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Abstract 

When we attentively listen to an individual’s speech, our brain activity dynamically aligns to the 

incoming acoustic input at multiple timescales. Although this systematic alignment between 

ongoing brain activity and speech in auditory brain areas is well established, the acoustic events 

that drive this phase-locking are not fully understood. Here, we use magnetoencephalographic 

(MEG) recordings of 24 human participants (12 females) while they were listening to a one hour 

story. We show that whereas speech-brain coupling is associated with sustained acoustic 

fluctuations in the speech envelope in the theta frequency range (4 - 7 Hz), speech tracking in the 

low frequency delta (below 1 Hz) was strongest around onsets of speech, like the beginning of a 

sentence. Crucially, delta tracking in bilateral auditory areas was not sustained after onsets, 

proposing a delta tracking during continuous speech perception that is driven by speech onsets. 

We conclude that both onsets and sustained components of speech contribute differentially to 

speech tracking in delta and theta frequency bands, orchestrating sampling of continuous speech. 

Thus, our results suggest a temporal dissociation of acoustically driven oscillatory activity in 

auditory areas during speech tracking, providing valuable implications for orchestration of speech 

tracking at multiple time scales 

Keywords 

auditory cortex; magnetoencephalography; mutual-information; speech perception; speech-brain 

coupling; 
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Introduction 1 

Our perceptual system benefits from environmental regularities (Lakatos et al. 2019). When we 2 

listen to an individual’s speech, amplitude fluctuations of the speech waveform – the so-called 3 

speech envelope – exhibits temporal regularity at around 5 Hz (Giraud and Poeppel 2012; Ding 4 

et al. 2017) (Giraud and Poeppel 2012; Ding et al. 2017; Poeppel and Assaneo 2020). A line of 5 

research has shown that the auditory cortex dynamically tracks these fluctuations through the 6 

phase of low-frequency oscillations (Luo and Poeppel 2007), a process which is thought to 7 

facilitate the parsing and grouping of continuous speech (Giraud and Poeppel 2012) with 8 

perceptual relevance (Keitel et al. 2018) and which is conceptually motivated by observations of 9 

rhythmic neural activity at different frequencies along the auditory pathway (Giraud and Poeppel 10 

2012; Keitel and Gross 2016; Obleser and Kayser 2019; Brodbeck and Simon 2020; Meyer et al. 11 

2020). 12 

In this line, associations between speech and the brain have been prominently observed in the 13 

delta and theta frequency range (Ahissar et al. 2001; Luo and Poeppel 2007; Gross et al. 2013, 14 

2013; Ding and Simon 2014, 2014; Kayser, Ince, et al. 2015; Ding et al. 2017; Keitel et al. 2018; 15 

Jin et al. 2020); (Ahissar et al. 2001; Luo and Poeppel 2007; Gross et al. 2013; Ding and Simon 16 

2014; Kayser, Ince, et al. 2015; Jin et al. 2020), depicted as peaks in the frequency-resolved 17 

speech-brain coupling analysis (Gross et al. 2013; Ding and Simon 2014; Ding et al. 2017; Keitel 18 

et al. 2018). Speech tracking postulates a simultaneous phase-resetting of ongoing oscillations 19 

driven by acoustic landmarks in the speech envelope which in the temporal domain can include 20 

acoustic landmarks such as amplitude peaks (Doelling et al. 2014) or edges [peaks in the 21 

amplitude’s rate of change (Oganian and Chang 2019)]. Crucially, speech tracking analysis 22 

benefits from the inclusion of the envelope’s rate of change in low delta frequencies (0.6 - 0.8 Hz), 23 

but not in the typical theta-band peak at 5 Hz (Chalas et al. 2022), suggesting that speech-brain 24 

coupling is differentially driven by distinct temporal landmarks in the delta and theta bands.  25 

https://sciwheel.com/work/citation?ids=7542887&pre=&suf=&sa=0
https://sciwheel.com/work/citation?ids=5179486,237567&pre=&pre=&suf=&suf=&sa=0,0
https://sciwheel.com/work/citation?ids=5179486,237567&pre=&pre=&suf=&suf=&sa=0,0
https://sciwheel.com/work/citation?ids=8873082,5179486,237567&pre=&pre=&pre=&suf=&suf=&suf=&sa=0,0,0
https://sciwheel.com/work/citation?ids=140492&pre=&suf=&sa=0
https://sciwheel.com/work/citation?ids=237567&pre=&suf=&sa=0
https://sciwheel.com/work/citation?ids=5402969&pre=&suf=&sa=0
https://sciwheel.com/work/citation?ids=1829706,237567,9412841,7712752,9875917&pre=&pre=&pre=&pre=&pre=&suf=&suf=&suf=&suf=&suf=&sa=0,0,0,0,0
https://sciwheel.com/work/citation?ids=1829706,237567,9412841,7712752,9875917&pre=&pre=&pre=&pre=&pre=&suf=&suf=&suf=&suf=&suf=&sa=0,0,0,0,0
https://sciwheel.com/work/citation?ids=1829706,237567,9412841,7712752,9875917&pre=&pre=&pre=&pre=&pre=&suf=&suf=&suf=&suf=&suf=&sa=0,0,0,0,0
https://sciwheel.com/work/citation?ids=140975,4723791,140492,8798135,4414351,237611,5402969,5179486&pre=&pre=&pre=&pre=&pre=&pre=&pre=&pre=&suf=&suf=&suf=&suf=&suf=&suf=&suf=&suf=&sa=0,0,0,0,0,0,0,0
https://sciwheel.com/work/citation?ids=140975,4723791,140492,8798135,4414351,237611,5402969,5179486&pre=&pre=&pre=&pre=&pre=&pre=&pre=&pre=&suf=&suf=&suf=&suf=&suf=&suf=&suf=&suf=&sa=0,0,0,0,0,0,0,0
https://sciwheel.com/work/citation?ids=140975,4723791,140492,8798135,4414351,237611,5402969,5179486&pre=&pre=&pre=&pre=&pre=&pre=&pre=&pre=&suf=&suf=&suf=&suf=&suf=&suf=&suf=&suf=&sa=0,0,0,0,0,0,0,0
https://sciwheel.com/work/citation?ids=140975,4723791,140492,8798135,4414351,237611&pre=&pre=&pre=&pre=&pre=&pre=&suf=&suf=&suf=&suf=&suf=&suf=&sa=0,0,0,0,0,0
https://sciwheel.com/work/citation?ids=140975,4723791,140492,8798135,4414351,237611&pre=&pre=&pre=&pre=&pre=&pre=&suf=&suf=&suf=&suf=&suf=&suf=&sa=0,0,0,0,0,0
https://sciwheel.com/work/citation?ids=237611,5402969,4414351,5179486&pre=&pre=&pre=&pre=&suf=&suf=&suf=&suf=&sa=0,0,0,0
https://sciwheel.com/work/citation?ids=237611,5402969,4414351,5179486&pre=&pre=&pre=&pre=&suf=&suf=&suf=&suf=&sa=0,0,0,0
https://sciwheel.com/work/citation?ids=1444434&pre=&suf=&sa=0
https://sciwheel.com/work/citation?ids=8105396&pre=&suf=&sa=0
https://sciwheel.com/work/citation?ids=13244401&pre=&suf=&sa=0
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Speech tracking in the theta band has been interpreted as an index of flexible theta oscillations 26 

aligning their phase and marking perceptual segments for further processing (Luo and Poeppel 27 

2007; Giraud and Poeppel 2012; Ding and Simon 2014; Doelling et al. 2014) whereas the delta 28 

band has been suggested to represent both segmentation of speech components that are closely 29 

related to the acoustic structure of speech and linguistic elements (Giraud and Poeppel 2012; 30 

Ding et al. 2016; Meyer et al. 2017; Keitel et al. 2018; Boucher et al. 2019; Rimmele et al. 2021). 31 

Nevertheless, consensus has not yet been reached regarding the specific role of delta speech 32 

tracking and its relationship to theta speech tracking. 33 

In natural settings, ongoing sustained speech is interleaved by subsequent periods of silences 34 

and speech onsets (Rosen 1992; Zellner 1994), which are crucial for speech segmentation (Dilley 35 

and Pitt 2010) and intelligibility (Koning and Wouters 2012). Importantly, neural responses at the 36 

beginning of a phrase or a sentence are spatially segregated from sustained responses within 37 

superior temporal gyrus (Hamilton et al. 2018). However, different speech components in the time 38 

domain (i.e. onsets/offsets and sustained speech) have not been systematically related to neural 39 

tracking of speech in the auditory cortex thus far. Therefore, it is yet unclear whether neural 40 

tracking of speech at the auditory areas aligns to amplitude fluctuations in ongoing sustained 41 

speech or reflects also different temporal landmarks such as speech onsets/offsets at the 42 

beginning of a phrase or a sentence.  43 

Thus, here we aim to address whether different temporal events in the speech envelope can give 44 

rise to differential speech tracking in delta and theta bands in bilateral auditory areas. We focused 45 

on 0.6 Hz (delta band) and 5 Hz (theta band) as both frequencies occur as peaks in a recent 46 

speech-tracking analysis while only speech tracking in 0.6 Hz was benefited by the inclusion of 47 

the envelope’s derivative (Chalas et al. 2022). While we take 0.6 Hz and 5 Hz as representative 48 

frequencies of the delta and theta band respectively, we also show that results generalize within 49 

each respective band. We capitalize on the high signal-to-noise ratio of a one hour-long speech 50 

https://sciwheel.com/work/citation?ids=140492,1444434,4414351,237567&pre=&pre=&pre=&pre=&suf=&suf=&suf=&suf=&sa=0,0,0,0
https://sciwheel.com/work/citation?ids=140492,1444434,4414351,237567&pre=&pre=&pre=&pre=&suf=&suf=&suf=&suf=&sa=0,0,0,0
https://sciwheel.com/work/citation?ids=237567,3045403,5963771,6911583,5402969,11148578&pre=&pre=&pre=&pre=&pre=&pre=&suf=&suf=&suf=&suf=&suf=&suf=&sa=0,0,0,0,0,0
https://sciwheel.com/work/citation?ids=237567,3045403,5963771,6911583,5402969,11148578&pre=&pre=&pre=&pre=&pre=&pre=&suf=&suf=&suf=&suf=&suf=&suf=&sa=0,0,0,0,0,0
https://sciwheel.com/work/citation?ids=13240637,1444447&pre=&pre=&suf=&suf=&sa=0,0
https://sciwheel.com/work/citation?ids=5592129&pre=&suf=&sa=0
https://sciwheel.com/work/citation?ids=5592129&pre=&suf=&sa=0
https://sciwheel.com/work/citation?ids=13240724&pre=&suf=&sa=0
https://sciwheel.com/work/citation?ids=5592538&pre=&suf=&sa=0
https://sciwheel.com/work/citation?ids=13244401&pre=&suf=&sa=0
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listening MEG dataset (Daube et al. 2019) and focus on the temporal segments that drive speech-51 

tracking in delta (below 1 Hz) and theta (5 Hz). We find that events with high amplitude in low-52 

delta and theta bands in the speech envelope correspond to speech onsets/offsets and ongoing 53 

sustained speech, respectively. Overall, our results indicate that both frequency bands contribute 54 

to speech tracking but that they do so at different times.  55 

Methods 56 

Participants and study design 57 

Twenty-four participants (12 female; mean age = 24.0 years, age range 18 - 35 years) participated 58 

in this study. All participants provided written consent prior to the experiment and received a 59 

monetary compensation of £9 per hour. The study was approved by the College of Science and 60 

Engineering Ethics Committee at the University of Glasgow (application number: 300170024). 61 

Participants were asked to listen attentively to a 55 minute long audiobook, and they were 62 

informed that they would have to answer questions relative to the story at the end of the session. 63 

Brain activity was monitored with a 248-magnetometer whole-head MEG system (MAGNES 3600, 64 

4-D Neuroimaging) in a magnetically shielded room. Weighted T1-MRI images were obtained 65 

prior to the experiment from each individual. MEG Data were acquired at a sampling rate of 66 

1017.25 Hz for 10 participants and 2035.51 Hz for 14 participants. Individual head shapes were 67 

digitized before each recording via five coils attached to the head. Each MEG session was 68 

separated into 6 blocks of ~9.16 minutes. The last 10 seconds of each block were repeated in the 69 

following block to allow participants to more easily follow the story. The stimulus was delivered 70 

using PsychToolBox (Brainard 1997) with two Etymotic ER-30 insert earphones. To assess 71 

whether participants paid attention to the story, they answered 18 multiple choice questions at 72 

the end of the recording (3 response options each) with the number of correct options varying 73 

https://sciwheel.com/work/citation?ids=6995390&pre=&suf=&sa=0
https://sciwheel.com/work/citation?ids=116405&pre=&suf=&sa=0
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between 1-3 per question (mean accuracy  0.95; SD  0.05; range 0.78-1). A different analysis of 74 

this dataset has been reported elsewhere (Daube et al. 2019; Chalas et al. 2022).  75 

Data preprocessing 76 

MEG data were processed with the Fieldtrip toolbox (Oostenveld et al. 2011) and in-house Matlab 77 

scripts [Matlab 2022a (The MathWorks Inc)]. Bad channels were manually detected and 78 

interpolated (spherical-spline) from neighboring channels (mean number of rejected channels per 79 

block M = 3.07; SD = 3.64). Squid jumps were replaced with DC patches and continuous data 80 

from the onset of the story were denoised by subtracting the projection of the data on orthogonal 81 

basis of the reference channels (using ft_denoise_pca). Continuous data were further filtered 82 

offline with a high-pass filter of 0.5 Hz (fourth-order forward-reverse zero-phase Butterworth) and 83 

downsampled to 100 Hz. Independent components from heartbeats and eye movements were 84 

visually isolated and removed using the runica function of FieldTrip (mean number of rejected 85 

components per block M = 5; SD = 5.3)  86 

Frequency-specific speech envelope components 87 

First, the amplitude-modulated speech envelope was extracted from the continuous speech signal 88 

for each experimental block. For this, 31-channel Log-Mel-Spectograms (124.1 Hz - 7284.1 Hz) 89 

were computed and the wide-band speech envelope was estimated by the sum of the absolute 90 

values across bands (Schädler et al. 2012) and further resampled at 100 Hz. We were further 91 

interested in frequency-specific components of the speech envelope.  For that, we transformed 92 

the speech envelope to the frequency domain using a continuous morlet wavelet transform (CWT) 93 

for 64 frequencies (0.5 to 40 Hz; cwtfilterbank.m in Matlab - wt.m performs the actual 94 

transformation into the frequency domain; the Morse wavelet had symmetry parameter gamma = 95 

3 and time-bandwidth = 10). We selected bands centered on 0.6 Hz and 5 Hz as representative 96 

of the delta and theta frequency bands (see Introduction) respectively, and we extracted the 97 

https://sciwheel.com/work/citation?ids=6995390,13244401&pre=&pre=&suf=&suf=&sa=0,0
https://sciwheel.com/work/citation?ids=375848&pre=&suf=&sa=0
https://sciwheel.com/work/citation?ids=11393557&pre=&suf=&sa=0
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absolute values of the complex data as a measure of amplitude along with the phase angles for 98 

the frequencies of interest (Figure 1A). While we focused on two frequencies (0.6 and 5 Hz), we 99 

show that the results presented here generalize across neighboring frequencies in both bands.  100 

We aimed to identify time segments in the speech envelope that show strong power in the delta 101 

or theta band. Therefore, we extracted 4-s segments centered on the peaks of the cosine of the 102 

phase from the speech envelope (using findpeaks.m in Matlab) for frequency bins centered on 103 

0.6 Hz and 5 Hz (not wavelet-transformed; Figure 1A; top panel). Then we sorted these segments 104 

by their mean amplitude (0.6 Hz or 5 Hz). This resulted in data segments with high and low power 105 

for 0.6 Hz or 5 Hz. We extracted an equal number of segments for each category (n=886; high 106 

and low power for delta and theta). Next, we replaced the data in each segment with the original 107 

speech envelope. As a result, we obtained segments of the speech envelope corresponding to 108 

the four categories (high and low power for delta and theta; see Figure 1B and 1D for segments 109 

for delta and theta, respectively). To characterize the temporal structure of the extracted 110 

segments, we clustered those exhibiting high power in the delta and theta frequency band using 111 

a k-means algorithm. We estimated the optimal number of clusters using a Silhouette evaluation 112 

(function evalclusters in matlab) which resulted in k = 2 for delta (0.6 Hz; Figure 2A) and k=4 for 113 

theta (5 Hz; Figure 2D). The resulting temporal patterns correspond to prototypical waveforms of 114 

the speech envelope when power in the delta or theta frequency band is high. 115 

Regions of interest 116 

For source analysis, individual T1-weighted MRIs were used to estimate the individuals’ head 117 

models. MRIs were coregistered to the MEG coordinate system, using the digitized head shapes 118 

and an iterative closest point algorithm (Besl and McKay 1992). Single-shell volume conductor 119 

models were generated from individual MRI after segmentation to white matter, gray matter, and 120 

cerebrospinal fluid (Nolte 2003). To estimate source activity, LCMV Beamformer was used to 121 

https://sciwheel.com/work/citation?ids=1328728&pre=&suf=&sa=0
https://sciwheel.com/work/citation?ids=6526065&pre=&suf=&sa=0
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estimate coefficients from the MEG time series for each voxel on a 5 mm grid (Van Veen et al. 122 

1997). The sensor covariance matrix used was computed across all blocks and the λ 123 

regularization parameter was set to 0%. Time series were extracted for each dipole orientation, 124 

resulting in three time series per voxel. We applied an atlas-based parcellation of cortical space, 125 

resulting in 181 ROIs per hemisphere (Glasser et al. 2016). We constrained our analysis to 126 

auditory responses so we combined bilateral A1, Mbelt, LBelt, PBelt, and RI parcels, resulting in 127 

a combined parcel that is referred to as Early Auditory Cortex. Source time series of these parcels 128 

were concatenated across voxels and orientations and we extracted the first three principal 129 

components for the speech tracking analysis.  130 

Speech tracking and statistical analysis 131 

We computed statistical dependencies between the speech envelope and the bilateral early 132 

auditory cortex on the basis of information theory (Shannon 1948). We estimated mutual 133 

information (MI) using Gaussian Copula MI (GCMI) between speech signals and the first three 134 

principal components from the regions of interest (Ince et al. 2017). GCMI performs analytical 135 

computation of MI between two signals after gaussian copula transformation. This approach has 136 

the advantage of being computationally efficient, avoiding the estimation of probability 137 

distributions from discrete variables which requires an excessive number of data samples, while 138 

it doesn’t require an a-priori assumption of the marginal distributions.   139 

To identify frequency specific interactions in speech and brain signals, we also applied a 140 

continuous wavelet transformation (CWT) for 64 frequencies (from 0.5 Hz to 40 Hz) to each time 141 

series extracted from bilateral early auditory cortex (three principal components per ROI; see 142 

above). The estimation resulted in GCMI spectra indicating phase alignment between speech and 143 

brain at zero delay. Speech-tracking (as depicted in GCMI values) can vary in temporal delays 144 

for different frequencies, but we did not have a specific hypothesis for temporal delays operating 145 

https://sciwheel.com/work/citation?ids=1237853&pre=&suf=&sa=0
https://sciwheel.com/work/citation?ids=1237853&pre=&suf=&sa=0
https://sciwheel.com/work/citation?ids=1736902&pre=&suf=&sa=0
https://sciwheel.com/work/citation?ids=852065&pre=&suf=&sa=0
https://sciwheel.com/work/citation?ids=4723792&pre=&suf=&sa=0
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for delta and theta frequency bands. Thus, we decided to report speech-brain coupling at zero 146 

delay, but we replicated the same analysis for various positive delays (from 10 to 300 ms with 147 

steps of 10 ms) and the results were qualitatively similar (see Supplementary Figure 2). Then, 148 

significance of GCMI values at the group level were determined with a series of two-tailed 149 

permutation tests (Maris and Oostenveld 2007) comparing individual GCMI per parcels, 150 

frequencies and conditions (high and low power) and thresholded at p=0.05 and corrected for 151 

multiple comparisons with False Discovery Rate (Benjamini 2010). 152 

Results 153 

Speech envelope related to onsets and sustained speech 154 

We hypothesized that not all speech segments contribute equally in frequency-resolved 155 

speech-brain coupling. To identify temporal segments that differentially lead to delta and theta 156 

coupling, first we aimed to characterize temporal segments of the acoustic speech that give rise 157 

to high and low amplitudes in delta and theta frequency bands in the speech envelope.  158 

 159 

 160 

https://sciwheel.com/work/citation?ids=284991&pre=&suf=&sa=0
https://sciwheel.com/work/citation?ids=3460383&pre=&suf=&sa=0
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Figure 1: Procedure of identifying segments of high/low power in delta and theta frequency bands. 161 
(A) Speech envelope (top panel) was transformed in the frequency domain with a continuous Morlet wavelet 162 
transform (c.w.t). We identified peaks of the cosine of the phase (third row) exhibiting high/low amplitude 163 
(fourth row) and we sorted them according to their amplitude to high and low. (B) Examples of single-164 
segments for high (dark purple) and low power at 0.6 Hz (light purple). (C) Power spectral densities for 165 
segments with high power at 0.6 Hz (high delta; dark purple) and low power at 0.6 Hz (low theta; light 166 
green). (D) Examples of single-segments for high (dark green) and low power in 5 Hz (light green). (E) 167 
Power spectral densities for segments with high power in 5 Hz (high theta; dark green) and low power in 5 168 
Hz (low theta; light green).  169 

In Figure 1B, we plot representative single-trial segments for high and low power in 0.6 170 

Hz. We observed that the high-delta segment (dark purple) contains a gap in the speech signal 171 

near time 0s, which was absent in a segment with low delta power (light purple). Figure 1C shows 172 

the power spectral densities of segments with high and low power at 0.6 Hz (high delta, low delta). 173 

It is evident that there is a broad 1/f profile, with increased power at progressively lower 174 

frequencies with no clear deviating peak, corroborating that segments with high delta power do 175 

not exhibit sustained periodic activity. In contrast, with a similar approach power spectral density 176 

of high theta shows a clear peak in 5 Hz (Figure 1E) suggesting sustained speech activity, 177 

evidence in single trial segments (Figure 1D; see below for a more detailed description). 178 

To identify the temporal structure giving rise to high delta power, high-delta segments were 179 

subjected to k-means clustering (k=2; see Methods). Figure 2A shows the two resulting clusters 180 

and Figure 2C all the high delta trials sorted according to the k-means clustering. In figure 2B we 181 

plot 25 representative segments with high-delta power at 0.6 Hz. It is evident that segments with 182 

high delta power at 0.6 Hz correspond to trials containing speech onsets in the envelope, such 183 

the ones at the beginning of a sentence (Supplementary figure 1B).  184 

We employed a similar approach for the theta band and extracted data segments with 185 

high theta amplitude in 5Hz (See Methods). We note that the modulation spectrum of our stimulus 186 

material peaks at 5 Hz (Supplementary figure 1C), thus we were expecting sustained periodic 187 

activity in the speech envelope segment’s exhibiting high theta power in 5 Hz. We identified 858 188 

segments with high theta power (Figure 2E). In Figure 1D, we plot representative single-trial 189 



 

10 

segments for high theta power. As expected, the segment with high theta power exhibited 190 

sustained speech activity, opposed to the low theta segment. We wanted to see if this generalizes 191 

to all segments with high theta power. In this case, k-means clustering (k=4; see Methods) did 192 

not yield interpretable results as the higher frequency of the theta band results in higher temporal 193 

variability and thus precludes the identification of clear temporal structure (Figure 2D). We 194 

illustrate the temporal structure giving rise to high theta amplitude by plotting the speech envelope 195 

segments with highest theta amplitude. As expected, these speech envelope segments reveal 196 

sustained rhythmic structure in the theta frequency band (Figure 2F). 197 

 198 

Figure 2: Onsets and sustained speech components in high delta and theta speech envelope 199 

segments: (A) Clustering of segments exhibiting high power in 0.6 Hz with k-means (k=2). (B) Example of 200 

25 segments with high power in 0.6 Hz. (C) Segments of speech envelope with high delta power in 0.6 Hz 201 

sorted according to a k-means algorithm (k=2; see Methods). (D) Clustering of segments exhibiting high 202 

power in 5 Hz with k-means (k=4). (E) Segments of speech envelope with high theta power in 5 Hz. (F) 203 

Example of 25 segments with high power in 5 Hz. 204 

In summary, we find that the two frequency bands most often discussed in the literature of speech 205 

tracking, namely delta and theta, correspond to different temporal phenomena in the speech 206 

envelope: While high delta power coincides with abrupt amplitude step changes in the speech 207 
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envelope (energy resets such as during speech onset), high theta power reflects sustained 208 

rhythmic temporal structure at 5 Hz, reflecting the peak at modulation spectra of the stimuli.  209 

High delta and theta speech envelope segments are temporally dissociated 210 

Since speech onsets (associated with high delta power) and sustained speech (related to high 211 

theta power) correspond to different time segments in the speech envelope, we hypothesized that 212 

the amplitude of both frequency bands is anti-correlated. Figure 3 shows that this is indeed the 213 

case. In fact, correlating 0.6 Hz amplitude with the amplitude of all frequencies up to 15 Hz (Figure 214 

3A) reveals the strongest negative correlation in the theta band which is not evident for other 215 

frequencies (r(32998) = - 0.2; p << .001; Figure 3B)  216 

Surprisingly, we observed that the low theta segment (Figure 1D) is mostly characterized by 217 

periods of silence, dynamics that we found to characterize high delta segments. This suggested 218 

a phase-amplitude relationship between delta and theta segments. Indeed, plotting the grand 219 

average amplitude of speech segments locked to high delta events reveals that amplitude of theta 220 

follows phase of delta (Figure 3C), which is not the case for other frequencies in the delta band 221 

(see Supplementary Figure 2). 222 

 223 

Figure 3: Phase and amplitude relation of delta and theta band in the speech envelope. (A) Correlation 224 

matrix for power of 0.5 - 15 Hz after continuous Morlet wavelet transformation of the speech envelope. (B) 225 

Individual frequency correlations of 0.6, 1.6, 2.6, 5, 6, and 7 Hz amplitude with all frequencies up to 15 Hz 226 

(bottom). (C) theta amplitude follows delta phase of 0.6 Hz segments in the speech envelope.  227 

Differential high and low delta and theta speech tracking in auditory areas 228 
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We identified temporal segments in the speech envelope that exhibit differences in the amplitude 229 

power in the delta and theta frequency bands. Next, we wanted to test whether this high or low 230 

delta and theta power in the speech envelope is reflected in speech-brain tracking. To quantify 231 

speech tracking, we followed an information-theoretic approach and quantified the frequency-232 

specific interactions of speech envelope segments with source-estimated auditory activity 233 

following previously validated measures (Gross et al. 2021). For estimating an individual's 234 

auditory activity, we combined activity from early auditory parcels of the HCP-MMP1 atlas, 235 

concatenated them, and extracted the first three principal components (see Methods). In Figure 236 

4A, we show the cortical location of the parcels that were combined to extract auditory activity.  237 

We computed GCMI (Ince et al. 2017) between speech envelope and brain activity from left and 238 

right early auditory cortex for time segments of high and low delta power in 0.6 Hz (Figure 4B, top 239 

panel) and statistically compared them to obtain t-value spectra at the group level. The black line 240 

in Figure 4C shows the corresponding t-values for high versus low power at 0.6 Hz. As expected, 241 

higher delta power at 0.6 Hz in the speech envelope leads to significantly higher GCMI values at 242 

this frequency (black line; group statistics; p<0.05; FDR corrected). Interestingly, the same 243 

contrast reveals significantly lower theta and higher beta (β) GCMI (group statistics; p<0.05; FDR 244 

corrected). This means that time segments with high delta power in the speech envelope 245 

(corresponding to speech onsets) are associated with high delta and beta but low theta speech 246 

tracking. This effect is significant in the left and right early auditory cortex. To check if this holds 247 

for more frequencies inside the delta band, we repeated this analysis for two more frequencies 248 

(1.6 and 2.6 Hz) and we found a similar but less prominent effect beyond the 0.6 Hz (Figure 4B, 249 

top panel). We also directly compared the difference in delta and theta tracking between left and 250 

right AC. For that we computed and we statistically compared the difference between high- and 251 

low- for delta and theta tracking in left and right AC. We found no significant difference between 252 

left and right AC (Supplementary Figure 2). 253 

https://sciwheel.com/work/citation?ids=11947011&pre=&suf=&sa=0
https://sciwheel.com/work/citation?ids=4723792&pre=&suf=&sa=0
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Next, we proceeded with the estimation of speech tracking for high and low theta power in 5 Hz 254 

(Figure 4B, lower panel). Again, we statistically contrasted them, resulting in t-value spectra at 255 

the group level. We find that high theta power in the speech envelope is associated with 256 

significantly higher GCMI in the theta band and significantly lower GCMI in the delta and alpha 257 

(α) frequency band (red line; group statistics; p<0.05; FDR corrected). To test if this effect 258 

generalized in the theta band we repeated the same procedure for different frequencies inside 259 

the theta band. As expected, the effect was robust across different frequencies inside the theta 260 

frequency range (6 and 7 Hz), indicating speech-tracking in the theta timescale through flexible 261 

oscillators, as previously proposed (Giraud and Poeppel 2012; Hyafil et al. 2015; Rimmele et al. 262 

2018). 263 

In summary, we observed high delta speech tracking to segments containing energy onsets, such 264 

as silent gaps before the start of the sentence. We hypothesized that the high GCMI observed is 265 

specific to the transition from silence to speech, and thus it would drop after speech unfolds after 266 

onset. To test this, we further characterized the time course of delta speech tracking relative to 267 

onsets. We computed delta MI between speech envelope and brain activity in left and right early 268 

auditory cortices in 2 second-long windows moving from -1 second to 1 second (steps of 50 ms) 269 

relative to the center of 450 onsets (Figure 4D). As expected, we observed MI increase around 270 

speech onsets. However, this effect was not sustained, but GCMI decreased already shortly after 271 

onsets. This further supports our finding that delta speech tracking is maximal near rapid speech 272 

envelope changes.  273 

https://sciwheel.com/work/citation?ids=3166447,5838510,237567&pre=&pre=&pre=&suf=&suf=&suf=&sa=0,0,0
https://sciwheel.com/work/citation?ids=3166447,5838510,237567&pre=&pre=&pre=&suf=&suf=&suf=&sa=0,0,0
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 274 

 275 

Figure 4: High- and low- delta and theta speech components contributing to speech tracking: (A) 276 

Early auditory areas where regions-of-interest source activity was extracted. Analysis included the first three 277 

principal components per region-of-interest (B) Individuals’ speech tracking difference (GCMI values) for 4 278 

second time segments between high and low power in 0.6 Hz (top panel) and 5 Hz (bottom panel) for left 279 

(left panels) and right (right panels) auditory early cortex. (C) Statistical comparison for high and low power 280 

in delta and theta speech envelope segments. A two-tailed non-parametric test was applied to compare 281 

high-delta vs low-delta (top panels) and high-theta vs low-theta (bottom panels) for left (left panels) and for 282 

right early auditory cortex (right panels). High opacity illustrates statistically significant tracking  (p<0.05, 283 

FDR corrected). (D) Speech tracking (GCMI values, z-scored) at 0.6 Hz across delays (steps of 50 ms) for 284 

2 second time segments with high power in 0.6 Hz centered on onsets (n=450).  285 

  286 
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Overall, our results indicate that the delta and theta speech tracking is at least partly caused by 287 

different temporal patterns in the speech envelope. The delta band in the speech envelope 288 

reflects temporal patterns in the speech envelope containing energy resets such as onsets of 289 

speech that lead to high phase coupling to brain activity in the auditory cortex. In contrast, theta 290 

band activity in the speech envelope corresponds to a sustained, rhythmic pattern and leads to 291 

high phase coupling to brain activity in the auditory cortex in the theta band. 292 

Discussion 293 

Systematic speech-brain alignment occurs in two distinct timescales in low frequencies, 294 

delta (delta: 0.5 - 3 Hz) and theta (theta: 4 - 7 Hz). Do all temporal segments of continuous speech 295 

contribute equally to speech tracking? Here, we find that neural tracking at delta and theta 296 

frequencies can be acoustically driven both by temporally dissociated onsets and sustained 297 

speech, respectively. Specifically, while tracking in the theta range reflects speech components 298 

with sustained periodic activity, neural tracking at the delta frequency range was related to speech 299 

segments containing onsets of speech with no sustained periodic activity.  300 

Speech envelope tracking in delta and theta frequency bands 301 

Human communication is rich in temporal complexity (Giraud and Poeppel 2012). 302 

Encoding speech with high fidelity requires the human brain to temporally sample speech signals 303 

at different scales (Poeppel 2003; Kiebel et al. 2008), resulting in the temporal multiplexing of 304 

neural information (Panzeri et al. 2010; Gross et al. 2013). Our analysis links speech tracking 305 

measures (in our case, GCMI) in the delta and theta frequency bands to the speech envelope 306 

signal. The results are relatively straightforward for the theta band: Time segments of the speech 307 

envelope with high theta power are characterized by sustained periodic components in the 308 

envelope, which is reflected by a peak in the modulation spectrum of the stimuli (Ding et al. 2017). 309 

Statistically comparing speech tracking of segments of high versus low theta power shows 310 

https://sciwheel.com/work/citation?ids=237567&pre=&suf=&sa=0
https://sciwheel.com/work/citation?ids=141788,388512&pre=&pre=&suf=&suf=&sa=0,0
https://sciwheel.com/work/citation?ids=288202,237611&pre=&pre=&suf=&suf=&sa=0,0
https://sciwheel.com/work/citation?ids=5179486&pre=&suf=&sa=0


 

16 

significantly higher speech tracking (higher GCMI values) in the theta band for segments with high 311 

compared to low theta power. This indicates that time segments in the envelope with highly 312 

sustained speech at 5 Hz lead to strong theta speech tracking, consistent with previous reports 313 

(Luo and Poeppel 2007; Gross et al. 2013; Zion Golumbic et al. 2013; Ding and Simon 2014). 314 

However, we note that these results are based on a statistical contrast of speech tracking between 315 

segments categorized by power. A more direct approach would contrast segments of high versus 316 

low theta speech tracking, but this is highly non-trivial since speech tracking is quantified with 317 

connectivity measures that are computed across many samples or segments. In summary, our 318 

findings support the notion that theta speech tracking represents alignment of neural activity to 319 

periodic and sustained patterns of speech at the modulation rate. 320 

However, that’s not the case for the delta band. Speech segments with high delta power coincide 321 

with acoustic onsets rather than with low-frequency patterns during sustained speech. More 322 

precisely, time points of strongest delta power mark the transition from acoustic gaps to a speech 323 

onset. In addition, delta power scales with the magnitude of the acoustic step change where a 324 

transition from silence to high acoustic amplitude leads to high delta power. Similar to the theta 325 

band, higher delta power in the speech envelope is associated with higher delta speech tracking 326 

(and reduced theta speech tracking). Our results show that speech onsets specifically drive delta 327 

speech tracking in frequencies below 1 Hz, which in turn is anticorrelated with theta tracking. This 328 

is evident both in speech envelope power (Figure 3B) and in speech tracking MI (Figure 4C). Our 329 

observed anti-correlation suggests a partial temporal dissociation between both frequency bands. 330 

Previously, it was shown that sustained speech (high theta power) and onsets (high delta power) 331 

are dissociated spatially within superior temporal gyrus with high-frequency activity (above 70 Hz; 332 

(Hamilton et al. 2018) and in the temporal lobe with fMRI (Davis et al. 2011). We find that time 333 

periods of high delta power in the speech envelope coincide with periods of low theta power and 334 

vice versa, consistent with the view that delta signals represent onsets, whereas theta represents 335 

https://sciwheel.com/work/citation?ids=140492,237813,4414351,237611&pre=&pre=&pre=&pre=&suf=&suf=&suf=&suf=&sa=0,0,0,0
https://sciwheel.com/work/citation?ids=5592538&pre=&suf=&sa=0
https://sciwheel.com/work/citation?ids=4261765&pre=&suf=&sa=0
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sustained periodicities at the modulation rate. We thus suggest that delta speech tracking – below 336 

1 Hz – is not a marker representing continuous tracking of speech features, but rather aligns to 337 

salient energy resets during speech perception. 338 

Acoustically driven delta speech tracking 339 

We report acoustic-triggered delta speech tracking related to speech onsets. Previously, delta 340 

was found to track characteristic “temporal marks of articulated sounds” (Boucher et al. 2019). In 341 

a recent MEG study, speech tracking was higher in delta when compared to continuous white 342 

noise or spectrally inverted speech, while theta activity showed sustained coupling across varied 343 

conditions (Molinaro and Lizarazu 2018). Traditionally, low-frequency oscillations have been 344 

associated with sensory selection (Schroeder and Lakatos 2009). Energy resets (i.e., onsets of 345 

speech) could serve as an bottom-up update of the sensory gain to the attentive speech (Obleser 346 

and Kayser 2019) following the framework of active sensing in the auditory domain (Bajcsy 1988; 347 

Schroeder et al. 2010; Prescott et al. 2011; Bajcsy et al. 2018). Speech-tracking at energy onsets 348 

showed also higher coupling in the beta frequency range suggesting an interaction between 349 

bottom-up delta and beta, which previously was found to serve top-down predictive streams (Park 350 

et al. 2015). This seems to be specific for speech onsets as we observe low alpha and beta 351 

tracking during segments with high-theta power. We suggest that low-α during high-theta 352 

segments might reflect the cortical-excitability attenuation during high sensory gain, previously 353 

reported in an animal study (Kayser, Wilson, et al. 2015) and also related to attenuated temporal 354 

anticipation processes during sustained speech (Rohenkohl and Nobre 2011; Samaha et al. 355 

2015).  356 

 For the latter, the high-beta tracking during high-delta segments suggests a delta-beta interaction 357 

which might underline temporal predictions during speech onsets (Arnal et al. 2015). In any case, 358 

speech perception entails temporal prediction processes (Engel et al. 2001; Arnal and Giraud 359 
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2012; Rimmele et al. 2018). As speech in natural settings does not show robust temporal 360 

rhythmicity in all timescales, acoustic edges at the delta timescale could provide the temporal 361 

coding for adjusting and re-aligning neural tracking in multiple timescales. Temporal expectations 362 

align delta oscillations in time in rhythmic (Stefanics et al. 2010; Herbst and Obleser 2019; Daume 363 

et al. 2021) and non-rhythmic tasks (Daume et al. 2021). During speech perception, delta tracking 364 

was previously disrupted when randomly altering the length of silences, yielding the speech rate 365 

temporally irregular (Kayser, Ince, et al. 2015). As temporal processing is relevant to the motor 366 

system (Chen et al. 2008), motor origins of temporal predictions in auditory tasks have also been 367 

previously described in delta band (Morillon and Baillet 2017) with relevance for speech 368 

perception (Morillon et al. 2019) suggesting a motor control over delta speech tracking, which 369 

remained out of the scope of this study and thus requires further investigation. In any case, we 370 

suggest that delta speech tracking during speech onsets employs temporal predictive processes. 371 

Previously, delta tracking has also been implied to track linguistic elements of speech. 372 

Specifically, spectral peaks were observed corresponding to phrasal units (using isochronous 373 

syllable sequence = 1 Hz), indicating that delta oscillations may align to linguistic content, 374 

irrespective of acoustic evidence (Ding et al. 2016). Despite a lack of acoustic cues, participants 375 

were able to chunk syntactic phrases through the phase of delta oscillations (Meyer et al. 2017). 376 

delta-phase coupling to speech envelope has been previously reported (Bourguignon et al. 2013) 377 

and it was found to be stronger in forward compared to backward-played speech (Gross et al. 378 

2013; Park et al. 2015), which also argues against purely acoustic-driven delta tracking. Though, 379 

while the energy modulations between forward and backward speech are equal, the listener's 380 

attention level – and thus speech tracking – is inherently affected (Zion Golumbic et al. 2013). 381 

Delta tracking has been associated with phrasal structure (Keitel et al. 2018), with syntactic 382 

phrases sharing common structure and timing, while being distinguishable due to prominent 383 

energy resets (i.e., pauses). Thus, it remains unclear to what extent delta activity in auditory areas 384 
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reflects knowledge-based linguistic units, or whether it is driven by certain events of the speech 385 

as stress, intonation, or pitch contour (Himmelmann et al. 2018). Disentangling purely syntactic 386 

markers from acoustic events remains challenging. Even if clear prosodic influences are absent, 387 

top-down implicit prosodic features may still influence processing (Glushko et al. 2020; 388 

Kalenkovich et al. 2022), thus interfering with bottom-up acoustic and top-down linguistic 389 

encoding of spoken narratives (Jin et al. 2020).   390 

A limitation of our study is that we proceeded with a description of the speech signal only in terms 391 

of acoustic dynamics. As mentioned, linguistic content is also known to influence speech tracking 392 

(Peelle et al. 2013; Haegens and Zion Golumbic 2018; Rimmele et al. 2018) which might interfere 393 

with onset-related delta tracking. Further research needs to address this potential confound. 394 

Relevant to that, another drawback is the subsequent interpretation of delta and theta tracking, 395 

after the identification of higher- and lower-power segments in the frequencies of interest (0.6 and 396 

5 Hz). Inevitably, this approach does not allow the characterization of other – temporal – features 397 

in the speech signal (besides acoustic step functions) that give rise to delta speech tracking. 398 

Furthermore, while our dataset has the advantage of high signal-to-noise ratio, it lacks 399 

experimental conditions and measures of behavioral performance, in which the relevance of high 400 

power delta events could be directly tested at the neural and behavioral level.  401 

Our analysis focused on speech envelope without considering linguistic annotations of sentence, 402 

phrase or word onsets. Thus, we find that sharp acoustic transitions from silence to energy onsets 403 

are adequate to result in delta speech tracking in bilateral auditory cortex, irrespective of high-404 

level constructs such as sentence, phrase or word onsets. Although, inherently in a natural 405 

speech setting (i.e listening to an audiobook) the silent pauses most frequently mark the beginning 406 

of a phrase or a sentence. In supplementary figure 1B we show that the length of silences marking 407 

sentence onsets match the speech onsets that we find to contribute to delta speech tracking. This 408 

is not a direct comparison - which remained outside the scope of this study - but provides a 409 
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valuable indication that the speech onsets described here can mark the beginning of a sentence 410 

or a phrase. We note that in a natural speech setting, the annotation of ‘phrases’ is not trivial and 411 

the length and total number can vary according to dependency definition parameters, so we 412 

mainly focused on the sentences onsets. Importantly, we find that delta speech tracking is specific 413 

to pauses before- and drops after- an onset (analysis in figure 4D). That rules out the possibility 414 

that the delta speech tracking described in the study serves as a processing mechanism of a 415 

whole sentence, as we find it to be active and temporally specific during the pauses. 416 

In summary, our results indicate that the strongest drivers in the speech envelope for speech-417 

brain coupling differ for delta and theta. Theta effects are strongest during sustained speech while 418 

delta effects are strongest around gaps. While this does not rule out a role of delta rhythms in 419 

chunking it calls for caution when interpreting speech-brain coupling - especially in the delta band.  420 
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