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Abstract—Millimeter-wave (mmWave) communication has at-
tracted considerable attention from academia and industry,
providing multi-gigabits per second rates due to the substan-
tial bandwidth. Rate splitting multiple access (RSMA) is an
effective technology that provides a generalized multiple access
framework. Regarding the new propagation characteristics of the
mmWave, we investigate the outage performance of the mmWave
RSMA multiple-input-single-output system with a fixed-located
user and a randomly-located user. Based on the spatial correla-
tion of the paired users, the user’s paths are divided into over-
lapped and non-overlapped paths. Two beamforming schemes
are proposed to improve the reliability of the mmWave RSMA
system. The common stream is transmitted on the overlapped
paths or all the paths. By utilizing stochastic geometry theory,
the closed-form expressions of the outage probability (OP) with
proposed schemes are derived. To obtain more insights, the
expressions for the asymptotic OP are derived. Monte Carlo
simulation results are presented to validate the analysis and
the effects of the system parameters, such as power allocation
coefficients and the number of resolvable paths, on the outage
performance are investigated.

Index Terms—Millimeter wave, rate splitting multiple access,
stochastic geometry, outage probability.

I. INTRODUCTION

A. Background and Related Work

The popularity of various mobile smart devices has greatly
stimulated challenging demands for wireless communications
with respect to available bandwidth and extremely high data
rates. Millimeter-wave (mmWave) communication has become
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one of the most efficient solutions for future wireless com-
munication and has drawn considerable attention from both
academia and industry [1], [2]. Different from rich scattering
environments of the traditional low-frequency channels, the
mmWave channels are characterized by sparse scattering and
multipath that can be described by a geometric channel model
[3]. Two random beamforming schemes were proposed for
mmWave non-orthogonal multiple access (NOMA) systems to
reduce feedback in [4] and the expressions for the exact and
asymptotic outage probability (OP) were derived, respectively.
The authors in [5] investigated the security, reliability, and en-
ergy coverage of downlink mmWave simultaneous wireless in-
formation and power transfer unmanned aerial vehicle (UAV)
NOMA systems. In [6], a new mmWave-NOMA framework
under geometric channel model was proposed wherein users
were classified as secure users and common users.

To characterize multipath transmission of mmWave channel,
Ju et al. in [7] utilized a discrete angular domain channel
model under geometric channel model, which is more con-
ducive in encompassing the new propagation characteristics
and flexible and suitable for theoretical analysis of mmWave
systems. Then, three transmission schemes were designed to
enhance the secrecy performance of a multiple-input-single-
output (MISO) mmWave system. The results demonstrated
that the relationship between the legitimate user’s and the
eavesdropper’s spatially resolvable paths significantly affected
the secrecy performance of the mmWave system. In [8], the
authors investigated the secrecy performance of mmWave
systems with randomly located multiple eavesdroppers. In
[9], the MISO discrete angular domain channel was extended
to the multiple input multiple output channel by designing
the corresponding beamforming methods. The secrecy per-
formance of mmWave decode-and-forward relay systems in
three eavesdropping scenarios was investigated. The authors
in [10] investigated the secure performance of mmWave
NOMA systems wherein both legitimate and illegitimate users
were randomly distributed. Two transmission schemes were
proposed by considering the spatial correlation between the
selected legitimate users and eavesdroppers. The closed-form
expressions of the SOP for different beamforming schemes
were derived.

Recently, as a generalized downlink multiple-access
scheme, rate splitting multiple access (RSMA) was proposed
in [11]. In downlink RSMA, each message intended for users
at the transmitter is split into a common and private part. All
the common parts are encoded into a common stream decoded
by all users and the private parts are encoded in private
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streams decoded by the corresponding users. The common and
private streams are superimposed together, linearly precoded,
and transmitted simultaneously. By successive interference
cancellation (SIC) technology, the common stream is decoded
first by treating all private signals as interference at each
receiver. After the common stream is decoded and removed
from the received signals, the private stream is decoded by
treating other users’ private signals as interference. RSMA
outperforms and unifies orthogonal multiple access, NOMA,
space division multiple access (SDMA), and multicasting that
was first shown through optimization in [11] and analytically
in [12]. As a result, RSMA represents a new multiple-access
paradigm through adaptively managing inter-user interference
[13]-[15]. In [16], the RSMA scheme was utilized in the UAV
downlink systems and the closed-form expressions of the OP
and throughput at each user were derived. In [17], the RSMA
scheme was utilized in a satellite and aerial-integrated network
wherein the signals for all the users and some particular
users were mapped to different beamformers, respectively.
An optimization problem was proposed to maximize the sum
rate of the considered system. Their results verified that the
proposed beamform design frameworks could enhance spectral
efficiency. The secrecy performance of two-user downlink
systems with untrusted users was investigated and the closed-
form expressions for the OP and secrecy OP were derived in
[18] and in [19]. The authors investigated the performance
of a multi-cell RSMA network and derived the analytical
expressions for sum rate and spectral efficiency based on
stochastic geometry theory in [20]. Their results demonstrated
that the power splitting ratio between common and private
streams significantly impacts performance.

The uplink RSMA scheme was proposed in [21] and their
result demonstrated that it could achieve the capacity region
of the multiple access channels. Relative to the downlink
RSMA scheme, the messages of K−1 users in uplink RSMA
systems with K users are split rather than all the users to
achieve the rate tuple within the capacity region [14], [21].
Analyzing the performance of the uplink RSMA systems with
different decoding orders have achieved significant attention
recently [22], [23], [24]. In [22], Liu et al. investigated an
uplink RSMA system with two users in both general and
cognitive radio scenarios wherein specific decoding order and
two rate splitting schemes by utilizing fixed power allocation
and cognitive power allocation are proposed. The closed-form
expressions for both users’ OP were derived for different
schemes. Moreover, through splitting the signals and allocating
the transmit power efficiently at the secondary user, a new
RS strategy was proposed for cognitive radio-inspired NOMA
systems to enhance the achievable rate of the cognitive user
in [23]. The performance of an RSMA system with two users
was investigated based on arbitrary decoding order and the
closed-form expression of OP was derived in [24].

Compared to NOMA, the RSMA scheme has many ad-
vantages: higher spectral efficiency, higher multiplexing gain,
more general conditions, suitability for multiple antennas, and
lower receiver complexity [11], [13], [14], [25]. On the other
hand, despite extremely high data rates in mmWave communi-
cation, a much shorter wavelength facilitates equipping more

antennas in a limited space, which brings the antenna gain to
compensate for the severe path loss. A new hybrid precoding
scheme for mmWave systems was proposed to reduce the
complexity of the feedback [26]. Their results showed that the
RSMA scheme could save the channel training and feedback
overhead. However, it is difficult to obtain the closed-form
expression for the achievable rate in partially overlapped angle
of departure (AoD) scenarios due to the complicated structure
of the digital precoder [26].

B. Motivation and Contributions

To the best of our knowledge, it is still an open issue
to analyze the performance of the mmWave system with
the RSMA scheme, which motivates this work. The main
contributions of this paper can be summarized as follows:

1) In this work, we investigate the outage performance
of the mmWave RSMA MISO system with a fixed-
located user and a randomly located user. Based on the
spatial correlation of the paired users and the principle
of the RSMA scheme, two beamforming schemes are
proposed to improve the reliability of the mmWave
RSMA system. Utilizing stochastic geometry theory,
the closed-form expressions of the OP with proposed
schemes are derived.

2) To obtain more insights, the expressions for the asymp-
totic OP are derived and the effects of the system
parameters are investigated. The results demonstrate that
there exists an optimal power allocation coefficient and
an optimal number of resolvable paths to minimize
the OP of both users. The optimal power allocation
coefficients depend on many parameters, such as channel
parameters, resolvable paths and path loss exponent,
target rates of common streams and private streams,
total transmit power of RSMA users, and beamforming
scheme.

3) Differing from [10] wherein the beamforming schemes
were developed to enhance the secrecy performance
of mmWave NOMA networks, beamforming schemes
are proposed to improve the reliability of the mmWave
RSMA system in this work. Based on the relationship
between NOMA and RSMA, the scenarios considered
in this work are more generalized.

4) Relative to [20] wherein analytical expressions for aver-
age sum-rate were derived by getting analytical ergodic
data rate expressions for common and private streams
based on stochastic geometry theory, the outage per-
formance of millimeter wave RSMA MISO systems is
investigated in this work. The channels in the millimeter
wave band are not independent but rather correlated
fading for their sparse scattering and multipath, which
makes the performance analysis more challenging.

C. Organization

The rest of this paper is organized as follows. Section II
describes the system model. Section III proposes two trans-
mission schemes for the mmWave RSMA MISO system. The
exact and asymptotic outage performance of mmWave RSMA
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Fig. 1: System model demonstrating a base station (S) and
two users (U1 and U2).

networks with proposed schemes are analyzed in Sections IV
and V, respectively. Section VI presents the numerical and
simulation results to demonstrate the analysis and the paper is
concluded in Section VII.

II. SYSTEM MODEL

As shown in Fig. 1, we consider a downlink mmWave
RSMA system, which consists of a base station (S) with Nt
antennas and two single-antenna users (U1 and U2). Without
loss of generality, it is assumed S is located at the origin of
a disk with radius R and U1 is situated at a distance r1 from
the S. It is also assumed that U2 is randomly distributed on
the disk with radius r2. 1

Messages W1 and W2 are transmitted for U1 and U2, re-
spectively. Based on RSMA principle [27], [28], Wi (i = 1, 2)
is split into two parts, {Wc,i,Wp,i}. Using a codebook shared
by both users, Wc,1 and Wc,2 are encoded together into a
common stream sc, which is required to be decoded by both
users. At the same time, Wp,1 and Wp,2 are encoded into the
private streams s1 and s2, respectively. Then, the transmitted
signal from S is given as

x = wc

√
Pτcsc + w1

√
Pτ1s1 + w2

√
Pτ2s2, (1)

where wc, w1, and w2 are unit vectors that span the beam-
forming direction, P signifies the transmit power, and τc and
τi denote the power allocation coefficients for sc and si,
respectively.

Utilizing the uniform linear array (ULA) model, the chan-
nels between S and Ui is expressed as [7]-[10]

hi =

√
NtPL (ri)

Li
giU

H , (2)

where PL (ri) = r0r
−α
i , r0 = 10−

βL
10 , βL = 32.4 +

20log10 (fc), fc = 28 GHz [29], ri is the distance be-
tween the transmitter and the receiver, α is the path

1Although U1 is fixed and U2 is randomly distributed in our work, the
results can be easily extended to the downlink mmWave RSMA system with
two random users. Similar to [11], [12], [18], [25], the RSMA system with
two users is considered in this work. As such, the results in this paper can
serve as a benchmark for the performance of such systems. The performance
of RSMA systems with multiple users will be part of our future work.

loss exponent, gi = [gi,1, gi,2, . . . , gi,Nt ] is the com-
plex gain vector, U = [a (Ψ1) ,a (Ψ2) , . . . ,a (ΨNt)]
is the spatially orthogonal basis, where a (Ψn) =

1√
Nt

[
1, e−j

2πd
λ̄ Ψn , e−j2

2πd
λ̄ Ψn , · · · , e−j(Nt−1) 2πd

λ̄ Ψn
]T

, Ψn =
1
M

(
n− 1− Nt−1

2

)
(n = 1, 2, . . . , Nt) is one-to-one map-

ping with AoD denoted by θn = arcsin (Ψn), M = dNt
λ̄

is the normalized length of the transmitting antenna and
determines angular domain resolvability, d is antenna spac-
ing, λ̄ is wavelength, Li =

⌊
M sin (θi,max) + Nt+1

2

⌋
−⌈

M sin (θi,min) + Nt+1
2

⌉
+ 1 < Nt denotes the number of

resolvable paths of Ui, θi,min is the minimum AoD for Ui’s
all paths, θi,max is the maximum AoD for Ui’s all paths, and
gi,n ∼ CN (0, 1) if θn ∈ [θi,min, θi,max] otherwise gi,n = 0
[7].

Based on the spatial correlation of the paired users, the
user’s paths are divided into common (overlapped) and
private (non-overlapped) paths. For tractability of analy-
sis, it is assumed that L1 = L2 = L and there are
Lc common paths between U1 and U2. It must be noted
that Lc is a random variable due to the randomness of
U2’s location and the probability mass function (PMF)
of Lc is given as Pr {Lc = k} = ωk, where ωk =
2
π

(
arcsin

(
ΨNt−L

2 +k+1

)
− arcsin

(
ΨNt−L

2 +k

))
for k =

1, ..., L−1, ωL = 1
π arcsin

(
ΨNt+L

2 +1

)
− 1
π arcsin

(
ΨNt+L

2

)
,

and ω0 = 1−
L∑
j=1

ωj [8].

Since U2 follows uniform distribution in a circle with radius
R, the PDF of r2 is expressed as [10]

fr2 (r) =
2r

R2
, 0 ≤ r ≤ R. (3)

III. BEAMFORMING SCHEMES

In this section, two beamforming schemes are proposed to
provide reliable communication for downlink mmWave RSMA
MISO systems.

A. Transmit common messages on the common paths (TCCP)

Based on the spatial correlation of U1 and U2, and the
principle of the RSMA scheme, we propose a beamforming
scheme TCCP wherein sc is transmitted on the common paths
and si is transmitted on their own private paths. TCCP can
exactly eliminate the inter-user interference of private signals
by utilizing the spatial correlation of two users’ channels. It
is assumed that the perfect channel state information (CSI),
including the AoDs and the complex path gains gi for two
users, is available at S to enable precoding. 2. The beamform-

2The CSI at the receiver can be obtained via training and subsequently
feedback to the S to generate the beamforming vectors [2], [9], [26], [30].
Specifically, the wTCCP

c can be generated as per the following steps. Firstly,
S sends beam training with receivers. Then, every receiver estimates CSI and
subsequently feeds back the index of the analog precoder (Uc) to the S. S

trains the effective channels (hiUc =
√
NtPL(ri)

L
gi,c) with receivers and

subsequently gets the quantized channel vector. Finally, S designs its digital

precoder (
gH1,c

‖g1,c‖ ) based on the quantized CSI. It is assumed that quantization
error for quantized channel vector is negligible to guarantee the analytic result.
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ing vector for sc is designed as

wTCCP
c =

(
g1,cU

H
c

)H
‖g1,cUH

c ‖
∈ CNt×1, (4)

where g1,c = S (g1,fc) ∈ C1×Lc , Uc = S (U,fc) ∈
CNt×Lc , S (B, D) is utilized to generate a new matrix with
columns selected from B based on the selected column index
set D, and fc denotes the index set of common resolvable
paths between the receivers U1 and U2.

Similarly, the beamforming vector for si is expressed as

wi =

(
gi,pU

H
i,p

)H∥∥gi,pUH
i,p

∥∥ ∈ CNt×1, (5)

where gi,p = S (gi,fi,p) ∈ C1×Lp , Ui,p = S (U,fi,p) ∈
CNt×Lp , and fi,p denotes the index set of the private paths
of receiver Ui.

According to the RSMA principle, Ui decodes sc firstly by
treating all the other signals as noise. When 0 < Lc < L, the
instantaneous signal to interference plus noise ratio (SINR) of
decoding sc at U1 is

γTCCP
c,1,Lc =

Pτc‖h1wc‖2

Pτ1‖h1w1‖2 + Pτ2‖h1w2‖2 + σ2
n

(a)
=

Pτc‖h1wc‖2

Pτ1‖h1w1‖2 + σ2
n

(b)
=

δc‖g1,c‖2

δ1‖g1,p‖2 + 1
,

(6)

where h1 is the channel between S and U1, δc = δτc
rα1

, δ1 =
δτ1
rα1

, ρ = P
σ2 , δ = Ntρr0

L , σ2
n signifies the noise power at U1,

step (a) is obtained due to ‖h1w2‖2 = 0, and step (b) is
obtained based on the definition of h1 and (4) and (5).

After performing SIC, i.e., the sc is re-encoded, precoded,
and removed from the received signal, the SINR of decoding
s1 at U1 is obtained as

γTCCP
p,1,Lc =

Pτ1‖h1w1‖2

Pτ2‖h1w2‖2 + σ2
n

= δ1‖g1,p‖2.
(7)

Remark 1. Based on (6) and (7), one can find that both
γTCCP
c,1,Lc

and γTCCP
p,1,Lc

would be the bottleneck of RSMA systems.
As τc increases, γTCCP

c,1,Lc
increases and γTCCP

p,1,Lc
decreases , thus,

there exists an optimal τc to minimize the OP of U1.

Due to ‖h2w1‖2 = 0, γTCCP
c,2,Lc

and γTCCP
p,2,Lc

are obtained as

γTCCP
c,2,Lc =

Pτc‖h2wc‖2

Pτ2‖h2w2‖2 + σ2
n

=

δτcr
−α
2

∣∣∣∣g2U
HUc

gH1,c
‖g1,c‖

∣∣∣∣2
δτ2r

−α
2 ‖g2,p‖2 + 1

=

δτcr
−α
2

∣∣∣∣g2,c
gH1,c
‖g1,c‖

∣∣∣∣2
δτ2r

−α
2 ‖g2,p‖2 + 1

,

(8)

γTCCP
p,2,Lc = δτ2r

−α
2 ‖g2,p‖2, (9)

respectively.
To facilitate analysis, we define vi,p µc,i = ‖gi,c‖2, vi,p =
‖gi,p‖2, and ϑi = ‖gi‖2. The PDF and cumulative distribution
function (CDF) of X ∈ {µc,i, vi,p, ϑi} are expressed as

fX (x) =
e−xxκX−1

(κX − 1)!
, (10)

FX (x) = 1− e−x
κX−1∑
t=0

xt

t!
, (11)

respectively, where κµc,i = Lc, κvi,p = L − Lc = Lp,

and κϑi = L. Similarly, we denote ζ =
∣∣∣g2

g1
H

‖g1‖

∣∣∣2 and

ζc =

∣∣∣∣g2,c
gH1,c
‖g1,c‖

∣∣∣∣2. The PDF and CDF of Y ∈ {ζ, ζc} are

expressed as fY (y) = e−y and FY (y) = 1−e−y , respectively
[7].

Specifically, RSMA would degenerate as SDMA when
Lc = 0 and multicast when Lc = L [11], [12]. When
Lc = 0, there are no overlapped paths between U1 and
U2, and SDMA scheme is utilized, which means all signals
are transmitted in their own private paths with τc = 0 and
γTCCP
c,1,0 = γTCCP

c,2,0 = 0. The SNR of U1 and U2 are expressed
as γTCCP

p,1,0 = δ1ϑ1 and γTCCP
p,2,0 = δτ2r

−α
2 ϑ2, respectively.

When Lc = L, there are no private paths and multicasting
scheme is utilized, which means all signals are transmitted in
the common paths. In this scenario, we have τ1 = τ2 = 0,
τc = 1, and γTCCP

p,1,L = γTCCP
p,2,L = 0. The SINR of U1 and

U2 are expressed as γTCCP
c,1,L = δr−α1 ϑ1 and γTCCP

c,2,L = δr−α2 ζ,
respectively.

B. Transmit common messages on all the paths (TCAP)

The TCCP takes natural advantage of common paths to send
common messages. However, it does not fully use the benefits
of RSMA to transmit messages, i.e., common messages can be
removed by SIC and do not interfere with private messages.
Thus, transmitting common messages only on common paths
while private paths are not utilized to send common messages
leads to degraded reception quality at the users. To solve this
problem, a new beamforming scheme wherein the common
messages are transmitted on the common paths and private
paths, termed as TCAP, is proposed in this subsection. Hence,
we have

wTCAP
c = S (U,fc + f1,p + f2,p) ∈ Nt×(2L−Lc). (12)

It must be noted that the TCAP scheme is a form of analog
beamforming since the columns in wTCAP

c are all array
response vectors and only the signal phase is modified [4], [9].
For the beam of the private signal wi, it remains the same as
TCCP.

Based RSMA principle, the SINR of decoding sc and s1 at
U1 are obtained as

γTCAP
c,1,Lc =

δc‖g1‖2

δ1‖g1,p‖2 + 1
, (13)

γTCAP
p,1,Lc = δ1‖g1,p‖2, (14)
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respectively. Similarly, the SINR of decoding sc and s2 at U2

are obtained as

γTCAP
c,2,Lc =

δτcr
−α
2 ‖g2‖2

δτ2r
−α
2 ‖g2,p‖2 + 1

, (15)

γTCAP
p,2,Lc = δτ2r

−α
2 ‖g2,p‖2, (16)

respectively.

Remark 2. Relative to the TCCP, γTCAP
c,i,Lc

is improved due
to transmitting in all paths, thus, the γTCAP

p,i,Lc
has a higher

probability of becoming a bottleneck.

IV. OUTAGE PROBABILITY ANALYSIS

In this work, the outage performance of the RSMA system
is investigated because of the following reasons: 1) In some
cases, S chooses specific fixed rates within a limited range
due to the constraint by the coding and modulation schemes
even if the CSI of all the links is available; 2) Even if the
global CSI is known, it is useful for S to evaluate the outage
performance through OP. In some scenarios, S transmits at a
constant rate required in the system regardless of the rate in
the channel.

The main steps of the exact OP analysis are listed as
follows: 1) According to the total probability theory, the Ui’s
OP is expressed as the connect probability (CP) of Ui with
given Lc = k. 2) Derive the CP expression of Ui with
Lc = k by utilizing the CDF/PDF of the users’ channel gains.
3) Substitute the result of step 2) into step 1) and convert,
combine, and simplify the expression for more straightforward
calculation to obtain the close-form expression of OP.

According to the law of total probability, the OP of Ui is
expressed as

Pout,i =
L∑
k=0

ωkPout,i,k

= 1−
L∑
k=0

ωkPCP,i,k,

(17)

where PCP,i,k = Pr {γc,i,k > Θc,i, γp,i,k > Θp,i} denotes the
CP of Ui with Lc = k, γc,i,k and γp,i,k signify the SINR/SNR
of the common and private streams, respectively, Θc,i =

2R
th
c,i − 1, Θp,i = 2R

th
p,i − 1, and Rth

c,i and Rth
p,i denote the

target rates for the common and private streams, respectively.
In other words, the link between S and Ui is not in outage
when both the common and private rates are larger than desired
thresholds, Rth

c,i and Rth
p,i, respectively [16].

A. OP with TCCP

In the following Lemma, we provide the closed-form ex-
pression for the CP of Ui for the scenarios with 0 < k < L
common paths.

Lemma 1. The CP of Ui with TCCP scheme for 0 < k < L
is expressed as

PTCCP
CP,i,k = TTCCP

i,k − V TCCP
i,k , (18)

where TTCCP
1,k = e−a4

k−1∑
t=0

at4
t! −

L−k−1∑
t=0

t∑
n=0

χ1χ2, χ1 =

a1
n(−a2)t−nea2

n!(t−n)!(k−1)! , χ2 = Γ(n+k,a4(a1+1))

(a1+1)n+k , V TCCP
1,k =

e−a4

k−1∑
t=0

at4
t!

(
1− e−a3

L−k−1∑
t=0

at3
t!

)
, a1 = δc

Θc,1δ1
, a2 = 1

δ1
,

a3 =
Θp,1
δ1

, a4 =
Θc,1(Θp,1+1)

δc
, TTCCP

2,k = φ (b4, 0, R) −
L−k−1∑
t=0

t∑
n=0

n∑
m=0

χ3φ (b1b4 + b4 − b2, α (t−m) , R), b1 =

τc
Θc,2τ2

, b2 = 1
δτ2

, b3 =
Θp,2
δτ2

, b4 = b3+b2
b1

,

V TCCP
2,k = φ (b4, 0, R) −

L−k−1∑
t=0

(b3)tφ(b3+b4,αt,R)
t! , χ3 =

b4
n−mb1

n(−b2)t−n

(t−n)!(n−m)!(b1+1)m+1 , Θc,i = 2R
th
c,i − 1, Θp,i = 2R

th
p,i − 1,

φ (c, d,R) = 2c−
d+2
α

R2α Υ
(
d+2
α , cRα

)
, Υ (·, ·) and Γ (·, ·) are the

lower and upper incomplete Gamma function as defined by
[31, (8.350.1)] and [31, (8.350.2)], respectively.

Proof : See Appendix A.
When k = 0, there are no overlapped paths between U1 and

U2 and SDMA scheme is utilized, which means all signals
are transmitted in their own private paths with τc = 0 and
γTCCP
c,1,0 = γTCCP

c,2,0 = 0. The SNR of U1 and U2 are expressed
as γTCCP

p,1,0 = δ1ϑ1 and γTCCP
p,2,0 = δτ2r

−α
2 ϑ2, respectively.

Subsequently, we arrive at the following corollary.

Corollary 1. Based on (11) and (37), PTCCP
out,1,0 is obtained as

PTCCP
out,1,0 = 1−

L−1∑
t=0

1

t!

(
Θp,1

δ1

)t
e−

Θp,1
δ1 . (19)

Similarly, utilizing [31, (8.381.8)], PTCCP
out,2,0 is obtained as

PTCCP
out,2,0 = 1−

L−1∑
t=0

1

t!

(
Θp,2

δτ2

)t
Er2

[
rαt2 e−

Θp,2
δτ2

rα2

]

= 1−
L−1∑
t=0

2

αR2t!

(
δτ2
Θp,2

) 2
α

Υ

(
t+

2

α
,

Θp,2R
α

δτ2

)
,

(20)
where EA (·) is mathematical expectation with respect to A.

When k = L, there are no private paths and multicasting
scheme is utilized, which means all signals are transmitted in
the common paths. In this scenario, we have τ1 = τ2 = 0,
τc = 1, and γTCCP

p,1,L = γTCCP
p,2,L = 0. The SINR of U1 and

U2 are expressed as γTCCP
c,1,L = δr−α1 ϑ1 and γTCCP

c,2,L = δr−α2 ζ,
respectively. Subsequently, we arrive at Corollary 2.

Corollary 2. Based on (11) and (37), PTCCP
out,1,L and PTCCP

out,2,L

are obtained as

PTCCP
out,1,L = 1− e

− Θc,1

δr
−α
1

L−1∑
t=0

1

t!

(
Θc,1

δr−α1

)t
, (21)

PTCCP
out,2,L = 1− 2

αR2

(
δ

Θc,2

) 2
α

Υ

(
2

α
,

Θc,2

δ
Rα
)
, (22)

respectively.

By substituting (18)-(22) into (17), we obtain the following
theorem.
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PTCAP
CP,1,k =



F̄µc,1 (a7) F̄v1
(a3)−

L−k−1∑
t=0

t∑
n=0

χ4χ5, a1 < 1

F̄v1 (a3) F̄µc,1 (a7) +
L−k−1∑
t=0

t∑
n=0

k−1∑
m=0

χ6χ7, a1 > 1, a7 > 0

F̄v1
(a3) , a1 > 1, a7 ≤ 0

F̄µc,1 (a2) F̄v1
(a3) , a1 = 1

(25)

Theorem 1. The OP of U1 with TCCP scheme is expressed
as

PTCCP
out,1 = 1−

L−1∑
t=0

1

t!

(
ω0

(
Θp,1r

α
1

δτ1

)t
e−

Θp,1r
α
1

δτ1

+ ωL

(
Θc,1r

α
1

δ

)t
e−

Θc,1r
α
1

δ

)
−
L−1∑
k=1

ωk
(
TTCCP

1,k − V TCCP
1,k

)
.

(23)

The OP of U2 with TCCP scheme is expressed as

PTCCP
out,2 = 1− 2ω0

α

(
RαΘp,2

δτ2

)− 2
α
L−1∑
t=0

1

t!
Υ

(
t+

2

α
,
RαΘp,2

δτ2

)

− 2ωL
α

(
RαΘc,2

δ

)− 2
α

Υ

(
2

α
,
RαΘc,2

δ

)
−
L−1∑
k=1

ωk
(
TTCCP

2,k − V TCCP
2,k

)
.

(24)

B. OP with TCAP

In this subsection, we investigate the outage performance of
the mmWave RSMA MISO system with TCAP scheme.

In the following Lemmas, we provide the closed-form
expression for the CP of Ui with 0 < k < L.

Lemma 2. When 0 < k < L, PTCAP
CP,1,k is expressed as (25),

shown at the top of this page, where χ4 = a5
n(−a6)t−nea6

(t−n)!n!(k−1)! ,

a5 = a1

1−a1
, a6 = a2

1−a1
, a7 = (1−a1)a3+a2

a1
, χ5 =

Γ(n+k,(a5+1)a7)

(a5+1)n+k , χ6 =
(−1)t−nan5 a

t+k−n−m−1
6

(a5+1)t+k(k−m−1)!(t−n)!n!m!
, χ7 =

Υ (n+m+ 1, (a5 + 1) a7 − a6) − Υ (n+m+ 1,−a6), and
F̄X (·) = 1−FX (·) denotes the complementary CDF (CCDF)
of X .

Proof : See Appendix B.

Lemma 3. When 0 < k < L, PTCAP
CP,2,k is expressed as (26),

shown at the top of next page, where χ8 =
bm5 (−b6)t−m

(t−m)!m!(k−1)! ,

χ9 =
k+m−1∑
z=0

bz7(k+m−1)!φ(b5b7+b7−b6,α(t−m+z),R)

z!(b5+1)k+m−z ,

χ11 =
n+m∑
z=0

(χ12 − χ13), χ10 =
bm5 (−b6)t−mbk−n−1

6

(k−n−1)!(t−m)!m!n!(b5+1)t+k
,

χ12 = (n+m)!(−b6)zφ(−b6,α(t−n+k−m−1+z),R)
z! ,

χ13 = (n+m)!(b5b7+b7−b6)z

z!
φ (b5b7 + b7 − b6, α (t− n+ k −m− 1 + z) , R),
b5 = b1

1−b1 , b6 = b2
1−b1 , and b7 = (1−b1)b3+b2

b1
.

Proof : See Appendix C.
When k = 0, due to γTCAP

c,1,0 = γTCAP
c,2,0 = 0, γTCAP

p,1,0 =
γTCCP
p,1,0 and γTCAP

p,2,0 = γTCCP
p,2,0 , we derive PTCAP

out,1,0 = PTCCP
out,1,0

and PTCAP
out,2,0 = PTCCP

out,2,0.
When k = L, because of γTCAP

p,1,L = γTCAP
p,2,L = 0, γTCAP

c,1,L =

γTCCP
c,1,L and γTCAP

c,2,L = δr−α2 ϑ2. Thus, PTCAP
out,1,L = PTCCP

out,1,L.
Based on (11), PTCAP

out,2,L is obtained as

PTCAP
out,2,L = 1−

L−1∑
t=0

1

t!

(
Θc,2

δ

)t
φ

(
Θc,2

δ
, αt,R

)
. (27)

By substituting (19), (20), (21), (25), (26), and (27) into
(17), we derive the following theorem.

Theorem 2. The OP of U1 with TCAP scheme is expressed
as

PTCAP
out,1 = 1−

L−1∑
t=0

1

t!

(
ω0

(
Θp,1r

α
1

δτ1

)t
e−

Θp,1r
α
1

δτ1

+ωL

(
Θc,1r

α
1

δ

)t
e−

Θc,1r
α
1

δ

)
−
L−1∑
k=1

ωkP
TCAP
CP,1,k.

(28)

The OP of U2 with TCAP scheme is expressed as

PTCAP
out,2 = 1− 2ω0

α

(
RαΘp,2

δτ2

)− 2
α
L−1∑
t=0

1

t!
Υ

(
t+

2

α
,
RαΘp,2

δτ2

)

− 2ωL
α

(
RαΘc,2

δ

)− 2
α
L−1∑
t=0

1

t!
Υ

(
t+

2

α
,
RαΘc,2

δ

)

−
L−1∑
k=1

ωkP
TCAP
CP,2,k.

(29)

The analytical expressions provided in Theorem 1 and
Theorem 2 are complicated since many factors affect the
outage performance, specifically, power allocation coefficient,
the target data rate of sc and si, resolvable paths L, and
distances r1 and R. To obtain more insights, we derive
the analytical expressions of the asymptotic OP in the high
transmit power regime in the following section.

V. ASYMPTOTIC OUTAGE PROBABILITY ANALYSIS

This section investigates the asymptotic OP of the RSMA
system with two beamforming schemes. The main steps of
the asymptotic OP analysis procedure are listed as follows: 1)
Based on the results of the exact OP, the asymptotic OP is
expressed as the asymptotic OP of Ui with Lc = k. 2) Derive
the expression for the asymptotic OP of Ui with Lc = k based
on the results at ρ → ∞. 3) Analyze the influence of each
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PTCAP
CP,2,k =



L−k−1∑
t=0

(
k−1∑
n=0

bn7 b
t
3φ(b3+b7,α(t+n),R)

n!t! −
t∑

m=0
χ8χ9

)
, b1 < 1

L−k−1∑
t=0

k−1∑
n=0

(
bt3b

n
7 φ(b3+b7,α(t+n),R)

t!n! +
t∑

m=0
χ10χ11

)
, b1 > 1, b7 > 0

L−k−1∑
t=0

bt3φ(b3,αt,R)
t! , b1 > 1, b7 ≤ 0

L−k−1∑
t=0

k−1∑
n=0

bn2 b
t
3φ(b2+b3,α(t+n),R)

t!n! , b1 = 1

(26)

component at ρ → ∞ and keep the main term that has the
most dominant impact on OP. 4) Substitute the result of step
3) into step 1), combine, and simplify the expression for the
more straightforward calculation to obtain the expression of
asymptotic OP.

When ρ→∞, the asymptotic OP is expressed as

P∞out,i =

L∑
k=0

ωkP
∞
out,i,k, (30)

where P∞out,i,k denotes the asymptotic OP of Ui with Lc = k.

A. OP with TCCP

Theorem 3. When ρ → ∞, the asymptotic OP of U1 is
expressed as

PTCCP,∞
out,1 =

L−1∑
k=1

L−k−1∑
t=0

ωka
t
1 (t+ k − 1)!

(k − 1)!t!(a1 + 1)
t+k

. (31)

When ρ→∞, the asymptotic OP of U2 is expressed as

PTCCP,∞
out,2 =

L−1∑
k=1

L−k−1∑
t=0

ωkb1
t

(b1 + 1)
t+1 . (32)

Proof : See Appendix D.

Remark 3. Based on the results presented in theorem 3, one
can realize there is an OP floor, which depends on τc or Nt
and is independent of r1 (R).

Thus, based on Gd = − lim
ρ→∞

logP∞out(ρ)
log ρ , the diversity orders

of U1 and U2 with TCCP scheme are obtained as GTCCP
1 =

GTCCP
2 = 0.

B. OP with TCAP.
Theorem 4. When ρ → ∞, the asymptotic OP for U1 is
expressed as

PTCAP,∞
out,1 =


L−1∑
k=1

L−k−1∑
t=0

ωka
t
5(t+k−1)!

t!(k−1)!(a5+1)t+k
, a1 < 1,

ωL−1a3, a1 > 1,

ω1a2 + ωL−1a3, a1 = 1.

(33)

When ρ→∞, the asymptotic OP for U2 is expressed as

PTCAP,∞
out,2 =


L−1∑
k=1

L−k−1∑
t=0

ωkb
t
5(t+k−1)!

t!(k−1)!(b5+1)t+k
, b1 < 1,

2ωL−1b3R
α

α+2
, b1 > 1,

2(ω1b2+ωL−1b3)Rα

α+2
, b1 = 1.

(34)

Proof : See Appendix E.

Remark 4. Based on the results presented in theorem 4,
one can easily deduce that there is an OP floor when τc <
Θc,iτi. This is because γTCAP

c,1,k is the bottleneck and tends
to a constant in large-P region. In other words, OP floor
can be avoided effectively by adjusting the power allocation
coefficient τc in TCAP.

Thus, the diversity orders of U1 and U2 with TCAP scheme
are obtained as

GTCAP
1 =

{
0, a1 < 1,

1, a1 ≥ 1,
(35)

and

GTCAP
2 =

{
0, b1 < 1,

1, b1 ≥ 1,
(36)

respectively.

VI. NUMERICAL RESULTS

This section presents simulation and numerical results to
verify the outage performance of mmWave RSMA systems
with the proposed beamforming schemes. The noise power is
set at σ2 = −71 dB [9], [32], [33] and the path-loss model is
set as α = 2.1 [29]. It is assumed that Rth

c,1 = Rth
c,2 = Rth

c ,
Rth
p,1 = Rth

p,2 = Rth
p , and τ1 = τ2 = τ . In all the figures,

‘Sim’ and ‘Ana’ denote the simulation and numerical results,
respectively.

Fig. 2 demonstrates the impact of P for varying r1 (R)
and Nt on OP with TCCP and TCAP schemes. It can be
observed that the OP of Ui is improved with increasing P .
Unlike the OP with TCAP, the OP with TCCP tends to be
a constant in the high-P region. According to the RSMA
technology, the common part is decoded first then re-encoded
and deleted from the received signals. Finally, the private part
is decoded. The common part in the TCCP scheme is sent
on overlapped paths while the common part in the TCAP
scheme is sent on all the paths of both users. Thus, the OP
of the common part in TCCP is higher than that in TCAP.
The bottleneck in TCCP is due to decoding the common part
while in TCAP it is decoding the private part. Based on the
SINR (SNR) expressions for the common and private parts,
we can observe that the SINR of the common part converges
to a constant as P increases while the SNR of the private part
continues to increase with increasing P . Figs. 2(a) and 2(b)
present the impact of r1 (R) on OP with TCCP and TCAP
schemes, respectively. We observe that the OP of both users
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(a) OP for varying r1 with Nt = 50.
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(b) OP for varying R with Nt = 50.
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(c) OP with TCCP for varying Nt
with r1 = R = 25.
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(d) OP with TCAP for varying Nt
with r1 = R = 25.

Fig. 2: OP versus the P with τc = 0.7, τ = 0.15, L = 5, and
Rth

c = Rth
p = 0.25.

with TCCP and TCAP schemes is deteriorating as r1 (R)
increases since the path loss becomes stronger. In the large-P
region, the asymptotic OP with TCCP is independent of r1

(R) and the asymptotic OP with TCAP depends on r1 (R)
for the same reason as the effect of P on the exact OP. Figs.
2(c) and 2(d) present the impact of Nt on OP with TCCP and
TCAP schemes, respectively. The results demonstrate that the
OP for both users with TCCP and TCAP schemes is improving
as Nt increases and the asymptotic OP in the larger-P region
depends on Nt as the quality of the received signal improves.
Fig. 2(c) demonstrates that OP of U2 with TCCP outperforms
that of U1 with TCCP in the low-P region and underperforms
that of U1 with TCCP in the large-P region. This is because
power (path loss) is the dominant factor in the low-P region. In
the large-P region, the effect from beamforming becomes the
dominant factor while the beamforming in TCCP is designed
for U1. Based on Figs. 2(a), 2(b), and 2(d), OP of U2 with
TCAP always outperform that of U1 with TCAP because the
effect of beamforming on both users is the same but the path
loss of U1 is stronger than that of U2.

Fig. 3 demonstrates the OP vs. P for varying τc with TCCP
and TCAP schemes, respectively. One can observe that there
is a floor for the OP with TCCP while there is a floor for the
OP with TCAP only when τc is lower, which is testified in
Remark 3 and Remark 4. Moreover, based on Figs. 2(a), 2(b),
2(d), and 3(b), it can be observed that the diversity order of
OP with TCAP is 1, which is given in Remark 4.

Fig. 4 presents the impact of L with varying r1 (R)
and Nt on OP under TCCP and TCAP schemes. It can be
observed that the OP initially decreases and then increases as
L increases, indicating an optimal L to minimize the OP of
the users. It must be noted that the probability that there are
common paths between two users with L = 1 is the least

0 5 10 15 20 25 30 35 40 45 50
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0

(a) OP with TCCP for varying τc.
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(b) OP with TCAP for varying τc.

Fig. 3: OP versus varying P with Nt = 50, L = 5, R = r1 =
25, and Rth

c = Rth
p = 0.85.
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(a) Pout,1 for varying r1 with Nt =
50.

2 4 6 8 10 12 14

10
-2

10
-1

(b) Pout,2 for varying R with Nt =
50.
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10
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(c) OP with TCCP for varying Nt
with r1 = R = 25.

2 4 6 8 10 12 14

10
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10
-1

(d) OP with TCAP for varying Nt
with r1 = R = 25.

Fig. 4: OP versus varying L with P = 10 dB, τc = 0.7,
τ = 0.15, and Rth

c = Rth
p = 0.25.

and the SDMA scheme is utilized with a larger probability.
As L increases, the probability that there are common paths
increases thereby the number of common paths between two
users increases and hence the probability that the RSMA
scheme is utilized increases. Thus, the outage performance is
improved. In such scenarios with TCCP wherein the common
part is the bottleneck of the RSMA system, the larger the L, the
stronger the interference from the private part on the common
part, thereby the OP is deteriorated. In scenarios with TCAP
wherein the private part is the bottleneck of the RSMA system,
the larger the L, the lower the power is allocated for each path.
Thus, the OP is also worsened. Figs. 4(a) demonstrates that
the effect of r1 (R) on Pout,1 and Fig. 4(b) demonstrates that
the effect of R on Pout,2. One can observe that larger the r1,
the worse outage performance based on the same reason as
experienced in Figs. 2(a) and 2(b). Fig. 4(c) demonstrates the
effect of Nt on OP with TCCP and Fig. 4(d) demonstrates the
impact of Nt on OP with TCAP. From Figs. 4(b) and 4(c), we
can observe that OP of U2 with TCCP deteriorates faster than
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(a) OP with TCCP for varying Rth
c

with Rth
p = 0.25.
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(b) OP with TCAP for varying Rth
c

with Rth
p = 0.25.
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(c) OP with TCCP for varying Rth
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c = 0.25.
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(d) OP with TCAP for varying Rth
p

with Rth
c = 0.25.

Fig. 5: OP versus the τc with Nt = 50, P = 10 dB, L = 5,
and r1 = R = 25.

with TCAP or that of U1 with TCCP since the beamforming
can not maximize SINR of U2 with TCCP.

Fig. 5 demonstrates the OP vs τc for varying Rth
p and

Rth
c . One can observe that OP decreases initially and then

increases as τc increases. The reason is that the power of
the common part increases with increasing τc thereby the
probability of successful decoding increases, and hence the
whole OP decreases. However, the power allocated to the
private part decreases, and hence the OP of the private part
increases, which leads to the deterioration of the whole OP.
Furthermore, there is an optimal τc to minimize the OP and
the optimal τc depends on Rth

p and Rth
c . The optimal τc

for TCCP is higher than that for TCAP, which indicates
that lesser power must be allocated to the common part in
TCAP since the common part is transmitted on all paths.
More power must be allocated to the common part in TCCP
since it is transmitted only on overlapped paths. Figs. 5(a) and
5(c) demonstrate that PTCCP

out,1 outperforms PTCCP
out,2 in lower-τc

region and underperforms PTCCP
out,2 in larger-τc region. This is

because the common part is the bottleneck and beamforming
for the common part maximizes the SINR of decoding sc at
U1 in the lower-τc region. The private part is the bottleneck
in the large-τc region and the beamforming for the private
part has the same effect on both users. Figs. 5(b) and 5(d)
demonstrate that PTCAP

out,2 outperforms PTCAP
out,1 since the effects

of beamforming are the same for both users and the path loss
at U1 is stronger than that at U2.

Fig. 6 demonstrates the simulation results of OP vs. τc for
varying P . We observe that the optimal τc depends on P . Fig.
6(a) demonstrates that PTCCP

out,2 outperforms PTCCP
out,1 in low-P

region with the same reason as in Figs. 2(a) and 2(b). As P
increases, PTCCP

out,1 outperforms PTCCP
out,2 in lower-τc region and
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(a) OP with TCCP for varying P .
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(b) OP with TCAP for varying P .

Fig. 6: OP versus the τc with Nt = 50, L = 5, R1 = r1 = 25,
and Rth

c = Rth
p = 0.25.
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(a) OP with TCCP for varying τc.
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(b) OP with TCAP for varying τc.

Fig. 7: OP versus varying τc with Nt = 50, L = 5, P = 15
dB, r1 = 20, R = 30, and Rth

c = Rth
p = 0.85.

underperforms PTCCP
out,2 in larger-τc region, which is same as

exhibited in Figs. 5(a) and 5(c). Fig. 6(b) demonstrates that
PTCAP

out,2 outperforms PTCAP
out,1 , which is same as exhibited in

Figs. 5(b) and 5(d).
Fig. 7 compares the OP of both users with RSMA and

NOMA schemes, respectively. Based on [12], the signals of
the near user of the NOMA systems are transmitted on their
private paths. The signals for the far user are transmitted on the
overlapped paths in 7(a) and on all paths in Fig. 7(b), respec-
tively. It can be observed that the OP with RSMA outperforms
that with NOMA in the lower-τc region. This is because, in the
lower-τc region, decoding the signals of the far user behaves as
the NOMA system’s bottleneck. When more power is allocated
to the far user’s signals, the NOMA systems’ performance will
be improved. For the RSMA system, decoding the common
streams is the system’s bottleneck in the lower-τc region.
When the power allocated to the signals of the far user in
NOMA is equal to that allocated to the common streams in
RSMA, the power allocated to the signals of the near user is
definitely greater than that allocated to each private stream in
RSMA. Thus, the SINR of decoding the common stream in
RSMA is greater than that of decoding the signals of the far
user at the near users in NOMA.

Similar to [17], to compare the differences between the
proposed TCCP and TCAP schemes, we provide some simula-
tion results in Fig. 8 to illustrate the normalized beampatterns
of wTCCP

c ,wTCAP
c ,w1, and w2. One can observe that the

maximal gain direction of common streams points to common
paths and all the paths of U1 and U2, respectively, while nulls
are generated at the other paths with -300 dB. The reason
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(a) 3D Beampattern of TCCP beam-
forming scheme.

(b) Beampattern of TCCP beamform-
ing scheme from vertical vision (top
aerial view).

(c) 3D Beampattern of TCAP beam-
forming scheme.

(d) Beampattern of TCAP beamform-
ing scheme from vertical vision (top
aerial view).

Fig. 8: Beampattern of TCCP and TCAP beamforming
schemes with Nt = 20, L = 5, Lc = 3, r1 = 30, and R = 40.

is that wTCCP
c and wTCAP

c are mapped with the common
streams, which are intended for U1 and U2 on common paths
and all the paths, respectively. The maximal gain direction of
private streams points to their private paths, respectively, which
demonstrates that the proposed RSMA-based beamforming
scheme can eliminate the inter-user interference.

VII. CONCLUSION

In this work, the outage performance of mmWave RSMA
MISO systems has been investigated. Considering the mul-
tipath and limited scattering propagation characteristics of
mmWave channels and based on the RSMA principle, we
proposed two beamforming transmission schemes (i.e., TCCP
and TCAP) to enhance reliable performance. The closed-form
and asymptotic expressions of OP for users with proposed
schemes were derived using stochastic geometry. The results
demonstrated that the TCAP scheme could effectively enhance
reliability performance while the TCCP scheme is easier
to implement while being robust. Moreover, optimal power
allocation coefficient and spatially resolvable paths exist to
minimize the OP highlighting the importance of the power al-
location scheme and users’ AoD range. Based on instantaneous
CSI or CSI statistics, some potential solutions, such as convex
optimization and deep learning, can be utilized to obtain the
optimal power allocation coefficients in future work.

APPENDIX A
PROOF OF LEMMA 1

Based on (6) and (7), the CP of U1 with 0 < k < L,
PTCCP

CP,1,k, is expressed as (37), shown at the top of next page,
where Θc,1 = 2R

th
c,1 − 1, Θp,1 = 2R

th
p,1 − 1, a1 = δc

Θc,1δ1
=

τc
Θc,1τ1

, a2 = 1
δ1

, a3 =
Θp,1
δ1

, and a4 = a3+a2

a1
=

Θc,1(Θp,1+1)
δc

.
Based on (10) and (11), and utilizing [31, (1.111)] and [31,
(3.351.2)], TTCCP

1,k is obtained as

TTCCP
1,k = e−a4

k−1∑
t=0

at4
t!
−
L−k−1∑
t=0

t∑
n=0

χ1

×
∫ ∞
a4

e−(a1+1)yyn+k−1dy

= e−a4

k−1∑
t=0

at4
t!
−
L−k−1∑
t=0

t∑
n=0

χ1χ2,

(38)

where χ1 = a1
n(−a2)t−nea2

n!(t−n)!(k−1)! , χ2 = Γ(n+k,a4(a1+1))

(a1+1)n+k , and
Γ (·, ·) is the upper incomplete Gamma function defined by
[31, (8.350.2)]. Similarly, V TCCP

1,k is obtained as

V TCCP
1,k = Fv1

(a3) F̄µc (a4) , (39)

where F̄X (·) = 1 − FX (·) denotes the complementary CDF
(CCDF) of X .

Similar to (37), the CP of U2 with 0 < k < L, PTCCP
CP,2,k, is

obtained as

PTCCP
CP,2,k = Pr {v2 < b1ζc − b2rα2 , v2 > b3r

α
2 }

= Pr {b3rα2 < v2 < b1ζc − b2rα2 , ζc > b4r
α
2 }

= Er2

[∫ ∞
b4r

α
2

Fv2 (b1y − b2rα2 )fζc (y) dy

]
︸ ︷︷ ︸

∆
=TTCCP

2,k

− Er2

[
Fv2 (b3r

α
2 )

∫ ∞
b4r

α
2

fζc (y) dy

]
︸ ︷︷ ︸

∆
=V TCCP

2,k

,

(40)

where Θc,2 = 2R
th
c,2 − 1, Θp,2 = 2R

th
p,2 − 1, b1 = τc

Θc,2τ2
,

b2 = 1
δτ2

, b3 =
Θp,2

δτ2
, b4 = b3+b2

b1
=

Θc,2(Θp,2+1)
δτc

, and EA (·) is
mathematical expectation with respect to A. Based on (11) and
utilizing [31, (1.111)] and [31, (3.381.8)], TTCCP

2,k is deduced
as

TTCCP
2,k = Er2

[
F̄ζc (b4r

α
2 )
]

− Er2

[∫ ∞
b4rα2

F̄v2 (b1y − b2rα2 )fζc (y) dy

]

= φ (b4, 0, R)−
L−k−1∑
t=0

t∑
n=0

n∑
m=0

χ3

× φ (b1b4 + b4 − b2, α (t−m) , R) ,

(41)

where φ (c, d,R) = Er2
[
e−cr

α
2 rd2
]

and χ3 =
b4
n−mb1

n(−b2)t−n

(t−n)!(n−m)!(b1+1)m+1 . Utilizing [31, (8.381.8)], we have

φ (c, d,R) = 2c−
d+2
α

R2α Υ
(
d+2
α , cRα

)
, where Υ (·, ·) is lower
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PTCCP
CP,1,k = Pr

{
γTCCP
c,1,k > Θc,1, γ

TCCP
p,1,k > Θp,1

}
= Pr {v1 < a1µc,1 − a2, v1 > a3}

= Pr

{
v1 < a1µc,1 − a2, v1 > a3, µc,1 >

a2
a1
, a1µc,1 − a2 < a3

}
+ Pr

{
v1 < a1µc,1 − a2, v1 > a3, µc,1 >

a2
a1
, a1µc,1 − a2 > a3

}
= Pr {a3 < v1 < a1µc,1 − a2, µc,1 > a4}

=

∫ ∞
a4

Fv1 (a1y − a2) fµc,1 (y) dy︸ ︷︷ ︸
∆
=TTCCP

1,k

−Fv1 (a3)

∫ ∞
a4

fµc,1 (y) dy︸ ︷︷ ︸
∆
=V TCCP

1,k

(37)

incomplete Gamma function defined by [31, (8.350.1)].
Similarly, we obtain

V TCCP
2,k = Er2

[
Fv2

(b3r
α
2 ) F̄ζc (b4r

α
2 )
]

= Er2
[
e−b4r

α
2

]
− Er2

[
L−k−1∑
t=0

bt3r
αt
2

t!
e−(b3+b4)rα2

]

= φ (b4, 0, R)−
L−k−1∑
t=0

1

t!
bt3φ (b3 + b4, αt, R).

(42)

APPENDIX B
PROOF OF LEMMA 2

Based on (13) and (14) and ϑ1 = µc,1 + v1 [10], PTCAP
CP,1,k

is expressed as

PTCAP
CP,1,k = Pr

{
δcϑ1

δ1v1 + 1
> Θc,1, δ1v1 > Θp,1

}
= Pr {v1 < a1ϑ1 − a2, v1 > a3}
= Pr {(1− a1) v1 < a1µc,1 − a2, v1 > a3} .

(43)

When a1 = 1, we obtain

PTCAP
CP,1,k = Pr {µc,1 − a2 > 0, v1 > a3}

= F̄µc,1 (a2) F̄v1
(a3) .

(44)

When a1 < 1, we have τc < Θc,1τ1, based on (10) and (11),
and utilizing [31, (1.111)] and [31, (3.351.2)], we obtain

PTCAP
CP,1,k = Pr

{
(1− a1) v1 < a1µc,1 − a2, v1 > a3, µc,1 >

a2

a1

}
= Pr

{
a3 < v1 < a5µc,1 − a6, µc,1 >

a2

a1
, µc,1 > a7

}
(c)
= Pr {a3 < v1 < a5µc,1 − a6, µc,1 > a7}

=

∫ ∞
a7

Fv1 (a5y − a6) fµc,1 (y) dy

− Fv1
(a3)

∫ ∞
a7

fµc,1 (y) dy

= F̄µc,1 (a7) F̄v1 (a3)− I0,
(45)

where a5 = a1

1−a1
, a6 = a2

1−a1
, a7 = a3+a6

a5
=

(1− a1) a3

a1
+ a2

a1
=

(1+Θp,1)Θc,1δ1−Θp,1δc
δcδ1

, I0 =
L−k−1∑
t=0

ea6

(k−1)!t!

∫∞
a7
e−(a5+1)y(a5y − a6)

t
yk−1dy =

L−k−1∑
t=0

t∑
n=0

χ4χ5, χ4 = a5
n(−a6)t−nea6

(t−n)!n!(k−1)! , χ5 =

Γ(n+k,(a5+1)a7)

(a5+1)n+k , and step (c) is derived due to a7 >
a2

a1
.

When a1 > 1, we have τc > Θc,1τ1 and due to a7 <
a2

a1
,

PTCAP
CP,1,k is obtained as

PTCAP
CP,1,k = Pr {(1− a1) v1 < a1µc,1 − a2, v1 > a3}

= Pr

{
v1 > a3, v1 > a5µc,1 − a6, µc,1 <

a2

a1

}
+ Pr

{
v1 > a3, µc,1 >

a2

a1

}
= Pr {v1 > a5µc,1 − a6, µc,1 < a7}︸ ︷︷ ︸

∆
=I1

+ Pr {v1 > a3, µc,1 > a7}︸ ︷︷ ︸
∆
=I2

.

(46)
When a7 > 0, we have τc

τ1
<

Θc,1
Θp,1

+ Θc,1, based on (10)
and (11), utilizing [31, (3.351.1)], we derive

I1 =

∫ a7

0

(1− Fv1 (a5y − a6)) fµc,1 (y) dy

=

L−k−1∑
t=0

∫ a7

0
e−((a5+1)y−a6)(a5y − a6)tyk−1dy

t! (k − 1)!

=

L−k−1∑
t=0

∫ (a5+1)a7−a6

−a6
e−x(a5x− a6)t(x+ a6)k−1dx

t! (k − 1)!(a5 + 1)t+k

=

L−k−1∑
t=0

t∑
n=0

k−1∑
m=0

χ6

∫ (a5+1)a7−a6

−a6

xn+me−xdx

=

L−k−1∑
t=0

t∑
n=0

k−1∑
m=0

χ6χ7,

(47)

where χ6 =
(−1)t−nan5 a

t+k−n−m−1
6

(a5+1)t+k(k−m−1)!(t−n)!n!m!
and χ7 =

Υ (n+m+ 1, (a5 + 1) a7 − a6)−Υ (n+m+ 1,−a6). Sim-
ilarly, we derive I2 = F̄v1

(a3) F̄µc,1 (a7). For a7 ≤ 0, we have
τc
τ1
>

Θc,1
Θp,1

+ Θc,1, with the same method as utilized for (47),
we obtain I1 = 0 and

PTCAP
CP,1,k = I2 = Pr {v1 > a3} = F̄v1

(a3) . (48)
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PTCAP
CP,2,k = Pr {(1− b1) v2 < b1µc,2 − b2rα2 , v2 > b3r

α
2 , b1µc,2 − b2rα2 > 0}

= Pr

{
v2 < b5µc,2 − b6rα2 , v2 > b3r

α
2 , µc,2 >

b2r
α
2

b1

}
= Pr

{
v2 < b5µc,2 − b6rα2 , v2 > b3r

α
2 , µc,2 >

b2r
α
2

b1
, b5µc,2 − b6rα2 > b3r

α
2

}
+ Pr

{
v2 < b5µc,2 − b6rα2 , v2 > b3r

α
2 , µc,2 >

b2r
α
2

b1
, b5µc,2 − b6rα2 < b3r

α
2

}
(d)
= Pr {b3rα2 < v2 < b5µc,2 − b6rα2 , µc,2 > b7r

α
2 }

= Er2

[∫ ∞
b7rα2

Fv2
(b5y − b6rα2 )fµc,2 (y) dy

]
︸ ︷︷ ︸

∆
=I3

−Er2

[
Fv2

(b3r
α
2 )

∫ ∞
b7rα2

fµc,2 (y) dy

]
︸ ︷︷ ︸

∆
=I4

(51)

APPENDIX C
PROOF OF LEMMA 3

Utilizing same method as for (43), PTCAP
CP,2,k is denoted as

PTCAP
CP,2,k = Pr {v2 < b1 (v2 + µc,2)− b2rα2 , v2 > b3r

α
2 }

= Pr {(1− b1) v2 < b1µc,2 − b2rα2 , v2 > b3r
α
2 } .

(49)

When b1 = 1, based on (10) and (11), we obtain

PTCAP
CP,2,k = Pr {µc,2 − b2rα2 > 0, v2 > b3r

α
2 }

= Er2
[
F̄µc,2 (b2r

α
2 ) F̄v2 (b3r

α
2 )
]

=

L−k−1∑
t=0

k−1∑
n=0

bt3b
n
2

t!n!
Er2

[
e−(b3+b2)r

α
2 r

α(t+n)
2

]
=

L−k−1∑
t=0

k−1∑
n=0

bt3b
n
2

t!n!
φ (b3 + b2, α (t+ n) , R).

(50)

When b1 < 1, we have τc < Θc,2τ2, thus PTCAP
CP,2,k is

expressed as (51), shown at the top of this page, where b5 =
b1

1−b1 , b6 = b2
1−b1 b7 = (1−b1)b3+b2

b1
=

(Θc,2τ2−τc)Θp,2+Θc,2τ2
δτ2τc

,
and step (d) is derived from b7 >

b2
b1

. Subsequently, substitut-
ing (10) and (11) into (51), we obtain

I3 = Er2

[∫ ∞
b7r

α
2

Fv2 (b5y − b6rα2 )fµc,2 (y) dy

]
= Er2

[
F̄µc,2 (b7r

α
2 )
]

− Er2

[∫ ∞
b7r

α
2

F̄v2 (b5y − b6rα2 )fµc,2 (y) dy

]

=

k−1∑
t=0

bt7
t!
Er2

[
e−b7r

α
2 rαt2

]
−
L−k−1∑
t=0

t∑
m=0

χ8χ9

=

k−1∑
t=0

bt7
t!
φ (b7, αt, R)−

L−k−1∑
t=0

t∑
m=0

χ8χ9,

(52)

where χ8 =
bm5 (−b6)t−m

(t−m)!m!(k−1)! , χ9 is obtained as

χ9 = Er2

[
eb6r

α
2 r

α(t−m)
2

∫ ∞
b7r

α
2

e−(b5+1)yyk+m−1dy

]

(e)
=

Er2
[
eb6r

α
2 r

α(t−m)
2 Γ (k +m, (b5 + 1) b7r

α
2 )
]

(b5 + 1)k+m

(f)
=

k+m−1∑
z=0

bz7 (k +m− 1)!

z!(b5 + 1)k+m−z

× φ (b5b7 + b7 − b6, α (t−m+ z) , R) ,

(53)

where step (e) is obtained by invoking [31, (3.351.2)] and step
(f) is obtained by invoking [31, (8.352.2)]. Utilizing the same
method as for I3, I4 is obtained as

I4 = Er2
[
Fv2 (b3r

α
2 ) F̄µc,2 (b7r

α
2 )
]

=

k−1∑
n=0

bn7
n!

(
Er2

[
e−b7r

α
2 rαn2

]
−
L−k−1∑
t=0

bt3
t!
Er2

[
e−(b3+b7)r

α
2 r

α(t+n)
2

])

=

k−1∑
n=0

bn7
n!

(φ (b7, αn,R)

−
L−k−1∑
t=0

bt3
t!
φ (b3 + b7, α (t+ n) , R)

)
.

(54)

When b1 > 1, we have τc > Θc,2τ2 and due to b7 <
b2
b1

,
we express PTCAP

CP,2,k as (55), shown at the top of next page.

Similar to (47), when b7 > 0, we have τc
τ2
<

Θc,2
Θp,2

+ Θc,2,
based on (10) and (11), and utilizing [31, (3.351.1), (8.352.1)],
we obtain

I5 = Pr {µc,2 > b7r
α
2 , v2 > b3r

α
2 }

= Er2
[
F̄v2

(b3r
α
2 ) F̄µc,2 (b7r

α
2 )
]

=
L−k−1∑
t=0

k−1∑
n=0

bt3b
n
7

t!n!
Er2

[
e−(b3+b7)rα2 r

α(t+n)
2

]
=
L−k−1∑
t=0

k−1∑
n=0

bt3b
n
7

t!n!
φ (b3 + b7, α (t+ n) , R) .

(56)
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PTCAP
CP,2,k = Pr {(1− b1) v2 < b1µc,2 − b2rα2 , v2 > b3r

α
2 , b1µc,2 − b2rα2 < 0}

+ Pr {(1− b1) v2 < b1µc,2 − b2rα2 , v2 > b3r
α
2 , b1µc,2 − b2rα2 > 0}

= Pr

{
µc,2 >

b2r
α
2

b1
, v2 > b3r

α
2

}
+ Pr

{
µc,2 <

b2r
α
2

b1
, b5µc,2 − b6rα2 < b3r

α
2 , v2 > b3r

α
2

}
+ Pr

{
µc,2 <

b2r
α
2

b1
, b5µc,2 − b6rα2 > b3r

α
2 , v2 > b5µc,2 − b6rα2

}
= Pr

{
µc,2 >

b2r
α
2

b1
, v2 > b3r

α
2

}
+ Pr

{
µc,2 <

b2r
α
2

b1
, µc,2 > b7r

α
2 , v2 > b3r

α
2

}
+ Pr

{
µc,2 <

b2r
α
2

b1
, µc,2 < b7r

α
2 , v2 > b5µc,2 − b6rα2

}
= Pr {b7rα2 < µc,2, v2 > b3r

α
2 }︸ ︷︷ ︸

∆
=I5

+ Pr {µc,2 < b7r
α
2 , v2 > b5µc,2 − b6rα2 }︸ ︷︷ ︸

∆
=I6

(55)

Utilizing same method as I2, we obtain

I6 = Pr {µc,2 < b7r
α
2 , v2 > b5µc,2 − b6rα2 }

= E

[∫ b7r
α
2

0

(1− Fv1 (b5y − b6rα2 )) fµc,2 (y) dy

]

=
1

(k − 1)!

L−k−1∑
t=0

1

t!
Er2

[∫ (b5b7+b7−b6)rα2

−b6rα2

e−x

×
(
b5x− b6rα2
b5 + 1

)t(
x+ b6r

α
2

b5 + 1

)k−1
dx

b5 + 1

]

=

L−k−1∑
t=0

k−1∑
n=0

t∑
m=0

χ10χ11,

(57)

where χ10 =
bm5 (−b6)t−mbk−n−1

6

(k−n−1)!(t−m)!m!n!(b5+1)t+k
and χ11 =

Er2
[
r
α(t−n+k−m−1)
2

∫ (b5b7+b7−b6)rα2
−b6rα2

e−xxn+mdx
]
. Utilizing

same method as I2, χ11 is obtained as

χ11 = Er2

[
Υ (n+m+ 1, (b5b7 + b7 − b6) rα2 )

r
−α(t−n+k−m−1)
2

]
− Er2

[
r
α(t−n+k−m−1)
2 Υ (n+m+ 1,−b6rα2 )

]
=

n+m∑
z=0

(
(n+m)!

z!(−b6)−z
E
[
eb6r

α
2 r

α(t−n+k−m−1+z)
2

]
− (n+m)!

z!(b5b7 + b7 − b6)−z
E

[
r
α(t−n+k−m−1+z)
2

e(b5b7+b7−b6)r
α
2

])

=

n+m∑
z=0

(χ12 − χ13),

(58)

where χ12 = (n+m)!φ(−b6,α(t−n+k−m−1+z),R)

z!(−b6)−z
and χ13 =

(n+m)!φ(b5b7+b7−b6,α(t−n+k−m−1+z),R)

z!(b5b7+b7−b6)−z
.

When b7 ≤ 0, we have τc
τ2
≥ Θc,2

Θp,2
+ Θc,2, thus, we obtain

I6 = 0. Based on (11), PTCAP
CP,2,k with 0 < k < L is obtained

as
PTCAP

CP,2,k = I5 = Pr {v2 > b3r
α
2 }

= Er2
[
F̄v2 (b3r

α
2 )
]

=

L−k−1∑
t=0

bt3
t!
φ (b3, αt, R) .

(59)

APPENDIX D
PROOF OF THEOREM 3

Based on
n−1∑
t=0

xt

t! = ex− xn

n! +O (xn), we obtain FX (x) =

xκX
κX ! +O (xκX ) when x→ 0. When ρ→∞, we have a2 → 0,
a3 → 0, and a4 → 0.

Based on (38), by utilizing Γ (n, x)
x→0
≈ Γ (n) − xn

n ,
TTCCP,∞

1,k and invoking [31, (3.351.2)], TTCCP,∞
1,k with 0 <

k < L is obtained as

TTCCP,∞
1,k =

∫ ∞
a4

Fv1
(a1y) fµc,1 (y) dy

= F̄µc,1 (a4)−
L−k−1∑
t=0

at1
(k − 1)!t!

×
∫ ∞
a4

e−(a1+1)yyt+k−1dy

= 1− ak4
k!
−
L−k−1∑
t=0

at1Γ (t+ k, (a1 + 1) a4)

(a1 + 1)
t+k

(k − 1)!t!

≈ 1− ak4
k!

+
L−k−1∑
t=0

at1
(k − 1)!t!

×

(
at+k4

t+ k
− (t+ k − 1)!

(a1 + 1)
t+k

)
.

(60)

Similarly, by utilizing FX (x) = xκX
κX ! +O (xκX ), V TCCP,∞

1,k

with 0 < k < L is obtained as

V TCCP,∞
1,k

= F∞v1
(a3)

(
1− F∞µc (a4)

)
=

a3
L−k

(L− k)!

(
1− ak4

k!

)
.

(61)

Based on (19) and (21), we obtain PTCCP,∞
out,1,0 =

1
L!

(
rα1 Θp,1
δτ1

)L
and PTCCP,∞

out,1,L = 1
L!

(
rα1 Θc,1
δ

)L
. Subsequently,

based on (60) and (61), and combining the aforementioned



14

results of PTCCP,∞
out,1,0 and PTCCP,∞

out,1,L , PTCCP,∞
out,1 is obtained as

PTCCP,∞
out,1 =

1

L!

(
ω0

(
Θp,1r

α
1

δτ1

)L
+ ωL

(
Θc,1r

α
1

δ

)L)

+

L−1∑
k=1

(
ωka3

L−k

(L− k)!
+
ωka

k
4

k!

(
1− a3

L−k

(L− k)!

))

−
L−1∑
k=1

L−k−1∑
t=0

(
ωka

t
1a
t+k
4

(k − 1)!t! (t+ k)

− ωka
t
1 (t+ k − 1)!

(k − 1)!t!(a1 + 1)t+k

)
(g)
≈

L−1∑
k=1

L−k−1∑
t=0

ωka
t
1 (t+ k − 1)!

(k − 1)!t!(a1 + 1)t+k
,

(62)

where step (g) is due to δ →∞, a3 → 0, and a4 → 0.
Similar to (60), we have b2 → 0, b3 → 0, and b4 → 0 when

ρ → ∞. Based on 1 − e−y
y→0
≈ y, we obtain F∞Y (y) = y.

Based on (41), by utilizing Υ (n, x)
x→0
≈ xn

n , TTCCP,∞
2,k with

0 < k < L is obtained as

TTCCP,∞
2,k

= Er2
[
F̄∞ζc (b4r

α
2 )
]

− Er2

[∫ ∞
b4r

α
2

F̄v2 (b1y − b2rα2 )fζc (y) dy

]
= Er2 [1− b4rα2 ]

−
L−k−1∑
t=0

t∑
n=0

n∑
m=0

2χ3

αR2

Υ
(
t−m+ 2

α
, (b1b4 + b4 − b2)Rα

)
(b1b4 + b4 − b2)t−m+ 2

α

≈ 1− 2b4R
α

α+ 2
−
L−k−1∑
t=0

t∑
n=0

n∑
m=0

2χ3R
α(t−m)

α (t−m) + 2
.

(63)
Similarly, by utilizing FX (x) = xκX

κX ! +O (xκX ), V TCCP,∞
2,k

with 0 < k < L is obtained as

V TCCP,∞
2,k

= Er2
[
F∞v2

(b3r
α
2 ) F̄∞ζc (b4r

α
2 )
]

= Er2

[
bL−k3 r

α(L−k)
2

(L− k)!
(1− b4rα2 )

]

=
bL−k3

(L− k)!

(
Er2

[
r
α(L−k)
2

]
− b4Er2

[
r
α(L−k+1)
2

])
=

2bL−k3

(L− k)!

(
Rα(L−k)

α (L− k) + 2

− b4R
α(L−k+1)

α (L− k + 1) + 2

)
.

(64)

Similarly, based on (20) and (22), we obtain PTCCP,∞
out,2,0 =

Er2
[
F∞ϑ2

(
Θp,2
δτ2

rα2

)]
=

2RαLΘp,2
L

L!(αL+2)(δτ2)L
and PTCCP,∞

out,2,L =

Er2
[
F∞ζ

(
rα2 Θc,2
δ

)]
= Er2

[
rα2 Θc,2
δτ2

]
=

2Θc,2R
α

(α+2)δτ2
.

Finally, PTCCP,∞
out,2 is obtained as (65), shown at the top of

next page. where step (h) is due to δ →∞, b3 → 0, b4 → 0
and step (i) is due to χ3 6= 0 only if t = n = m with b2 → 0
and b4 → 0.

APPENDIX E
PROOF OF THEOREM 4

Since PTCAP
out,1,0 = PTCCP

out,1,0 and PTCAP
out,1,L = PTCCP

out,1,L,
PTCAP,∞

out,1 is obtained as

PTCAP,∞
out,1 =

ω0

L!

(
Θp,1r

α
1

δτ1

)L
+
ωL
L!

(
Θc,1r

α
1

δ

)L
+
L−1∑
k=1

ωk

(
1− PTCAP,∞

CP,1,k

)
.

(66)

When ρ → ∞, we have a2 → 0 and a3 → 0. Thus, for
0 < k < L, when a1 = 1, based on (44), we obtain

PTCAP,∞
CP,1,k = F̄∞µc,1 (a2) F̄∞v1

(a3)

= 1− ak2
k!
− aL−k3

(L− k)!
+

ak2a
L−k
3

k! (L− k)!
.

(67)

Then, PTCAP,∞
out,1 with a1 = 1 is obtained as

PTCAP,∞
out,1 =

ω0

L!

(
Θp,1r

α
1

δτ1

)L
+
ωL
L!

(
Θc,1r

α
1

δ

)L
+
L−1∑
k=1

(
ωka

k
2

k!
+
ωka

L−k
3

(L− k)!
− ωka

k
2a
L−k
3

k! (L− k)!

)

≈
L−1∑
k=1

(
ωka

k
2

k!
+
ωka

L−k
3

(L− k)!

)
≈ ω1a2 + ωL−1a3.

(68)

For a1 < 1, based on (45), we obtain PTCAP,∞
CP,1,k as

PTCAP,∞
CP,1,k = F̄∞µc,1 (a7) F̄∞v1

(a3)−
L−k−1∑
t=0

at5
(k − 1)!t!

×
∫ ∞
a7

e−(a5+1)yyt+k−1dy

≈ 1− ak7
k!
− aL−k3

(L− k)!

−
L−k−1∑
t=0

at5(a5 + 1)−t−k

(k − 1)!t!
Γ (t+ k, (a5 + 1) a7)

≈ 1− ak7
k!
− aL−k3

(L− k)!

+

L−k−1∑
t=0

at5
(k − 1)!t!

(
at+k7

t+ k
− (t+ k − 1)!

(a5 + 1)t+k

)

≈ 1− aL−k3

(L− k)!
−
L−k−1∑
t=0

at5 (t+ k − 1)!

(k − 1)!t!(a5 + 1)t+k
.

(69)

Then, by substituting (69) into (66), PTCAP,∞
out,1 for a1 < 1 is

obtained as

PTCAP,∞
out,1 =

ω0

L!

(
Θp,1r

α
1

δτ1

)L
+
ωL
L!

(
Θc,1r

α
1

δ

)L
+

L−1∑
k=1

(
ωka

L−k
3

(L− k)!
+

L−k−1∑
t=0

ωka
t
5 (t+ k − 1)!

(k − 1)!t!(a5 + 1)t+k

)

≈
L−1∑
k=1

L−k−1∑
t=0

ωka
t
5 (t+ k − 1)!

(k − 1)!t!(a5 + 1)t+k
.

(70)
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PTCCP,∞
out,2 =

2ω0R
αLΘL

p,2

L! (αL+ 2) (δτ2)L
+

2ωLR
αΘc,2

(α+ 2) δτ2
+

L−1∑
k=1

L−k−1∑
t=0

t∑
n=0

n∑
m=0

2ωkχ3R
α(t−m)

α (t−m) + 2

+

L−1∑
k=1

(
2ωkb4R

α

α+ 2
+

2ωkb
L−k
3 Rα(L−k)

(L− k)!

(
1

α (L− k) + 2
− b4R

α

α (L− k + 1) + 2

))
(h)
≈

L−1∑
k=1

L−k−1∑
t=0

t∑
n=0

n∑
m=0

2ωkχ3R
α(t−m)

α (t−m) + 2

(i)
≈
L−1∑
k=1

L−k−1∑
t=0

ωkb1
t

(b1 + 1)t+1

(65)

For a1 > 1 and a7 > 0, based on (46), by utilizing
Υ (n, x)

x→0
≈ xn

n , PTCAP,∞
CP,1,k is obtained as

PTCAP,∞
CP,1,k = I∞1 + I∞2 =

∫ a7

0

(1− Fv1 (a5y)) fµc,1 (y) dy

+ F̄∞v1
(a3) F̄∞µc,1 (a7)

=

L−k−1∑
t=0

at5(a5 + 1)−(t+k)

t! (k − 1)!
Υ (t+ k, (a5 + 1) a7)

+ 1− ak7
k!
− aL−k3

(L− k)!
+

ak7a
L−k
3

k! (L− k)!

≈
L−k−1∑
t=0

at5a
t+k
7

t! (k − 1)! (t+ k)
+ 1− ak7

k!
− aL−k3

(L− k)!

≈ 1− aL−k3

(L− k)!
.

(71)
For a1 > 1 and a7 ≤ 0, based on (48), we have PTCAP,∞

CP,1,k =

I∞2 = F̄∞v1
(a3) = 1− aL−k3

(L−k)! . Then, PTCAP,∞
CP,1,k for a1 > 1 is

obtained as

PTCAP,∞
CP,1,k = 1− aL−k3

(L− k)!
. (72)

Finally, PTCAP,∞
out,1 for a1 > 1 is obtained as

PTCAP,∞
out,1 =

L−1∑
k=1

ωka
L−k
3

(L− k)!
≈ ωL−1a3. (73)

Based on (20) and (27), we have PTCAP
out,2,L =

Er2
[
F∞ϑ2

(
Θc,2
δ rα2

)]
= 1

L!

(
Θc,2
δ

)L
Er2

[
rαL2

]
=

2RαLΘLc,2
L!(αL+2)δL

,

PTCCP,∞
out,2,0 = Er2

[
F∞ϑ2

(
Θp,2
δτ2

rα2

)]
= 1

L!

(
Θp,2
δτ2

)L
Er2

[
rαL2

]
=

2RαLΘLp,2
L!(αL+2)(δτ2)L

. Then, PTCAP,∞
out,2 is obtained as

PTCAP,∞
out,2 =

2ω0R
αLΘL

p,2

L! (αL+ 2) (δτ2)L
+

2ωLR
αLΘL

c,2

L! (αL+ 2) δL

+

L−1∑
k=1

ωk
(

1− PTCAP,∞
CP,2,k

)
.

(74)

For ρ → ∞, we have b2 → 0 and b3 → 0. Thus, for
0 < k < L, when b1 = 1, based on (50), the PTCAP,∞

CP,2,k is
obtained as
PTCAP,∞
CP,2,k = Er2

[
F̄∞µc,2 (b2r

α
2 ) F̄∞v2

(b3r
α
2 )
]

= 1− 2bk2R
αk

k! (αk + 2)
+

2bL−k3 RαL

(L− k)!

×
(

bk2
k! (αL+ 2)

− R−αk

α (L− k) + 2

)
≈ 1− 2bL−k3 Rα(L−k)

(L− k)! (α (L− k) + 2)
− 2bk2R

αk

k! (αk + 2)
.

(75)

Finally, by substituting (75) into (74), PTCAP,∞
out,2 with b1 = 1

is obtained as

PTCAP,∞
out,2 =

2ω0R
αLΘL

p,2

L! (αL+ 2) (δτ2)L
+

2ωLR
αLΘL

c,2

L! (αL+ 2) δL

+

L−1∑
k=1

(
2ωkb

k
2R

αk

k! (αk + 2)
+

2ωkb
L−k
3 Rα(L−k)

(L− k)! (α (L− k) + 2)

)

≈
L−1∑
k=1

(
2ωkb

k
2R

αk

k! (αk + 2)
+

2ωkb
L−k
3 Rα(L−k)

(L− k)! (α (L− k) + 2)

)
≈ 2 (ω1b2 + ωL−1b3)Rα

α+ 2
.

(76)

For b1 < 1, based on (51), we have PTCAP,∞
CP,2,k = I∞3 − I∞4 ,

where I∞3 is obtained as

I∞3 = Er2

[∫ ∞
b7r

α
2

F∞v2
(b5y − b6rα2 )fµc,2 (y) dy

]

= Er2
[
1− bk7r

αk
2

k!

]
− Er2

[
L−k−1∑
t=0

bt5(b5 + 1)−t−k

(k − 1)!t!
Γ (t+ k, (b5 + 1) b7r

α
2 )

]

≈ 1− bk7
k!

Er2
[
rαk2

]
−
L−k−1∑
t=0

bt5 (t+ k − 1)!

(b5 + 1)t+k (k − 1)!t!

+

L−k−1∑
t=0

bt5b
t+k
7

(k − 1)!t! (t+ k)
Er2

[
r
α(t+k)
2

]
≈ 1−

L−k−1∑
t=0

bt5 (t+ k − 1)!

t! (k − 1)!(b5 + 1)t+k
.

(77)
Utilizing the same method as I∞3 , and utilizing FX (x) =
xκX
κX ! +O (xκX ) , I∞4 is obtained as

I∞4 = Er2
[
F∞v2

(b3r
α
2 ) F̄∞µc,2 (b7r

α
2 )
]

=
bL−k3

(L− k)!
Er2

[
r
α(L−k)
2

]
− bL−k3 bk7

(L− k)!k!
Er2

[
rαL2

]
=

2bL−k3 RαL

(L− k)!

(
R−αk

α (L− k) + 2
− bk7

(αL+ 2) k!

)
≈ 2bL−k3 Rα(L−k)

(L− k)! (α (L− k) + 2)
.

(78)
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Then, PTCAP,∞
out,2 with b1 < 1 is obtained as

PTCAP,∞
out,2 =

2ω0R
αLΘL

p,2

L! (αL+ 2) (δτ2)L
+

2ωLR
αLΘL

c,2

L! (αL+ 2) δL

+

L−1∑
k=1

2ωkb
L−k
3 Rα(L−k)

(L− k)! (α (L− k) + 2)

+

L−1∑
k=1

L−k−1∑
t=0

ωkb
t
5 (t+ k − 1)!

(k − 1)!t!(b5 + 1)t+k

≈
L−1∑
k=1

L−k−1∑
t=0

ωkb
t
5 (t+ k − 1)!

(k − 1)!t!(b5 + 1)t+k
.

(79)

Similarly when b1 > 1 and b7 > 0, based on (55)- (57),
utilizing Υ (n, x)

x→0
≈ xn

n , PTCAP,∞
CP,2,k is obtained as

PTCAP,∞
CP,2,k = Er2

[
F̄∞v2

(b3r
α
2 ) F̄∞µc,2 (b7r

α
2 )
]

+ Er2

[∫ b7r
α
2

0

(1− F∞v2
(b5y − b6rα2 )) fµc,2 (y) dy

]

= 1 +
2bL−k3 RαL

(L− k)!

(
bk7

(αL+ 2) k!
− R−αk

α (L− k) + 2

)
− 2bk7R

αk

(αk + 2) k!
+

L−k−1∑
t=0

2bt5b
t+k
7 Rα(t+k)

t! (k − 1)! (t+ k) (α (t+ k) + 2)

≈ 1− 2bL−k3 Rα(L−k)

(L− k)! (α (L− k) + 2)
.

(80)
When b1 > 1 and b7 ≤ 0, based on (59), PTCAP,∞

CP,2,k is obtained
as

PTCAP,∞
CP,2,k = Er2

[
F̄∞v2

(b3r
α
2 )
]

= 1− bL−k3

(L− k)!
Er2

[
r
α(L−k)
2

]
= 1− 2bL−k3 Rα(L−k)

(L− k)! (α (L− k) + 2)
.

(81)

Subsequently, PTCAP,∞
CP,2,k with b1 > 1 is obtained as

PTCAP,∞
CP,2,k = 1− 2bL−k3 Rα(L−k)

(L− k)! (α (L− k) + 2)
. (82)

Finally, by substituting (82) into (74), PTCAP,∞
out,2 for b1 > 1

is obtained as

PTCAP,∞
out,2 =

2ω0R
αLΘL

p,2

L! (αL+ 2) (δτ2)L
+

2ωLR
αLΘL

c,2

L! (αL+ 2) δL

+

L−1∑
k=1

2ωkb
L−k
3 Rα(L−k)

(L− k)! (α (L− k) + 2)

≈
L−1∑
k=1

2ωkb
L−k
3 Rα(L−k)

(L− k)! (α (L− k) + 2)
≈ 2ωL−1b3R

α

α+ 2
.

(83)
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