pecially difficult to distinguish between and within quasispecies. In
recent years, several new assembly tools have attempted to tackle
the challenges of metagenomic assembly using various heuristic
approaches. Most of these have adopted approaches which reduce
assembly graphs to sets of contigs, losing the variation captured by
the underlying graph structures. While this variation may still be
present in an assembly graph, it can be difficult to untangle these
graphs for further analysis (as demonstrated in Fig. 2). We address
this in MetaCortex, a new assembly tool that preserves strain inter-
connectedness by outputting sequence graph files as an alternative
to contigs. In addition, a new SW algorithm enables MetaCortex to
estimate the number of variants in each subgraph and to output rep-
resentative contigs. This algorithm was able to recover a high pro-
portion of five strains of HIV from a lab mixed community within a
metagenomic dataset, and five strains (one real and four simulated)
of influenza virus from a simulated viral community, without misas-
sembly. The latter result is particularly encouraging, as several of
these strains were at very low abundance in the sample.

Overall, we found that MetaCortex consistently recovers a very
high genome fraction when compared to other popular metagenome
assemblers. In particular, our simulated datasets show that

Fig. 6. Flow chart depicting typical MetaCortex workflow
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MetaCortex is especially effective at recovering the genomes of ex-
tremely low abundant species. For the assembly of viral commun-
ities, MetaCortex had low error rates comparable with the lowest of
the other assemblers tested.
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