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A B S T R A C T   

A predictive method using physics-informed machine learning (PIML) and large eddy simulation (LES) is 
developed to capture the transient flow field through microscale porous media (PSPM). An image processing 
technique extracts the 3D geometry of the internal layers of the mask from 2D microscopy images, and then the 
fluid flow is first simulated numerically. The subsequently developed PIML method successfully predicts the 
transient flow patterns inside the porous medium. For the first time, 3D maps of time-dependent pressure, ve-
locity, and vorticity are predicted across the fibrous porous medium. The results show that, compared to con-
ventional computational fluid dynamics, the PIML method can reduce the computational cost by over 20 times. 
Further, the LES model can replicate the fine fluctuations caused by the flow passage through the porous me-
dium. Therefore, the developed methodology allows for transient flow predictions in highly complex configu-
rations at a substantially reduced cost. The results indicate that the PIML method can reduce the total 
computational time (including training and prediction) by 22.5 and 20.7 times over the standard numerical 
simulation, based on speeds of 0.1 and 0.5 m/s, respectively. Several factors including the inherent differences 
between CPUs and GPUs, algorithms and software, appear to influence this improvement.   

1. Introduction 

For centuries, mathematical methods have been among the most 
effective approaches to solving the most challenging problems [1]. In 
recent years, introducing high-performance processors and utilizing 
machine learning have significantly improved computational methods 
[2]. Inspired by these, the current study focuses on developing a method 
based on physics-informed machine learning to predict the transient, 
pore-scale hydrodynamics in porous media. This primarily reduces the 
heavy costs incurred by the numerical simulation of such flows. Yang 
et al. [3] investigated the distribution, evolution, and influencing factors 
of the remaining oil in the pore space after water flooding. The results 
showed that the complex pore structure would lead to oil remaining in 
the water during flooding. A phase circulation phenomenon was 

observed, which included a co-current lid-cavity-driven flow. In addi-
tion, phase recirculation resulted in greater viscous dissipation. 

In addition to microscopic flow mechanisms and traditional experi-
mental studies of tight oil reservoirs, it is important to understand how 
wettability influences spontaneous imbibition on a pore-scale level. As 
demonstrated in [4], the wettability of the imbibition fronts significantly 
impacts their morphological characteristics. During conditions of strong 
hydrophilia, wetting fluids preferentially invade the pore corners as 
angular flows. Some studies require multilayer calculations, including 
optimization and prediction, such as internal combustion engines [5]. 
An excellent example of big data post-processing is modern engines. To 
develop a low-fuel consumption internal combustion engine, the details 
of the problems of increasing efficiency and lifetime and reducing en-
ergy consumption should be considered [6]. This generates a tremen-
dous amount of data [7]. Additional limitations include material and 

Abbreviations: ANN, Artificial neural networks; MSE, Mean square error; LES, Large-eddy simulation; ML, Machine learning; MLP, Multilayer perceptron; LPM, 
Litter per minutes; PIML, Physics-informed machine learning; LES, Large eddy simulation. 

* Corresponding author. 
E-mail address: n.karimi@qmul.ac.uk (N. Karimi).  

Contents lists available at ScienceDirect 

Engineering Analysis with Boundary Elements 

journal homepage: www.elsevier.com/locate/enganabound 

https://doi.org/10.1016/j.enganabound.2023.01.010 
Received 26 September 2022; Received in revised form 9 January 2023; Accepted 11 January 2023   

mailto:n.karimi@qmul.ac.uk
www.sciencedirect.com/science/journal/09557997
https://www.elsevier.com/locate/enganabound
https://doi.org/10.1016/j.enganabound.2023.01.010
https://doi.org/10.1016/j.enganabound.2023.01.010
https://doi.org/10.1016/j.enganabound.2023.01.010
http://crossmark.crossref.org/dialog/?doi=10.1016/j.enganabound.2023.01.010&domain=pdf
http://creativecommons.org/licenses/by/4.0/


Engineering Analysis with Boundary Elements 149 (2023) 52–70

53

working conditions that alter the pattern of the optimum target state [8]. 
In recent years, data science and numerical simulation have provided 
new perspectives on big data challenges [9]. Researchers have combined 
machine learning [10], deep learning [11], and artificial intelligence 
[12] to predict and analyze the behavior of complex systems. This 
hybridised method has impressive abilities to reduce the calculation cost 
and make long-term predictions. The computational cost is usually the 
most significant challenge when a large domain or complex geometry is 
involved [13]. 

For this reason, large domains and complex geometries are not de-
sirables for numerical simulations.  To determine how permeability es-
timations correlate with properties of porous media, including porosity 
and specific surface area, Basbug et al. [14] employed artificial neural 
networks (ANNs). According to the results, the permeability estimates 
generated by the ANN are consistent with those generated by the core 
analysis. Carbonate reservoirs exhibit complex relationships between 
permeability, porosity, specific surface area, and irreducible water 
saturation. Accordingly, the magnitude of irreducible water saturations 
is modified by changes in specific surface area, implying a connection 
between permeability and irreducible water saturation. Despite these 
achievements, severe challenges, including non-laminar flows [15], 
flow in microchannels [16] and processing of big data [17] still persist. 
Advanced neural networks like physics-informed machine learning 
(PIML) [18] and deep forwarded neural networks-boundary conditions 
(DFNN-BC) [19] are considered appropriate for tackling these chal-
lenges. Therefore, the current work aims to apply physics-informed 
machine learning to partial differential equations (PDEs) and enable 
the neural network to learn the solutions. Some of the first works in this 
area date back to the 1990s. 

Modern neural network architectures have rekindled interest in this 
subject. PIML approaches are designed to provide data-driven solutions 
to nonlinear systems of equations and may offer an effective alternative 
to more conventional numerical methods for solving systems of equa-
tions, such as finite-difference and finite-volume. In PIML, the under-
lying governing equations are encoded by the developed neural network 
as prior knowledge is used for training. The neural network approach 
makes it possible to approximate any continuous function. A few clas-
sical fluid dynamics problems including Burgers’ equation, Navier- 
Stokes were solved by Raissi et al. [20] using PIML. With a large num-
ber of collocation points and an extensive neural network architecture, 
the v improves the Reynolds stresses. It remains as a priori study, 
though, since it has yet to be determined if these enhanced Reynolds 
stresses can be propagated to produce a better velocity field. 

To model turbulence predictively, they demonstrate a comprehen-
sive framework of Physics-Informed Machine Learning (PIML), which 
included machine learning Reynolds stress discrepancy functions, 

predicting Reynolds stresses in different flows, and propagating them to 
mean flow fields. The development of PIML methods for various con-
figurations and flow conditions has been the focus of numerous studies 
in recent years [21–24]. Developing a PINN method for pore-scale ma-
terials necessitates the inclusion of boundary conditions in order to solve 
the loss function equations. PIML models for pore-scale materials are 
difficult to develop because the matrix of geometry in pore-scale ma-
terials must be updated at each time step. Fully turbulent approaches to 
the PIML, on the other hand, require additional equations and 
boundaries. 

This study develops a hybrid prediction method based on LES and 
PIML to predict a transient flow passing through a fibrous porous me-
dium (a surgical mask). After 3D geometry extraction and verification, a 
transient flow passing through six distinct layers of a surgical mask is 
simulated numerically. The outcomes of this step are then utilised for the 
training layer. The transient matrix of parameters provides sufficient 
material for automatic differentiation based on the FNN method. To 
combine the LES and PIML, we developed a new technique for con-
verting the intricate 3D geometry of fibers into a series of 2D layers. 
According to the boundary matrix, the PDE loss function regenerates 
initial and boundary conditions. The final combination of PIML and LES 
creates an entirely new basis for calculating the flow through complex 
geometries. 

2. Problem statement and methodology 

2.1. Mask imaging 

In order to study the flow patterns through the micro-scale, fibrous 
porous media, the numerical simulations should be pushed to their 
limits. Flow is incorporated in microchannels in the layers of the mask, 
whereas the porosity and distribution of fibres in different locations are 
random. The goal is to examine the flow pattern through the pores with 
different boundary conditions. In order to create precise 3D geometry 
from 2D microscopic images of microporous media, a geometry detec-
tion approach is required [25]. Fig. 1a shows the results of converting 
2D microscopic images of surgical masks to 3D geometry. According to 
Fig. 1b, cloud points of different layers were generated using image 
processing, curvature correction algorithms, and geometry regeneration 
algorithms (GRA) [26] to extract 3D geometry from microscopic images 
(Fig. 1b). The different diameters of fibres in this case study allowed six 
different layers of masks to be detected, while the features and specifi-
cations of each layer were distinct (Fig. 1c). 

The properties of the surgical mask are based on those in Ref. [27]. 
Machine vision [28] extracts microscopic images of fibres and converts 
them to cloud points [29]. It helps in representing a boundary for fibres 

Nomenclature 

A Surface area, [m2] 
Ao Outside surface area, [m2] 
Amin Minimum free flow area, [m2] 
C3ε,C1ε Constant parameter 
f Friction factor 
fj Values of j-th neuron of the hidden layer 
f* Approximate function 
g Activation function 
k Turbulence kinetic energy, [m2.s− 2] 
L Length, [m] 
N* Index of the columns of the result matrix 
n Number of data points 
Oi Model output for sample i 
p Pressure, [Pa] 

Sε Constant parameter 
s* Stride in convolutional neural networks 
t Time, [s] 
u, v, w Velocity in x,y and z directions, RANS, model, [m.s− 1] 
ux,vy,wz Velocity in x,y and z directions, LES model, [m.s− 1] 
x, y, z x, y and z directions 
Vmax Maximum velocity, [m.s− 1] 
w Weight of parameter 
xi Values of the i-th neuron of the input layer 

Greek symbols 
τxx,τyx, Shear stress, 
τzx,τij [N.m− 2] 
ρ Density, [kg.m− 3] 
μ Viscosity, [kg.m− 1.s− 1] 
σ Fraction of the minimum free flow  
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[30]. The average fiber diameter and pore dimension have been deter-
mined to be within the parameters reported by Leonas et al. [31].  The 
quality of the generated three-dimensional geometry depends on the 
clarity of microscopic images [31], see Table 1 for further information. 
According to Fig. 1c, each layer has uniformly distributed porosity. 

Furthermore, there is constant space between the layers based on the 
microscopic images. As shown in Fig. 1c, ultrasonically welded points 
are considered a square cross-sectional blanket on the first layer. This 

blanket has zero porosity, and Fig. 1d shows how fluid flow passes 
through the fibres through the channel with a 4mm2 cross-section by 
removing the effects of fiber deformation. The mask layer was modelled 
in a square-cross-sectional tube (2 × 2 × 0.7 mm). A transient flow of 
air, with inlet flow velocities of 0.1 and 0.5 m/s, passes through the mask 
layers. 

The surgical mask fibres include PSPM. Surgical mask properties and 
specifications are determined by Neupane et al. [32]. An image 

Fig. 1. Procedure for the extraction of 3D geometry form a) microscopic images of a surgical mask, b) image processing-based detected layers of mask based on fibres 
diameters and air gap, c) final 3D geometry, and d)graphical illustration of flow through the pore-scale fiber porous media. 
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processing method, as explained by Raje et al. [33] was used to create 
the geometry from microscopic images. A detailed description of PSPM 
is given in Table 2. The JSM-IT100 in Touch ScopeTM Scanning Electron 
Microscope is shown in Fig. 2. Different mask slices were prepared to 
capture microscopic images at different angles. 

2.2. Geometry extraction method 

Fig. 3a shows the addition of a convolutional layer to an image of 
surgical mask layers. The photo’s original resolution was 1600 × 1200 
pixels. The top and cross-sectional views of each metal foams’ top were 
analysed to determine the best results. Fig. 3b shows how three- 
dimensional geometry was converted from microscopic images. Point 
clouds could be generated from convolutional matrices [34]. By using 
commercial CAD software (i.e., SolidWorks), these points can be con-
verted to solid geometry. The application of this method improves the 
prediction quality and enables a better understanding of the flow pat-
terns generated by PSPM. According to Fig. 3b, the original picture was 
used as input data. 

In digital image processing, image acquisition is the first step. It may 
be possible to obtain an image by receiving it in a digital format. Scaling 
and rotation are typically performed prior to image acquisition. For 
quality assessment, image enhancement methods were applied. Digital 
image processing is characterised by its straightforward and visually 
appealing qualities. An optimization method is fundamentally meant to 
reveal previously hidden detail or highlight certain aspects of an image. 
Image restoration is sometimes recommended when the image quality is 
low or there is a lot of noise. 

Restoration techniques are objective as they are based on mathe-
matical or probabilistic models of how an image degrades, while an 
enhancement technique is subjective. Following this phase are color 
image processing, wavelets and multi-resolution processing, compres-
sion, and morphological processing. A two-dimensional image can be 
converted through image processing to a two-dimensional point cloud. 
The values of the following feature maps are calculated based on the 
following formula: f** represents the input image and q* represents our 

Table 1 
Geometrical properties of PSPM.  

Layer Pore-size (μm) Layer thickness (mm) 
Maximum Minimum Maximum Minimum Average 

1 41.18 34.63 0.251 0.214 0.236 
2 Space between Layers 
3 22.36 17.22 0.211 0.185 0.193 
4 19.28 11.39 0.264 0.241 0.251 
5 Space between Layers 
6 43.98 36.58 0.267 0.245 0.251 
Total Surgical 

mask 
43.98 24.95 0.267 0.185 0.232  

Table 2 
Specification of surgical mask.  

Fiber diameter (mm) Minimum pores 
dimension (μm) 

Maximum pores 
dimension(μm) 

Case 
study 

Leonas et al.  
[31] 

Case 
study 

Leonas et al.  
[31] 

Case 
study 

Leonas et al.  
[31] 

0.323 0.1921 41.69 19.29 49.82 43.27  

Fig. 2. Microscope and test sections.  
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kernel. M* and N* are the indices of the rows and columns of the result 
matrix, respectively [33]. 

G[M∗,N∗] = (f ∗ × q∗)[M∗,N∗] =
∑

j

∑

k
q∗[j, k]f ∗i [M

∗ − j,N∗ − k]. (1) 

When p**is padding and f∗i is filter dimension, this equation should 
satisfy the padding width [35] 

p∗∗ =
f ∗i − 1

2
. (2) 

By taking padding and stride into account, the following formula can 
be used to determine the dimensions of the output matrix. 

nout =

[
nin + 2p∗∗

s∗
+ 1
]

. (3) 

A 3D matrix (or tensor) has the dimensions given by the following 
equation, 

[n∗, n∗, nc∗] ×
[
f ∗i , f

∗
i , nc∗

]

=

[[
n∗ + 2p∗∗

s∗
+ 1
]

,

[
n∗ + 2p∗∗ − f ∗i s∗ + 1

]

, nf ∗
]

.
(4) 

In the core of GOM, layers of calculation and prediction are involved. 
These layers are defined as:  

1 The Point Cloud Data  
2 Geometric model selection  
3 Parameter’s Definition  
4 Select a dataset wisely  
5 Manual parameters configuration  
6 Automatic parameters configuration  
7 Model fitting with RANSAC  
8 Point Cloud Binary Segmentation 

Cheminformatics and material-informatics rely heavily on 

Fig. 3. Geometry extraction method, a) Details of convolutional layers, b) Steps of GEM and final geometries, and c) Rendered geometry of PSPM.  

M. Mesgarpour et al.                                                                                                                                                                                                                           



Engineering Analysis with Boundary Elements 149 (2023) 52–70

57

quantitative structure-activity relationships (QSAR) models constructed 
using machine learning algorithms. It is a widely used algorithm in 
image processing to remove noise from data sets using RANDOM 
SAmple Consensus (RANSAC) [36]. In addition to outlier removal, 
descriptor selection, model development, and predictions for test set 
samples, RANSAC could serve as an effective "one-stop shop" algorithm 
for developing and validating QSAR models. In the presence of 
numerous outliers in the data, RANSAC provides robust model fitting. 
According to Fig. 4, point clouds will be provided via image processing 
methods in 3D coordinates. Based on a series of microscopic images, 
RANSAC will convert point data to curves. As a result of this stage, layers 
of 3D geometry will be generated. 

The third stage will transfer the curves and layers to the surface. In 
this stage, fibres and fluid domains can be generated into a 3D geometry. 
The final stage is developed to improve quality and reduce the noise of 
point clouds. Mao et al. [37] present details of noise reduction in ML 
method. 

The input of a convolutional neural network (CNN) model is an 
image (x) and the output is cells of a specified size (y). The objectives of 
neural networks are regression and label prediction. Before being input 
into the CNN model, images were resized to 800 × 600 pixels. A 
normalized average value and standard deviation are also applied to 
every pixel in each RGB channel of the image. CNN was chosen because 
they provide a dependable image processing solution. PyTorch was 
utilised to build the CNN architecture. The neural network was con-
structed using 5 layers of learnable weights. A dense, fully connected 
layer was one with multiple inputs, whereas a convolutional layer had a 
single input. The final fully connected layer outputs a tuple of predicted 
horizontal and vertical cell sizes. Basic convolution layers consist of a 
convolution operation, a nonlinear activation function (rectified linear 
unit, or "ReLU"), and a max-pooling operation. Due to the max-pooling 
layer, the width and height of the image were reduced by a factor of 
four. The image size should therefore be divisible by two multiples. By 
utilizing batch normalization layers, learning could be accelerated, and 
generalization loss (or testing loss) could be reduced. Consequently, a 
batch normalization layer was implemented after the convolution 

operation and prior to the nonlinearity of the ReLU within the con-
volutional layer. In order to preserve their size, the layers that perform 
convolution were padded with zeros prior to passing their output to the 
max-pooling operation. Padding protects an image’s corners from in-
formation loss and output size reduction. The second fully connected 
layer was given a dropout probability of 0.217 to prevent the network 
from becoming overfitted. In practice, the dropout layer further reduces 
generalization loss. 80% to 20% of the images in this 5-image dataset are 
used as a training set, while the remaining images are used as a test set. 
The network acquires knowledge through the modification of its filters. 
CNN weights are defined and modified in accordance with their 
hyperparameters. The network contains 1126 learnable parameters or 
weights in total. To perform a numerical analysis of the PSPM, its exact 
three-dimensional geometry was required. CNNs are a type of deep 
learning algorithm that analyses an image for various aspects/objects, 
assigns importance (learned weights and biases), and distinguishes be-
tween them. Compared to other classification algorithms, CNNs require 
considerably less pre-processing [38]. Typical 3D geometry methods 
cannot support the geometric specification of PSPM [39,40] due to the 
random distribution of pores. Through the combination of image pro-
cessing (coevolutionary method) [41,42] and point cloud processing 
[30], this study converted 3D point clouds to geometry [34]. Image 
processing can convert a two-dimensional image to a two-dimensional 
point cloud. 

The current analysis assumes stationary fluid at t = 0 s when a uni-
form flow front with a prescribed constant velocity starts passing 
through the mask layers. This sets a transient flow, which is simulated at 
t = 2 s. A combination of numerical simulation and PIML is assumed to 
identify the parameter pattern when transient flow passes through the 
PSPM. A turbulence model is applied to the extracted geometry when 
the inlet velocity is 0.1 m/s (Reinlet=894). Due to the variation in 
porosity and concentration of fibres in different layers, the conventional 
approach to numerical simulation, such as scaling, did not produce the 
desired results. The present study assumed that full-scale geometry 
could determine the pattern of parameters such as pressure and velocity 
through and between layers. Although this method increased the cost of 

Fig. 4. Stages of converting point clouds to 3D geometry.  
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calculations, the results of a full-scale simulation were fed directly into 
the neural network. As depicted in Fig. 5, the outcomes of numerical 
simulation (e.g., velocity, vorticity, and pressure) directly fed the pre-
diction layers as an input matrix fed each layer. Details of 3D extracted 
geometry and verification are presented in Appendix A1. 

The fluid matrix provided the boundary and physical boundary and 
solid (MOF and MOS) to satisfy the output of automatic differentiation. 
As previously stated, due to the complexity of PSPM’s geometry, the 3D 
geometry was converted to a series of 2D layers. Each layer featured a 
new geometrical boundary condition. PIML calculation layers fed by 
MOF and MOS regenerated the loss function. Further, to determine the 
physical loss resulting from the data loss function, we updated the loss 
functions for data, initial condition, and boundary condition at each 
time step. This study also took the Coefficient of Determination (R2) as a 
criterion for convergence. Because of the uncertainties about the vari-
ation of parameters over time, training methods necessitate a variable 
number of layers and neurons to achieve the best R2. According to Fig. 5, 
three calculation layers are assumed to incrementally improve the final 
value of R2. Each calculation layer uses the FNN method to transfer data 
from data loss to physical losses. Although the weight of neurons will 
change in each layer of the second and third layers, the FNN method will 
be used to train with similar layers and neurons for all layers. The 

variable train-to-validation ratio method was used to maintain the 
quality of the results in the present study. 

In this method, the output determines the proportion of training data 
to validation data, as detailed in Table 3. 

It is noticeable that each training iteration updates the weight pa-
rameters based on a partial derivative of the loss function against the 
current weight. The calculated derivatives at the front of FNN cells may 
be vanishingly small when the gradient of the activation function is less 
than unity, effectively preventing the weight from changing. Therefore, 
training the entire neural network is extremely slow or even completely 
halted, particularly for the front FNN cells. When using a large number 
of FNN cells to simulate a longer time sequence, gradient vanishing 
occurs, which affects the performance of both deep neural networks and 
FNNs. This is similar to the problem of multiple hidden layers in deep 
neural networks. 

A homemade Python- and Julia-based code is developed by our 
group to machine learning. In the numerical simulation, a SIMPLE al-
gorithm (https://github.com/gaabnuneses/SIMPLE-in-Julia, http 
s://github.com/DelNov/T-Flows) is used for flow passing through the 
layers. All numerical simulations are developed based on the second- 
order (upwind) of accuracy. TensorFlow (https://github.com/te 
nsorflow/tensorflow) is used for machine learning. The geometry of 

Fig. 5. Data flow for modified LES.  

Table 3 
Details of FNN for each Re.  

Method Calculation Layer Number of input parameter Number of trainings Number of validations Training ratio Time step Hidden Layer 

FNN 1 16,988,617 15,336,078 1652,539 90:10 10− 5s 87 
2 28,474,366 22,551,479 5922,887 79:21 112 
3 33,352,028 26,369,988 6982,040 80:20 119  
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mask and its features are extracted using image processing technique, 
and OpenCV-Python (https://github.com/spmallick/learnopencv) is 
used for that purpose. 

3. Governing equations of fluid flow 

The continuity equation for PSPM is expressed as [43] 

∂ρ
∂t

+
∂(ρux)

∂x
+

∂
(
ρuy
)

∂y
+

∂(ρuz)

∂z
= 0. (5) 

The PSPM time-dependent momentum equations are defined by the 
following  [44] 

ρ
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(8)  

where ρ is density, p is pressure, and μ is viscosity. 

3.1. LES model 

Transient eddies through the PSPM are studied using the WALE LES 
model. Multiple velocity components are used in large-eddy simulations. 
The resolved field is used to represent large eddies, while the sub-grid 
section is used to represent small eddies. Obtaining Navier-Stokes 
equations in space is achieved by convolution with a filter kernel G. 

φ(x) =
∫

Ds

φ
(
x/
)
G
(
x; x/

)
dx/, φ = φ + φ/. (9) 

In Eq. (9), the term of Ds refers to the fluid domain, while φ and φ/ 

are resolved scale domain and sub grid scale part. The turbulent eddy 
viscosity (νt), is defined as [45]: 

Fig. 6. Graphical illustration of a) Core of PIML algorithm including training, automatic differentiation, loss functions and boundary conditions and b) 
Training procedure. 

Table 4 
Variation of courant number based on pressure drop for different boundary 
conditions.  

Inlet velocity (m/s) Courant number Pressure drop (average. Pa) 

0.1 0.9 72 
0.84 68 
0.73 65 
0.62 65 

0.5 1.3 480 
0.86 447 
0.77 443 
0.68 443  
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Fig. 7. a) Comparison between the residual of numerical simulation and pressure drop in the range of time steps, b) Comparison of current simulations and 
experimental data of Monjezi and Jamaati. 
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Fig. 8. Stability analysis for numerical simulation based on different models of turbulence method a)0.1 m/s and b) 0.5 m/s.  
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νt = C2
Xω. (10) 

In this case, Cx=0.5 represents the constant that varies with the LES 
model and ω is the operator [46]. 

ω =

(
gd

i,jgd
i,j

)3
2

(
si,jsi,j

)5
2 +
(
gd

i,jgd
i,j
)5

4
. (11)  

gd
i,j = si,ksk,j + Ωi,ksk,j −

1
3
δk,j
(
s2 − Ω2). (12)  

3.2. Reinforcement neural network models 

The following examples are provided, (x1,y1), (x2,y2),…, (xn,yn) 
where xi ∈ Rn andyi ∈ {0, 1}. Through the use of hidden layers under-
neath a hidden neuron, MLP learns a new function f(x) = W2g(WT

1x +

b1)+ b2, where W1 ∈ Rm and W2, b1, b2 ∈ R. The layer(W1,W2) repre-
sents the input layer’s weights, and this layer represents its hidden 
layer’s weights. The bias added to the hidden and output layers is rep-
resented by b1. In this case, g(.): R → R is the hyperbolic tan activation 
function [47]. 

g(z) =
ez − e− z

ez + e− z. (13) 

For binary classification, f(x) a logistic process takes place g(z) =
1

(1+e− z)
For example; a threshold of 0.5 would classify samples greater 

than 0.5 as positive, while the remaining samples would be classified as 
negative. The length of f(x) increases as the number of classes increases. 
As a result, a loop rather than a logistic process is used. To obtain output 
values between 0 and 1. It does not pass through the logistic function 
[48] but rather the softmax function [49], which is referred to by 

softmax(z)i =
exp(zl)

∑k
l=1exp(zl)

. (14) 

Softmax input zl represents the lth element of class l, and softmax 
input k represents the number of classes. A vector of probabilities that 
describes the membership of a sample to each class is generated as a 
result of this procedure. As a result of the fact that the output is deter-
mined by the probabilities associated with each class and that regression 
results in f(x), the output activation function is the same as the identity 
function. MLP makes use of a number of different loss functions, all of 
which are determined by the nature of the problem [50]. Cross-entropy 
[51] is the classification loss function, written as (Loss(ŷ, y, W))in the 
binary case. 

Fig. 9. The effect of hidden Layers on MAE and R2.  

Fig. 10. Comparison of PIML and numerical simulation approaches the pressure distribution along the PSPM a) Vinlet = 0.1 m/s and b) Vinlet = 0.5 m/s.  

Table 5 
The effect of the calculation approach on runtime.   

Calculation time (min) 
Layer Star CCM+ simulations (CPU based) PIML (GPU based) 

Vinlet =0.1 m/s Vinlet =0.5 m/s Vinlet =0.1 m/s Vinlet =0.5 m/s 

1 – – 15 17 
2 24 36 
3 47 85 
4 41 74 
5 58 67 
6 94 77 
Total 6300 7400 279 356  
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Loss(ŷ, y,W) =
1
2

ŷ − y2
2 +

α
22

W2
2 . (15) 

MLPs minimize the loss function by updating the weights repeatedly, 
starting with random weights [52]. After the loss has been computed, a 
backward pass will propagate it from the output layer to the layers that 
came before it, updating each weight parameter in order to lower the 
loss. In gradient descent, the gradient ∇LossW of the loss with respect to 
the weights is computed and deducted from W. 

3.2.1. Physics-informed machine learning 
The present study uses a parametrised partial differential equation 

(PDE) form of equation as an example 

f (x, t, û, ∂x û, ∂t û, …, λ) = 0, x ∈ Ω, t ∈ [0, T] (16)  

û(x, t0) = g0(x), x ∈ Ω (17)  

û(x, t) = gΓ(x), x ∈ ∂Ω, t ∈ [0,T] (18)  

where x ∈ R is the spatial coordinate, and f is residual. A method of 
minimisation of the loss function L will be presented in this study by 
updating the PIMLs iteratively. 

θ =
Weights
Biases

)

L = w1LPDE + w2LDATA + w3LIC + w4LBC, (19)  

where ω1− 4 are the utilized weighting coefficients. This equation pe-
nalizes the residual of the governing equation using LPDE. In addition, 
LDATA is utilized to demonstrate data loss. Initial condition is represented 
by LIC, while boundary conditions are represented by LBC. Fig. 6a dis-
plays a diagrammatic representation of the PIML’s fundamental struc-
ture. In this diagram, the unknown PDE parameters û = [u,v,p,∅], x =
[x, y], and λ are depicted along with the weights wi = 1, 2, …, 4 within 
the PIML procedure, PIML training is regarded as one of the most 
important steps. Fig. 6b provides a detailed outline of the training 
procedure. 

Here, the PIML framework involves the following steps [53].  

1 Create a dataset for training with Ns random combinations of 
transmissions and storability and Nb batches.  

2 Make sure the NNM has both an input layer and an output layer. The 
input layer should be used for storing storability and passing trans-
missions, while the output layer should be used to estimate fluid 
extraction rates for each extraction well.  

3 Calculate the loss function in order to quantify flow parameters like 
pressure and velocity.  

4 Make necessary adjustments to the NNM coefficients in accordance 
with the gradient of the loss function. 

Fig. 11. Distribution of pressure through layer 1 for Vinlet =0.1 m/s when a) t = 0.01 s, b) t = 0.05 s, c) t = 0.1 s and d) t = 0.5 s.  
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Step 2 requires the use of a fully linked NNM with all hidden layers 
based on the layer of calculation, in which there should be a ratio of 
neurons to inputs and outputs. Sigmoid functions are used to activate all 
hidden layers [54]. 

σ(ψ) = 1/(1+ exp( − ψ)). (20)  

where ψ is the input to the neuron and σ(ψ) is the output. Consequently, 
the extraction rates are negative due to the negated soft plus function is 
defined as [55] 

Qinj = − ln(1+ exp(ψ)). (21)  

where ψ is an output of the NNM and Qinjis the associated extraction 
rate. As a preliminary investigation, we explored the possibility of using 
more advanced deep neural networks. These factors did not influence 
the PIML training. These networks degraded training performance in 
some cases, most likely because larger networks produce more complex 
response surfaces, which increases the likelihood of the training being 
trapped in local minima. 

The loss function L is defined as 

L (Θ) =
∑Nc

i

∑Ns

j

(
ΔΓi
(
ΘNN (Θ, Tj, Sj

)
, Tj, Sj

)
− ΔΓt

i

)2
. (22)  

where Nc is the number of layers, Γi is the simulated flow pattern (results 
of CFD), ΔΓt

i is the target flow pattern at the ith location, QNN is the 
trained data, Θ contains the NNM coefficients. The root-mean-square 
error (RMSE) of the training dataset can be used as a proxy for the ac-
curacy of the loss function in obtaining the desired flow pattern [56]. 

RMSE(Θ) =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
1

Ns ∗ Ns

∑Nc

i

∑Ns

j

(
Δhi
(
ΘNN (Θ, Tj, Sj

)
,Tj, Sj

)
− Δht

i

)2
√

. (23) 

A weighted sum of the outputs of the input layer is applied to the 
output layer, which consists of neurons m + 1. 

fj = g

(

w10,j +
∑n

i=1
w1i,j xi

)

. (24) 

A neuron’s activation function determines whether it is active or not 
[57]. It determines how significant the neuron’s input is during the 
prediction process through simpler mathematical calculations. 

Fig. 12. Distribution of pressure through layer 2 for Vinlet =0.1 m/s when a) t = 0.01 s, b) t = 0.05 s, c) t = 0.1 s and d) t = 0.5 s.  
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Activation of the neurons in this layer generates the model’s output, just 
as activation of neurons in the hidden layer does. 

yz = g

(

w20,z +
∑m

j=1
w2j,z fj

)

. (25)  

yz(M.L) = g(M.L)

(

w20,z(M.L)+
∑m(M.L)

j(M.L)=1

w2j,z (M.L)fj(M.L)

)

. (26)  

where yz(ML) is the output of zth neuron and w20,z and w2j,zare the 
weights of the bias. As a result of these calculations, the algorithm’s 
current output is reduced to its expected output. This step determines an 
algorithm’s model of the data. It is known as the mean square error 
(MSE) because it compares actual values with predicted values by the 
mean squared difference. MSE criterion is used as the loss function, and 
error backpropagation is used as the optimization algorithm [58]. 

MSE =
1
n
∑n

i=1
(Oi − Ti)

2
. (27)  

n is the number of samples, Oi and Ti are the model output. 

3.2.2. Adam optimization method 
In order to train neural networks in general and PIMLs in particular, 

an algorithm known as Adam optimiser [59] is utilized. Adam optimiser 
is a first-order stochastic gradient descent algorithm. This approach has 
proven to be effective in the completion of a variety of supervised 
learning projects thanks to the scalability it provides. PIMLs make it 
difficult to adjust the learning rate and weights associated with various 
loss terms, which makes multi-objective optimization a challenging 
problem to solve. In addition to the second-order Broyden–-
Fletcher–Goldfarb–Shanno algorithm (BFGS) method [60], the 
Limited-Memory Broyden–Fletcher–Goldfarb–Shanno Algorithm 
(L-BFGS) [61] is also frequently used to train PIML models. This method 
becomes unusable as the number of parameters grows because it is both 
extremely slow and not scalable. In contrast to first-order methods, 
Hessian matrices do not have the capacity to automatically determine 
the learning rate. In Adam optimization, gradient descent is one of the 
techniques used, and one of the methods employed in moment estima-
tion is adaptive moment estimation. When dealing with problems that 
have a large number of parameters, a method known as gradient descent 
combined with momentum and RMSP is an extremely effective solution. 
The Adam optimization technique places more of an emphasis on 

Fig. 13. Distribution of pressure through layer 3 for Vinlet =0.1 m/s when a) t = 0.01 s, b) t = 0.05 s, c) t = 0.1 s and d) t = 0.5 s.  

M. Mesgarpour et al.                                                                                                                                                                                                                           



Engineering Analysis with Boundary Elements 149 (2023) 52–70

66

calculating the average second moment of gradients as opposed to 
modifying learning rates in accordance with the average first moment of 
gradients. With the help of this algorithm, gradients and square gradi-
ents can be determined. In addition, the decay rates of these moving 
averages are controlled by the parameters b1 and b2, respectively. 
Methods of momentum and RMSP gradient descent are utilized in the 
Adam optimization process. 

3.2.3. Adaptive weights 
After the training of the PIMLs, a gradient pathology that is made up 

of the total loss function is associated with each loss term. The gradient 
vectors for each loss term have greater gradients, so they dominate the 
other gradient vectors throughout the training process. This is true when 
comparing gradient vectors to network parameters. PIMLs should be 
avoided because of the high level of dependence that they have on the 
boundary conditions. [62]. 

4. Grid generation and validation 

4.1. Validation of numerical simulations 

Throughout the transient study, the Courant number is essential for 
determining the optimal time step. As shown in Table 4, the pressure 
drop varies depending on the inlet velocity and the current number. The 
results indicated that inlet velocities required different courant numbers 
on PSPM materials. 

The difference in pressure drop and residuals caused by varying time 
steps is depicted in Fig. 7a. Fig. 7b presents a comparison between the 
current numerical simulations and the experimental data of Monjezi and 
Jamaati [63] on the pressure drop across a surgical mask. Based on the 
results, a time step of 10− 3 s is appropriate for this study. The transient 
flow through the PSPM imposes severe limitations on numerical simu-
lations. Due to the micro dimensions of pores, it might be necessary to 
modify the standard turbulence model. Fig. 8a and b illustrate how the 
turbulence model influences the pressure drop variation over 3 s. Ac-
cording to the results, LES presented pressure drop variations more 

Fig. 14. Distribution of pressure through layer 4 for Vinlet =0.1 m/s when a) t = 0.01 s, b) t = 0.05 s, c) t = 0.1 and d) t = 0.5 s.  
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accurately than other methods. Turbulence modeling can directly 
impact runtime and precision. In order to find the proper turbulence 
model and understand the flow between layers, the present study 
simulated four different turbulence models in transient conditions to 
find the transition to steady-state time. Due to a serious lack of infor-
mation in the verification data, pressure drop was assumed as a criterion 
for validation. It is important to note that unseen flow behaviours 
passing through layers and simulating the true flow between layers are 
affected by various factors such as mesh resolution. 

Appendix A2 presented the CFL study in this project. 

4.2. Validation of machine learning 

Validation is important for machine learning and numerical simu-
lation. An analysis of the neural network analysis and the hidden layer 
independence of machine learning is covered in this section. Here, we 
examine for the first time the number of hidden layers on MAE and R2 

using various machine learning methods. The optimal number of hidden 
layers can vary depending on the number of inputs and outputs. Fig. 9 
depicts the optimal number of hidden Layers. According to the minimum 
R2 and MAE values, no more than three hidden Layers are permitted. 

5. Results and discussion 

5.1. Comparison between numerical simulations and PIML results for the 
average pressure drop 

The regular approach to porous media is based on the Darcy equa-
tion, simplifying the velocity-pressure relationship. A complex porous 
medium, such as a surgical mask, consists of multiple layers with distinct 
properties. Although certain parameters, such as fiber distribution, can 
vary between layers, the average properties, such as porosity and 
permeability, are comparable within a single layer. In this study, the 
properties of each layer are defined using microscopic images, so the 
geometrical characteristics of each layer are distinct. Fig. 10a illustrates 
the variation in pressure drop when flow passes through all six layers 
and Vinlet = 0.1 m/s. The results indicated that both models could pre-
dict the pressure drop pattern caused by PSPM. According to this figure, 
the pressure drop in the gap zones (Layers 2 and 5) follows a smooth 
descending pattern. Since the gap distance is in the micron range, the 
pressure drop pattern in these zones does not vary significantly. 

Fig. 10b shows the pressure drop that occurs when Vinlet =0.5 m/s. 
According to the results, the PSPM experiences a significant decrease in 

Fig. 15. Distribution of pressure through layer 5 for Vinlet =0.1 m/s when a) t = 0.01 s, b) t = 0.05 s, c) t = 0.1 and d) t = 0.5 s.  
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pressure when the flow passes through it (up to − 34%). Additionally, 
the results show that PIML can accurately predict pressure drop 
behavior compared to the standard numerical method. The first step in 
PIML for predicting flow passes through PSPM and involves rewriting 
the continuity and turbulence model equation. A comparison of these 
two figures demonstrates that developing PIML based on MOF and MOS 
can satisfy the required PIML boundary condition. 

Fig. 10a and b demonstrate unequivocally that a tighter coupling 
between numerical methods and PIML requires fluid pattern prediction 
with the PSPM. The behavior of predicted patterns generated by 
different methods can help explain the relative importance of training 
data and prediction methods. Run time is one of the most intriguing 
aspects of the ML method. Complex geometry can present a formidable 
computational challenge and to tackle that in the present study, a GPU- 
based PIML code was developed. Table 5 compares the calculation time 
required for numerical and PIML approaches. 

According to Table 5, the PIML method can reduce calculation time 
by up to 22.5 and 20.7 times for the inlet flow velocities of 0.1 and 0.5 
m/s, respectively. Numerous factors, such as the inherent difference 
between CPU and GPU, algorithms, and software, can influence this 
factor. Regarding computational cost, the architect of code, data transfer 
method, solver, and processor are the most important roles at run time. 

5.2. Predicting pressure fluctuations in distinct layers of the surgical mask 
(PIML results) 

Fig. 11 illustrates how PIML predicts the pressure pattern in layer 1 
at V = 0.1 m/s for various times (0.01, 0.05, 0.1, and 0.5 s). According to 
the results, the pressure distribution in layer 1 follows a periodic pattern. 
In addition, Fig. 11a–d depict the impact of blankets on the flow pattern. 
One can observe a pressure drop of 1.78 Pa in layer 1. Even though layer 
1 has a uniform porosity distribution, the results show that the pressure 
distribution in that layer is nearly uniform during time steps. The PIML 

method could detect pressure variations and account for fluctuations 
during forecasting. As already shown, each block was exposed to a 
complex and random mixture of fibres and fluid (boundaries) due to the 
presence of complex and random fibres in the PSPM. This lack of 
training data leads to numerous issues, such as difficulty matching 
blocks. Due to the numerous grids in PSPM, flow generated a substantial 
amount of data. Training the neural network with this volume of data 
requires substantial time and training data. Due to the random geometry 
of PSPM, the conventional approaches that train 80% of the total data to 
predict are unreliable and inconsistent. 

As depicted in Fig. 11c, the maximum and minimum pressure values 
in layer 1 at t = 0.1 s are nearly three times greater at t = 0.01 s 
compared to t = 0.1 s. In complex geometries, it is essential to have as 
much information as possible regarding the fluid zone, such as pressure 
or vorticity. In complex geometry prediction, the quality of the initial 
simulation is essential. Most complex geometries, including PSPM, 
necessitate a high level of grid generation and validation for numerical 
simulation. Training a neural network with precise simulations can 
significantly affect its predictions. 

Layer 2 is an intermediate layer between layers 1 and 3. Due to the 
thinness of this layer, there is a significant pressure drop across it. The 
pressure pattern in layer 1 determines the pattern in layer 2, as shown in 
Fig 12a. A fluid flow blanket can alter or even change the pressure 
pattern in layer 2. Certain fluid properties, including turbulence 

Table A1 
Pixel study in image processing.  

Layer Pixel per 
inch 
square 
(PPI) 

Number 
of points 

Number of 
detected 
fibers 

Minimum 
diameter 
[µm] 

Maximum 
diameter 
[µm] 

1 11 10,224 25 24 36 
29 11,304 32 22 38 
66 22,304 37 15 32 
78 47,263 42 17 28 
88 107,735 45 17 27 

2 154 2367 15 12 19 
301 4784 11 7 22 
313 4934 8 2 3 
331 4981 – – – 
338 5152 – – – 

3 753 52,186 54 19 28 
1926 35,760 86 14 22 
3072 434,555 91 12 19 
5207 590,272 95 12 17 
5578 511,488 112 12 17 

4 3287 39,310 114 16 23 
3899 340,949 136 14 22 
7610 355,999 174 13 19 
8522 429,024 174 12 19 
8734 867,038 176 12 18 

5 85 102 21 8 9 
76 164 19 9 9 
38 1190 – – – 
49 2230 – – – 
71 3203 – – – 

6 4057 85,461 34 25 47 
2049 148,091 39 25 39 
4297 289,587 57 24 38 
5683 364,635 61 24 38 
5867 622,736 61 23 38  

Table A2 
Variation of pressure drop in different Layers.  

Layer Velocity 
(m/s) 

Time step (s) Pressure drop (Pa) 
Star CCM+ simulations In-house code 
Unsteady unsteady 

1 0.1 0.1 9.70 15.42 
0.001 8.86 14.23 
0.0001 4.54 7.56 

0.5 0.1 73.66 99.46 
0.001 65.02 61.96 
0.0001 39.51 45.69 

2 0.1 0.1 2.42 8.185 
0.001 1.57 7.726 
0.0001 0.96 1.565 

0.5 0.1 9.61 15.64 
0.001 5.01 11.63 
0.0001 4.62 3.316 

3 0.1 0.1 39.03 45.79 
0.001 21.02 27.17 
0.0001 19.77 19.25 

0.5 0.1 173.39 179.2 
0.001 141.91 147.5 
0.0001 132.06 124.09 

4 0.1 0.1 68.60 74.43 
0.001 52.72 58.85 
0.0001 33.98 35.61 

0.5 0.1 520.83 526.81 
0.001 298.67 304.95 
0.0001 215.66 221.61 

5 0.1 0.1 4.68 10.19 
0.001 3.68 6.60 
0.0001 1.35 2.23 

0.5 0.1 11.83 17.35 
0.001 9.05 15.23 
0.0001 7.31 9.44 

6 0.1 0.1 6.76 12.35 
0.001 6.85 9.19 
0.0001 3.09 5.46 

0.5 0.1 61.42 67.39 
0.001 39.63 45.36 
0.0001 29.57 35.38 

Total 0.1 0.1 93.39 99.14 
0.001 75.30 81.31 
0.0001 68.72 74.86 

0.5 0.1 931.06 937.97 
0.001 549.29 555.34 
0.0001 422.35 428.50  
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intensity and vorticity, necessitate more complex loss functions. In 
addition, regenerating automatic differentiation for particular parame-
ters, such as vorticity, via the PSPM enlarges the calculation. 

Fig. 12a depicts how PIML predicts the pressure pattern when fed 
with inadequate training data. The flow generates numerous micro 
vortices through the PSPM. As a result of the random distribution of 
fibres, these vortices form in various orientations and intensities. For 
these parameters to be tracked through layer 2, layers 1 and 2 should be 
fully connected. Due to their consideration of the uniform block, PIML is 
able to track the vorticity of PSPM. Therefore, the initial state of layer 2 
can be determined by the fluid flow pattern in layer 1. Maximum and 
minimum pressure values in PIML indicate the results of this charac-
teristic (vortex detection). The method’s severe limitations make it 
nearly impossible to develop a loss function for a turbulence model [69]. 
The issue here concerns tracking of vortices and the energy variation of 
fluid control volumes. 

Fig. 12b to d shows the pressure distribution in layer 2 when t = 0.1 s 
and t = 0.5 s. Results indicate that pattern of transient vorticities can be 
captured between layer 1 and layer 2. Fig. 13a and b depict pressure 
variations throughout layer 3. Due to variations in the training data set, 
the results demonstrated that the concentration of fibres could affect the 
accuracy of prediction results. Tracking transient vortices through a 
complex geometry necessitates an increase in the average resolution of 
the mesh. As a result, the training data set will expand. According to the 
results, the training dataset for layer 3 has increased by 14.4% compared 
to other layers. Additionally, the prediction time was increased by 
9.84% compared to other layers. The pressure patterns at t = 0.1 and t =
0.5 (Fig. 13b and c) demonstrate that the quality of training data directly 
impacts the output of PIML. 

Fig. 14 presents a transient pressure through layer 4. According to 
the results, although unclassified data can detect patterns, their high 
standard deviation makes it impossible to predict the fluid flow behavior 
in this layer. The maximum variation of critical parameters such as 
vorticity, pressure drop, and dissipation rate occurs in the third layer. It 
will be easier to comprehend the effect of geometry on flow under 
steady-state conditions. Therefore, constant pressure, velocity, and 
vorticity will reach layer 4 regardless of transient vorticities. Due to the 
size and density of the fibres, layers 3 and 4 require a distinct method of 
solution. The geometry of layers 3 and 4 can be used to calculate the 
flow through each layer independently, superposition [69]. 

Nonetheless, a continuous method was used in this study due to the 
small size of the test section (4mm2). When the initial condition came 
from layer 3, physics-based neural networks faced a new obstacle in 
predicting flow patterns. For each parameter, the loss function should be 
individually adjusted. When the boundary and initial conditions (passed 
flow through layer 3 and fiber density in layer 4) become more complex, 
it becomes harder to regenerate the loss function. In addition, solving 
the problem of automatic differentiation becomes more difficult. 

Fig. 15 depicts the effect of high-density pore-scale materials on 
pressure drop while maintaining a uniform pressure distribution. Due to 
the high density of fibres and the average distance between layers, this 
layer’s pattern of vorticity and turbulence intensity is extremely com-
plex. Being a gap, layer 5 has simplified boundary conditions, whereas 
the initial condition for automatic differentiation is complex (passed 
flow through layers 3 and 4). It is simple to regenerate the loss function 
for the PIML method based on layer 5 due to the free space. Since nu-
merical simulations accurately predict the flow through this layer, we 
anticipate that the outcomes of PIML to be comparable. 

6. Conclusions 

Flow simulation through complex geometries, such as pore-scale 
porous media (PSPM), is a true challenge in fluid mechanics. The grid 
generation for complex geometries is the primary barrier to developing 
numerical methods in these domains. The present study presented a 
novel solution for predicting flow through complex geometry. Physics- 

informed machine learning was developed based on transient and tur-
bulence computational methods to predict transient flow through the 
microscale PSPM. To achieve this objective, a method of image pro-
cessing was used to extract 3D geometry from a series of 2D microscopic 
images of a surgical mask. After validating the extracted geometry, 
commercial software (Star CCM+) was used to simulate a transient flow. 
For two inlet velocities (0.1 and 0.5 m/s), the simulated flow passed 
through six distinct layers of a surgical mask. Next, PSPM’s 3D geometry 
was converted to a series of 2D layers in order to implement physics- 
informed machine learning (PIML). Automatic differentiation output 
utilised the boundary condition to solve the loss function. We used the 
Adam optimization method and a modified geometry matrix to meet 
PIML requirements (physical boundary condition). A feed-forward 
neural network with 13 layers of learnable weights and 18 neurons 
per layer has the highest coefficient of determination when used for 
training (R2). To determine the physical loss caused by the data loss 
function, we updated the data, initial condition, and boundary condition 
loss functions at each time step. The pattern of pressure, velocity, and 
vorticity were predicted for all six internal layers of the mask. The 
findings show that 

1- Fluid flow experiences a large variety of pressure and vorticities in-
tensity when passing through the PSPM.  

2- The fiber concentration plays an important role in pressure drop in 
each layer. The results indicated that layer 3 has the strongest impact 
on the pressure drop due to its fiber concentration.  

3- According to the results, the training dataset for layer 3 has increased 
by 14.4% compared to other layers. Additionally, the prediction time 
was increased by 9.84% compared to other layers. 

The results indicated that the PIML method could reduce total 
calculation time (including training and prediction) by up to 22.5 and 
20.7 times compared with standard numerical simulation, on average, 
for speeds of 0.1 and 0.5 m/s, respectively. Numerous factors, such as 
the inherent difference between CPU and GPU, algorithms, and soft-
ware, can influence this factor. 
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Appendix A1. Verification of 3D extracted geometry 

The PSPM geometry was determined using an approximation algo-
rithm, so the effect of variable parameters on the final geometry needs to 
be validated and investigated. A strong correlation exists between the 
image quality and the image processing method. Table A1 details the 
image processing required to extract the geometry. 
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Appendix A2. CFL study 

Table A2 shows the CFL analysis for different inlet velocities based 
on the LES model. 

References 

[1] Juandi, D. and M. Tamur. Review of problem-based learning trends in 2010-2020: 
a meta-analysis study of the effect of problem-based learning in enhancing 
mathematical problem-solving skills of Indonesian students. in Journal of Physics: 
Conference Series. 2021. IOP Publishing. 

[2] Ortiz-Imedio R, Ortiz A, Ortiz I. Comprehensive analysis of the combustion of low 
carbon fuels (hydrogen, methane and coke oven gas) in a spark ignition engine 
through CFD modeling. Energy Convers Manage 2022;251:114918. 

[3] Yang Y, Cai S, Yao J, Zhong J, Zhang K, Song W, Zhang L, Sun H, Lisitsa V. Pore- 
scale simulation of remaining oil distribution in 3D porous media affected by 
wettability and capillarity based on Volume of Fluid method. Int J Multiphase Flow 
2021;143:103746. 

[4] Lin W, Xiong S, Liu Y, He Y, Chu S, Liu S. Spontaneous imbibition in tight porous 
media with different wettability: pore-scale simulation. Phys Fluids 2021;33(3): 
032013. 

[5] Senecal, P., E. Pomraning, K. Richards, and S. Som. Grid-convergent spray models 
for internal combustion engine CFD simulations. in Internal Combustion Engine 
Division Fall Technical Conference. 2012. American Society of Mechanical 
Engineers. 

[6] Kalvakala K, Pal P, Wu Y, Kukkadapu G, Kolodziej C, Gonzalez JP, Waqas MU, 
Lu T, Aggarwal SK, Som S. Numerical Analysis of Fuel Effects on Advanced 
Compression Ignition Using a Cooperative Fuel Research Engine Computational 
Fluid Dynamics Model. J Energy Resour Technol 2021;143(10):102304. 

[7] Shah MI, Javed MF, Alqahtani A, Aldrees A. Environmental assessment based 
surface water quality prediction using hyper-parameter optimized machine 
learning models based on consistent big data. Process Saf Environ Prot 2021. 

[8] Hasle G, Lie K-A, Quak E. Geometric modelling, numerical simulation, and 
optimization. Springer; 2007. 

[9] Zhou K, Yang S. Understanding household energy consumption behavior: the 
contribution of energy big data analytics. Renewable Sustainable Energy Rev 2016; 
56:810–9. 

[10] Herrera GP, Constantino M, Tabak BM, Pistori H, Su J-J, Naranpanawa A. Long- 
term forecast of energy commodities price using machine learning. Energy 2019; 
179:214–21. 

[11] Torres JM, Aguilar RM. Using deep learning to predict complex systems: a case 
study in wind farm generation. complex 2018;2018. 

[12] Saitta L, Zucker J-D. Abstraction in artificial intelligence and complex systems, 
456. Springer; 2013. 

[13] Anderson JD. Computational fluid dynamics, 206. McGraw-Hill; 1995. 
[14] Basbug B, Karpyn ZT. A study of absolute permeability dependence on pore-scale 

characteristics of carbonate reservoirs using artificial intelligence. Int J Oil Gas 
Coal Technol 2008;1(4):382–98. 

[15] Brenner M, Eldredge J, Freund J. Perspective on machine learning for advancing 
fluid mechanics. Phys Rev Fluids 2019;4(10):100501. 

[16] Zhou L, Garg D, Qiu Y, Kim S-M, Mudawar I, Kharangate CR. Machine learning 
algorithms to predict flow condensation heat transfer coefficient in mini/micro- 
channel utilizing universal data. Int J Heat Mass Transf 2020;162:120351. 

[17] Dulhare UN, Ahmad K, Ahmad KAB. Machine learning and big data: concepts, 
algorithms, tools and applications. John Wiley & Sons; 2020. 

[18] Karniadakis GE, Kevrekidis IG, Lu L, Perdikaris P, Wang S, Yang L. Physics- 
informed machine learning. Nat Rev Phys 2021;3(6):422–40. 

[19] Milan PJ, Hickey J-P, Wang X, Yang V. Deep-learning accelerated calculation of 
real-fluid properties in numerical simulation of complex flowfields. J Comput Phys 
2021;444:110567. 

[20] Raissi M, Perdikaris P, Karniadakis GE. Machine learning of linear differential 
equations using Gaussian processes. J Comput Phys 2017;348:683–93. 

[21] Zhang X, Wu J, Coutier-Delgosha O, Xiao H. Recent progress in augmenting 
turbulence models with physics-informed machine learning. J Hydrodyn Ser B 
(English Ed) 2019;31(6):1153–8. 

[22] Wu J-L, Xiao H, Paterson E. Physics-informed machine learning approach for 
augmenting turbulence models: a comprehensive framework. Phys Rev Fluids 
2018;3(7):074602. 

[23] Fuks O. Physics informed machine learning and uncertainty propagation for 
multiphase transport in porous media. Stanford University; 2020. 

[24] Fuks O, Tchelepi HA. Limitations of physics informed machine learning for 
nonlinear two-phase transport in porous media. J Mach Learn Model Comput 2020; 
1(1). 

[25] Maragos, P., V. Charisopoulos, and E. Theodosis, Tropical geometry and machine 
learning. Proceedings of the IEEE, 2021. 109(5): p. 728–55. 

[26] Murugappan M, Mutawa A. Facial geometric feature extraction based emotional 
expression classification using machine learning algorithms. PLoS One 2021;16(2): 
e0247131. 

[27] Ma J, Chen F, Xu H, Jiang H, Liu J, Li P, Chen CC, Pan K. Face masks as a source of 
nanoplastics and microplastics in the environment: quantification, 
characterization, and potential for bioaccumulation. Environ Pollut 2021;288: 
117748. 

[28] Li B. Research on geometric dimension measurement system of shaft parts based on 
machine vision. EURASIP J Image Video Process 2018;2018(1):1–9. 

[29] Luo L, Liu W, Lu Q, Wang J, Wen W, Yan D, Tang Y. Grape berry detection and size 
measurement based on edge image processing and geometric morphology. 
Machines 2021;9(10):233. 

[30] Huang, T. and Y. Liu. 3d point cloud geometry compression on deep learning. in 
Proceedings of the 27th ACM International Conference on Multimedia. 2019. 

[31] Leonas KK, Jones CR, Hall D. The relationship of fabric properties and bacterial 
filtration efficiency for selected surgical face masks. JTATM 2003;3:1–8. 

[32] Neupane BB, Mainali S, Sharma A, Giri B. Optical microscopic study of surface 
morphology and filtering efficiency of face masks. PeerJ 2019;7:e7142. 

[33] Kuo C-CJ. Understanding convolutional neural networks with a mathematical 
model. J Vis Commun Image Represent 2016;41:406–13. 

[34] Pang, G. and U. Neumann. 3D point cloud object detection with multi-view 
convolutional neural network. in 2016 23rd International Conference on Pattern 
Recognition (ICPR). 2016. IEEE. 

[35] Koushik, J., Understanding convolutional neural networks. arXiv preprint arXiv:1 
605.09081, 2016. 

[36] Fischler MA, Bolles RC. Random sample consensus: a paradigm for model fitting 
with applications to image analysis and automated cartography. Commun ACM 
1981;24(6):381–95. 

[37] Mao Z, Miki A, Mei S, Dong Y, Maruyama K, Kawasaki R, Usui S, Matsushita K, 
Nishida K, Chan K. Deep learning based noise reduction method for automatic 3D 
segmentation of the anterior of lamina cribrosa in optical coherence tomography 
volumetric scans. Biomed Opt Express 2019;10(11):5832–51. 

[38] Albawi, S., T.A. Mohammed, and S. Al-Zawi. Understanding of a convolutional 
neural network. in 2017 international conference on engineering and technology 
(ICET). 2017. Ieee. 

[39] Hatger C, Brenner C. Extraction of road geometry parameters from laser scanning 
and existing databases. Int Arch Photogram Remote Sens Spatial Inf Sci 2003;34(3/ 
W13):225–30. 

[40] Gikas V, Stratakos J. A novel geodetic engineering method for accurate and 
automated road/railway centerline geometry extraction based on the bearing 
diagram and fractal behavior. IEEE Trans Intell Transp Syst 2011;13(1):115–26. 

[41] Krawiec K, Bhanu B. Visual learning by evolutionary and coevolutionary feature 
synthesis. IEEE Trans Evol Comput 2007;11(5):635–50. 

[42] Rosin P, Adamatzky A, Sun X. Cellular automata in image processing and 
geometry. Springer; 2014. 

[43] Habib R, Karimi N, Yadollahi B, Doranehgard MH, Li LK. A pore-scale assessment 
of the dynamic response of forced convection in porous media to inlet flow 
modulations. Int J Heat Mass Transf 2020;153:119657. 

[44] Mesgarpour M, Sakamatapan K, Dalkılıç AS, Alizadeh R, Ahn HS, Wongwises S. An 
investigation of the thermal behavior of constructal theory-based pore-scale porous 
media by using a combination of computational fluid dynamics and machine 
learning. Int J Heat Mass Transf 2022;194:123072. 

[45] Pope SB. Turbulent flows. IOP Publishing; 2001. 
[46] Weickert M, Teike G, Schmidt O, Sommerfeld M. Investigation of the LES WALE 

turbulence model within the lattice Boltzmann framework. Comput Math Appl 
2010;59(7):2200–14. 

[47] Carpenter GA, Grossberg S. A self-organizing neural network for supervised 
learning, recognition, and prediction, 30. IEEE Communications Magazine; 1992. 
p. 38–49. 

[48] Berkson J. Application of the logistic function to bio-assay. J Am Stat Assoc 1944; 
39(227):357–65. 

[49] Wang M, Lu S, Zhu D, Lin J, Wang Z. A high-speed and low-complexity architecture 
for softmax function in deep learning. In: 2018 IEEE Asia Pacific Conference on 
Circuits and Systems (APCCAS). IEEE; 2018. 

[50] Janocha, K. and W.M. Czarnecki, On loss functions for deep neural networks in 
classification. arXiv preprint arXiv:1702.05659, 2017. 

[51] De Boer P-T, Kroese DP, Mannor S, Rubinstein RY. A tutorial on the cross-entropy 
method. Ann Oper Res 2005;134(1):19–67. 

[52] Riedmiller M, Lernen A. Multi layer perceptron. Machine learning lab special 
lecture. University of Freiburg; 2014. p. 7–24. 

[53] Harp DR, O’Malley D, Yan B, Pawar R. On the feasibility of using physics-informed 
machine learning for underground reservoir pressure management. Expert Syst 
Appl 2021;178:115006. 

[54] Kyurkchiev N, Markov S. Sigmoid functions: some approximation and modelling 
aspects. Saarbrucken: LAP LAMBERT Academic Publishing; 2015. 

[55] Zheng, H., Z. Yang, W. Liu, J. Liang, and Y. Li. Improving deep neural networks 
using softplus units. in 2015 International Joint Conference on Neural Networks 
(IJCNN). 2015. IEEE. 

[56] Chai T, Draxler RR. Root mean square error (RMSE) or mean absolute error 
(MAE)?–Arguments against avoiding RMSE in the literature. Geoscientif Model 
Dev 2014;7(3):1247–50. 

[57] Elliott, D.L., A better activation function for artificial neural networks. 1993. 
[58] Köksoy O. Multiresponse robust design: mean square error (MSE) criterion. Appl 

Math Comput 2006;175(2):1716–29. 
[59] Zhang, Z. Improved adam optimizer for deep neural networks. in 2018 IEEE/ACM 

26th International Symposium on Quality of Service (IWQoS). 2018. Ieee. 
[60] Yuan Y-x. A modified BFGS algorithm for unconstrained optimization. IMA J 

Numer Anal 1991;11(3):325–32. 
[61] Moritz P, Nishihara R, Jordan M. A linearly-convergent stochastic L-BFGS 

algorithm. Artif Intell Stat 2016. PMLR. 
[62] Wang S, Teng Y, Perdikaris P. Understanding and mitigating gradient flow 

pathologies in physics-informed neural networks. SIAM J Sci Comput 2021;43(5): 
A3055–81. 

[63] Monjezi M, Jamaati H. The effects of face mask specifications on work of breathing 
and particle filtration efficiency. Med Eng Phys 2021;98:36–43. 

M. Mesgarpour et al.                                                                                                                                                                                                                           

http://refhub.elsevier.com/S0955-7997(23)00011-5/sbref0002
http://refhub.elsevier.com/S0955-7997(23)00011-5/sbref0002
http://refhub.elsevier.com/S0955-7997(23)00011-5/sbref0002
http://refhub.elsevier.com/S0955-7997(23)00011-5/sbref0003
http://refhub.elsevier.com/S0955-7997(23)00011-5/sbref0003
http://refhub.elsevier.com/S0955-7997(23)00011-5/sbref0003
http://refhub.elsevier.com/S0955-7997(23)00011-5/sbref0003
http://refhub.elsevier.com/S0955-7997(23)00011-5/sbref0004
http://refhub.elsevier.com/S0955-7997(23)00011-5/sbref0004
http://refhub.elsevier.com/S0955-7997(23)00011-5/sbref0004
http://refhub.elsevier.com/S0955-7997(23)00011-5/sbref0006
http://refhub.elsevier.com/S0955-7997(23)00011-5/sbref0006
http://refhub.elsevier.com/S0955-7997(23)00011-5/sbref0006
http://refhub.elsevier.com/S0955-7997(23)00011-5/sbref0006
http://refhub.elsevier.com/S0955-7997(23)00011-5/sbref0007
http://refhub.elsevier.com/S0955-7997(23)00011-5/sbref0007
http://refhub.elsevier.com/S0955-7997(23)00011-5/sbref0007
http://refhub.elsevier.com/S0955-7997(23)00011-5/sbref0008
http://refhub.elsevier.com/S0955-7997(23)00011-5/sbref0008
http://refhub.elsevier.com/S0955-7997(23)00011-5/sbref0009
http://refhub.elsevier.com/S0955-7997(23)00011-5/sbref0009
http://refhub.elsevier.com/S0955-7997(23)00011-5/sbref0009
http://refhub.elsevier.com/S0955-7997(23)00011-5/sbref0010
http://refhub.elsevier.com/S0955-7997(23)00011-5/sbref0010
http://refhub.elsevier.com/S0955-7997(23)00011-5/sbref0010
http://refhub.elsevier.com/S0955-7997(23)00011-5/sbref0011
http://refhub.elsevier.com/S0955-7997(23)00011-5/sbref0011
http://refhub.elsevier.com/S0955-7997(23)00011-5/sbref0012
http://refhub.elsevier.com/S0955-7997(23)00011-5/sbref0012
http://refhub.elsevier.com/S0955-7997(23)00011-5/sbref0013
http://refhub.elsevier.com/S0955-7997(23)00011-5/sbref0014
http://refhub.elsevier.com/S0955-7997(23)00011-5/sbref0014
http://refhub.elsevier.com/S0955-7997(23)00011-5/sbref0014
http://refhub.elsevier.com/S0955-7997(23)00011-5/sbref0015
http://refhub.elsevier.com/S0955-7997(23)00011-5/sbref0015
http://refhub.elsevier.com/S0955-7997(23)00011-5/sbref0016
http://refhub.elsevier.com/S0955-7997(23)00011-5/sbref0016
http://refhub.elsevier.com/S0955-7997(23)00011-5/sbref0016
http://refhub.elsevier.com/S0955-7997(23)00011-5/sbref0017
http://refhub.elsevier.com/S0955-7997(23)00011-5/sbref0017
http://refhub.elsevier.com/S0955-7997(23)00011-5/sbref0018
http://refhub.elsevier.com/S0955-7997(23)00011-5/sbref0018
http://refhub.elsevier.com/S0955-7997(23)00011-5/sbref0019
http://refhub.elsevier.com/S0955-7997(23)00011-5/sbref0019
http://refhub.elsevier.com/S0955-7997(23)00011-5/sbref0019
http://refhub.elsevier.com/S0955-7997(23)00011-5/sbref0020
http://refhub.elsevier.com/S0955-7997(23)00011-5/sbref0020
http://refhub.elsevier.com/S0955-7997(23)00011-5/sbref0021
http://refhub.elsevier.com/S0955-7997(23)00011-5/sbref0021
http://refhub.elsevier.com/S0955-7997(23)00011-5/sbref0021
http://refhub.elsevier.com/S0955-7997(23)00011-5/sbref0022
http://refhub.elsevier.com/S0955-7997(23)00011-5/sbref0022
http://refhub.elsevier.com/S0955-7997(23)00011-5/sbref0022
http://refhub.elsevier.com/S0955-7997(23)00011-5/sbref0023
http://refhub.elsevier.com/S0955-7997(23)00011-5/sbref0023
http://refhub.elsevier.com/S0955-7997(23)00011-5/sbref0024
http://refhub.elsevier.com/S0955-7997(23)00011-5/sbref0024
http://refhub.elsevier.com/S0955-7997(23)00011-5/sbref0024
http://refhub.elsevier.com/S0955-7997(23)00011-5/sbref0026
http://refhub.elsevier.com/S0955-7997(23)00011-5/sbref0026
http://refhub.elsevier.com/S0955-7997(23)00011-5/sbref0026
http://refhub.elsevier.com/S0955-7997(23)00011-5/sbref0027
http://refhub.elsevier.com/S0955-7997(23)00011-5/sbref0027
http://refhub.elsevier.com/S0955-7997(23)00011-5/sbref0027
http://refhub.elsevier.com/S0955-7997(23)00011-5/sbref0027
http://refhub.elsevier.com/S0955-7997(23)00011-5/sbref0028
http://refhub.elsevier.com/S0955-7997(23)00011-5/sbref0028
http://refhub.elsevier.com/S0955-7997(23)00011-5/sbref0029
http://refhub.elsevier.com/S0955-7997(23)00011-5/sbref0029
http://refhub.elsevier.com/S0955-7997(23)00011-5/sbref0029
http://refhub.elsevier.com/S0955-7997(23)00011-5/sbref0031
http://refhub.elsevier.com/S0955-7997(23)00011-5/sbref0031
http://refhub.elsevier.com/S0955-7997(23)00011-5/sbref0032
http://refhub.elsevier.com/S0955-7997(23)00011-5/sbref0032
http://refhub.elsevier.com/S0955-7997(23)00011-5/sbref0034
http://refhub.elsevier.com/S0955-7997(23)00011-5/sbref0034
http://arxiv.org/abs/arXiv:1605.09081
http://arxiv.org/abs/arXiv:1605.09081
http://refhub.elsevier.com/S0955-7997(23)00011-5/sbref0036
http://refhub.elsevier.com/S0955-7997(23)00011-5/sbref0036
http://refhub.elsevier.com/S0955-7997(23)00011-5/sbref0036
http://refhub.elsevier.com/S0955-7997(23)00011-5/sbref0037
http://refhub.elsevier.com/S0955-7997(23)00011-5/sbref0037
http://refhub.elsevier.com/S0955-7997(23)00011-5/sbref0037
http://refhub.elsevier.com/S0955-7997(23)00011-5/sbref0037
http://refhub.elsevier.com/S0955-7997(23)00011-5/sbref0039
http://refhub.elsevier.com/S0955-7997(23)00011-5/sbref0039
http://refhub.elsevier.com/S0955-7997(23)00011-5/sbref0039
http://refhub.elsevier.com/S0955-7997(23)00011-5/sbref0040
http://refhub.elsevier.com/S0955-7997(23)00011-5/sbref0040
http://refhub.elsevier.com/S0955-7997(23)00011-5/sbref0040
http://refhub.elsevier.com/S0955-7997(23)00011-5/sbref0041
http://refhub.elsevier.com/S0955-7997(23)00011-5/sbref0041
http://refhub.elsevier.com/S0955-7997(23)00011-5/sbref0042
http://refhub.elsevier.com/S0955-7997(23)00011-5/sbref0042
http://refhub.elsevier.com/S0955-7997(23)00011-5/sbref0043
http://refhub.elsevier.com/S0955-7997(23)00011-5/sbref0043
http://refhub.elsevier.com/S0955-7997(23)00011-5/sbref0043
http://refhub.elsevier.com/S0955-7997(23)00011-5/sbref0044
http://refhub.elsevier.com/S0955-7997(23)00011-5/sbref0044
http://refhub.elsevier.com/S0955-7997(23)00011-5/sbref0044
http://refhub.elsevier.com/S0955-7997(23)00011-5/sbref0044
http://refhub.elsevier.com/S0955-7997(23)00011-5/sbref0045
http://refhub.elsevier.com/S0955-7997(23)00011-5/sbref0046
http://refhub.elsevier.com/S0955-7997(23)00011-5/sbref0046
http://refhub.elsevier.com/S0955-7997(23)00011-5/sbref0046
http://refhub.elsevier.com/S0955-7997(23)00011-5/sbref0047
http://refhub.elsevier.com/S0955-7997(23)00011-5/sbref0047
http://refhub.elsevier.com/S0955-7997(23)00011-5/sbref0047
http://refhub.elsevier.com/S0955-7997(23)00011-5/sbref0048
http://refhub.elsevier.com/S0955-7997(23)00011-5/sbref0048
http://refhub.elsevier.com/S0955-7997(23)00011-5/sbref0049
http://refhub.elsevier.com/S0955-7997(23)00011-5/sbref0049
http://refhub.elsevier.com/S0955-7997(23)00011-5/sbref0049
http://arxiv.org/abs/arXiv:1702.05659
http://refhub.elsevier.com/S0955-7997(23)00011-5/sbref0051
http://refhub.elsevier.com/S0955-7997(23)00011-5/sbref0051
http://refhub.elsevier.com/S0955-7997(23)00011-5/sbref0052
http://refhub.elsevier.com/S0955-7997(23)00011-5/sbref0052
http://refhub.elsevier.com/S0955-7997(23)00011-5/sbref0053
http://refhub.elsevier.com/S0955-7997(23)00011-5/sbref0053
http://refhub.elsevier.com/S0955-7997(23)00011-5/sbref0053
http://refhub.elsevier.com/S0955-7997(23)00011-5/sbref0054
http://refhub.elsevier.com/S0955-7997(23)00011-5/sbref0054
http://refhub.elsevier.com/S0955-7997(23)00011-5/sbref0056
http://refhub.elsevier.com/S0955-7997(23)00011-5/sbref0056
http://refhub.elsevier.com/S0955-7997(23)00011-5/sbref0056
http://refhub.elsevier.com/S0955-7997(23)00011-5/sbref0058
http://refhub.elsevier.com/S0955-7997(23)00011-5/sbref0058
http://refhub.elsevier.com/S0955-7997(23)00011-5/sbref0060
http://refhub.elsevier.com/S0955-7997(23)00011-5/sbref0060
http://refhub.elsevier.com/S0955-7997(23)00011-5/sbref0061
http://refhub.elsevier.com/S0955-7997(23)00011-5/sbref0061
http://refhub.elsevier.com/S0955-7997(23)00011-5/sbref0062
http://refhub.elsevier.com/S0955-7997(23)00011-5/sbref0062
http://refhub.elsevier.com/S0955-7997(23)00011-5/sbref0062
http://refhub.elsevier.com/S0955-7997(23)00011-5/sbref0063
http://refhub.elsevier.com/S0955-7997(23)00011-5/sbref0063

	A combination of large eddy simulation and physics-informed machine learning to predict pore-scale flow behaviours in fibro ...
	1 Introduction
	2 Problem statement and methodology
	2.1 Mask imaging
	2.2 Geometry extraction method

	3 Governing equations of fluid flow
	3.1 LES model
	3.2 Reinforcement neural network models
	3.2.1 Physics-informed machine learning
	3.2.2 Adam optimization method
	3.2.3 Adaptive weights


	4 Grid generation and validation
	4.1 Validation of numerical simulations
	4.2 Validation of machine learning

	5 Results and discussion
	5.1 Comparison between numerical simulations and PIML results for the average pressure drop
	5.2 Predicting pressure fluctuations in distinct layers of the surgical mask (PIML results)

	6 Conclusions
	Declaration of Competing Interest
	Data availability
	Acknowledgements
	Appendix A1 Verification of 3D extracted geometry
	Appendix A2 CFL study
	References


