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Abstract: Advancements in technology and awareness of energy conservation and environmental
protection have increased the adoption rate of electric vehicles (EVs). The rapidly increasing adoption
of EVs may affect grid operation adversely. However, the increased integration of EVs, if managed
appropriately, can positively impact the performance of the electrical network in terms of power
losses, voltage deviations and transformer overloads. This paper presents a two-stage multi-agent-
based scheme for the coordinated charging scheduling of EVs. The first stage uses particle swarm
optimization (PSO) at the distribution network operator (DNO) level to determine the optimal power
allocation among the participating EV aggregator agents to minimize power losses and voltage
deviations, whereas the second stage at the EV aggregator agents level employs a genetic algorithm
(GA) to align the charging activities to achieve customers’ charging satisfaction in terms of minimum
charging cost and waiting time. The proposed method is implemented on the IEEE-33 bus network
connected with low-voltage nodes. The coordinated charging plan is executed with the time of use
(ToU) and real-time pricing (RTP) schemes, considering EVs’ random arrival and departure with two
penetration levels. The simulations show promising results in terms of network performance and
overall customer charging satisfaction.

Keywords: charging cost; electric vehicles; power loss; voltage deviation; waiting time

1. Introduction

Growing concerns regarding climate change, global warming and fossil fuel depletion
have motivated the widespread adoption of electric vehicles (EVs). The estimates indicate
that EVs will dominate the transportation sector till 2050 [1]. The increase in EV adoption
rate is very encouraging; however, the large-scale integration of EVs is challenging the
stability and smooth operation of the power supply system due to the increased variations
in load demand [2]. The large-scale, uncontrolled penetration of EVs into the electric
grid increases the power flow in cables, voltage unbalance, transformer overloading,
harmonic problems, etc. [3,4]. Thus, the simultaneous charging of a large number of
EVs directly affects the electric grid’s stability. For example, several hundred EVs may
request charging from the electric grid over a short span of time. This will cause a sudden
increase in load demand and stress the supply network. The EV charging activities require
suitable management and control approaches for reliable operation. In the context of a
smart grid, the control and automation modules communicate with each other to achieve
the set objectives [5]. Communication technologies enable the transfer of information
from various parts of the grid. This brings opportunities to implement better operation
and control strategies than conventional solutions. In this respect, the communication
framework is crucial to support the automated and intelligent management and control
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functions in electrical power systems. However, communication technologies and network
security issues are the main concerns arising due to many electronic meters, sensors, EVs,
control and automation devices and distributed generation [6]. EVs share information such
as battery state of charge (SoC) and charging requirements along with other important
parameters with the EV aggregator. Therefore, appropriate communication protocols for
monitoring and managing the charging activities of EVs are important.

Using smart grid communication facilities, EV charging activities can be coordinated,
and problems associated with unregulated handling can be minimized while meeting
load demand. However, it is challenging for grid operators to manage EV charging
activities simultaneously with optimal grid operation. To satisfy the charging requirements
of EV users without deteriorating the performance of the electric grid, it is essential to
distribute the control of charging activities among the multiple charging agents known as
“EV Charging Aggregator Agents”. This approach reduces the search space and provides
quality solutions as each aggregator agent will supervise the charging activities of its
region only. It will have no concerns with the charging activities in the neighborhood.
This way, a hierarchy control is required, which could simultaneously handle the network
operation and effectively manage EVs’ charging activities. Furthermore, EV charging is
a random process that can take place either at home, at charging stations or even at the
workplace. Approximately 50–80% of EV customers prefer overnight charging at home,
followed by 15–20% who use workplace charging as a secondary option [7,8]. Previous
research work related to EV charging either focused on home-based charging or considered
commercial/workplace charging. Generally, the EVs’ charging demand and their impact
on the electricity network change regarding location and time [9]. Therefore, it is necessary
to investigate the impact of EV charging considering home and workplace platforms with
day and night charging schedules to create a useful plan based on customers’ preferences.

2. Related Work

With the increasing introduction of EVs in the transportation sector, it is essential for EV
charging aggregators to effectively manage the load demand of EVs by taking into account
the needs of both the electric grid and EV users. The EV charging scheduling problem is a
non-deterministic complex combinatorial optimization problem in which the computational
complexity increases with the penetration of EVs [10]. Several studies on the optimal
charging scheduling of electric vehicles have been carried out in the literature, considering
various objectives. In [11,12], the power loss is minimized through the coordinated charging
operation of EVs at the home level. In [13], the EV charging problem is formulated as a
multi-objective problem to minimize the cost and system stress for the residential network.
A bi-level EV aggregator-based charging scheme is presented in [14] to achieve the peak
shaving and valley filling objectives. The proposed method is demonstrated on a real-
world medium voltage distribution network. In [15], the authors presented a weighted
sum-based multi-objective plug-in electric vehicle (PEV) charging coordination scheme
to minimize power loss and charging costs and maximize the operating capacity of the
electric grid. In [16], a coordinated charging framework for EV aggregators is presented to
shave the peak demand of the system. In [17], various charging strategies are investigated
to coordinate the EV charging operation for the residential network to minimize power loss,
power consumption and charging costs. A two-layer smart charging model is proposed
by [18] to achieve user satisfaction presented in terms of the number of users whose SoC
gain at departure time exceeds 80% of the target power.

In previous works [11–13,15,17,19], the single central control unit mainly performed
the EV charging process. This method of coordination needs to deal with large solution
space as all the EVs operating in the network are supervised by a single control unit.
Contrary to this approach, few studies [14,16,18] presented distributed control among
multiple EV aggregators for the EV charging coordination process. With this distributed
control among EV aggregator agents, the solution space size reduces as each EV aggregator
agent manages the EV operating in its locality. These studies, however, only focused on
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grid performance, and EV customers’ charging satisfaction has not been considered in these
studies. Furthermore, the mentioned work only considered the EVs home charging and
ignored commercial activities since EV users have the same opportunity to charge their EVs
at work, where their EVs remain idle throughout the duration of their stay at the workplace.
The comparison of the proposed work with the existing literature is summarized in Table 1.

Table 1. Summary of related work.

Ref.
EV Charging

Control
Architecture

Research
Objectives

Optimization
Method

Charging
Platform

Pricing
Scheme

[11] Centralized Power loss minimization Binary PSO Residential Not
applicable

[12] Centralized Power loss minimization Binary EP Residential Not
applicable

[13] Centralized Cost and system stress minimization Binary PSO Residential ToU

[14] Hierarchal Peak shaving and valley filling Water-filling
algorithm Residential Not

applicable

[15] Centralized Power loss and charging cost
minimization

Binary PSO and
analytical

hierarchy process
Residential ToU

[16] Hierarchal Peak shaving and valley filling Heuristic Residential Not
applicable

[17] Centralized Peak power, power losses and cost
minimization PSO Residential RTP

[18] Hierarchal Electricity distribution and charging
schedule optimization PSO Residential ToU

Proposed Hierarchically
centralized

Power loss, voltage deviation, charging
cost and waiting time minimization PSO, GA Residential,

Commercial ToU and RTP

This work aims to coordinate the charging activities among multiple EV aggregator
agents to maximize the grid performance by minimizing network power losses and voltage
deviations. The work also focuses on maximizing customers’ satisfaction by minimizing
charging costs and EV waiting times. These objectives are achieved in sequential order
by implementing a two-stage method. In the first stage, the distribution network oper-
ator (DNO) receives the charging request from each EV aggregator contributing to the
scheduling process. The DNO then checks the maximum demand constraint and distributes
power among the participating aggregator agents to achieve minimum power losses and
voltage deviations. Once the suitable power is allocated to the EV aggregator agents, their
algorithms are executed to ensure the optimal charging operation at the minimum cost
and waiting time. The presented method is tested and verified on an IEEE-33 bus medium
voltage network coupled with a low-voltage network.

The major contributions of this work can be summarized as follows:

• A two-stage coordination framework for EV charging and scheduling is presented to
maximize network performance and customer charging satisfaction;

• Various indices for power loss, voltage profile, charging cost and waiting time are
devised for the coordinated charging operation of EVs, and the customers’ charging
satisfaction is investigated with the time of use (ToU) and real-time pricing (RTP);

• The coordinated framework among muti EV aggregator agents is established to man-
age the charging activities at residential and workplace platforms;

• The proposed approach bears a low computational burden.

The rest of the paper is structured as follows. Section 3 explains the aggregator-based
EV charging management (AECM) architecture. In Section 4, a two-stage EV charging
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management strategy is presented. The test cases and simulation setup are given in
Section 5. The results and relevant discussion are provided in Section 6. A comparison of
the proposed work with the reported studies is given in Section 7. Finally, the conclusions
are drawn in Section 8.

3. AECM Architecture

This section presents an AECM architecture to control the charging activities of EV
customers. The AECM provides the coordination between EVs and DNO to realize the
optimal operation of the distribution network and the charging satisfaction of EV customers.
The designed model is implemented in two stages and shown in Figure 1.
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Figure 1. AECM architecture.

The first stage is administered by the DNO, which is responsible for the optimal
operation of the distribution network. The EV charging activities at the residential and
commercial platforms are supervised by the respective aggregators. The aggregators collect
the charging requests from the EV customers and communicate with the DNO to allocate
charging power. The DNO then executes its algorithm and distributes the charging power
among the participating aggregators. Subsequently, the aggregators manage the charging
operation of EVs by considering their preferences.
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4. Two-Stage EV Charging Management Strategy
4.1. Scenario Design

An EV has various charging facilities to charge its battery. These facilities include
residential, workplace, commercial and public charging supply points. Each charging
supply point has a specific charging level. For example, home-based and workplace
charging facilities operate at level-I or level-II. They are classified based on electrical
parameters, such as current, voltage and power rating. The level-I charging standard
employs single-phase 115 VAC/15 A or 230 VAC/6 A and can supply 1.5 kW of power
to the EV battery [20]. The 230 VAC/30 A and 7 kW power rating standards are part of
level-II charging and are commonly used at home and public charging stations [20]. The
level-III charging mode is a comparatively fast charging solution and is the most suitable
for commercial vehicles [20]. In many countries, private EVs dominate the transport sector,
and approximately 50–80% of EV customers prefer overnight charging at home, followed
by 15–20% of EV customers who use workplace charging as a secondary option [7,8].
Moreover, private EVs have short travel times and long idle or parking times [19]. Based on
these facts, we have developed a charging scenario for private EVs and managed their day
and night charging activities via EV aggregators using workplace and residential charging
platforms with level-II charging infrastructure. Due to the uncertainty of the arrival and
departure of EVs and their increasing penetration into the power grid, it is difficult for the
grid operator to maintain grid operational efficiency and achieve the load satisfaction of
every individual EV customer in a shorter lead time. It is essential in real-world problems
to achieve the desired objectives with reasonable computational effort [21]. If the problem
is divided into two stages instead of solved as one unit, we can achieve our objectives and
shorten the algorithm execution time. In the first stage, the DNO receives the charging load
demand from the EV aggregators and allocates the appropriate power to each participating
EV aggregator while minimizing grid power losses and voltage deviations. In contrast,
the charging satisfaction of individual EV customers is ensured in the second stage of the
proposed scheme.

For every EV participating in the charging event, arrival time, departure time, arrival
SoC and desired departure SoC are considered with minimal cost and delay.

In this work, a two-stage coordination mechanism between DNO and EV aggregators
is established to optimize the operation of the distribution network as well as EV charging
events. The stages of the proposed model are described in the following subsections.

4.2. Stage-1: Power Distribution to the Aggregators

The first stage is implemented at the level of DNO, which is responsible for the optimal
operation of the electrical grid. At this point, EV aggregators collect information such as
arrival time, departure time, arrival SoC and desired departure SoC from EVs operating at
their locations. Afterward, the aggregators send their charging load request to the DNO.
On receiving this request, the DNO executes its algorithm and distributes the available
power among EV aggregators to achieve minimal power losses and voltage deviations. The
minimization function, similar to [13], is given by Equation (1) and is used to distribute the
available power among the EV aggregators optimally.

min( f1) = min(PLI + VDI) (1)

where PLI is the power loss index and VDI is the voltage deviation index, and they are
calculated as Equations (2) and (3), respectively.
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PLI =

∣∣∣∣∣1− T

∑
∆t=1

(
PLw/cp

∆t

PLwcp
∆t

)∣∣∣∣∣ ∀∆t ∈ T (2)

where PLwcp
∆t and PLw/cp

∆t are the power losses with and without charging power allocation
to the EV aggregators, respectively, and can be calculated as follows:

PLwcp, PLw/cp =
L

∑
l=1

(
I2
(l,∆t) × R(l,∆t)

)
∀l ∈ L, ∀∆t ∈ T (3)

I(l,∆t) and R(l,∆t) are the current and resistance of the lth branch of the network having
L number of branches. The VDI in Equation (1) represents the voltage deviation index
which can be calculated in Equation (4).

VDI =
T

∑
∆t=1

(∣∣∣Vre f −Vmin
∆t

∣∣∣)2

Vre f ∀∆t ∈ T (4)

where Vre f is the reference voltage and assumed as 1.0 p.u. The minimum voltage recorded
at any bus in a time ∆t is represented by Vmin

∆t .

Constraints

The optimal solution must not violate the following set of constraints.

• Voltage Limits:

The voltage at each bus b from the set of B number of buses must be within the
defined limits.

Vmin
b ≤ V(b,∆t) ≤ Vmax

b ∀b ∈ B, ∀∆t ∈ T (5)

where Vmin
b and Vmax

b in Equation (5) are the minimum (0.90 p.u.) and maximum (1.10 p.u.)
voltage limits for the bus b, respectively, and denote the voltage in p.u. on the bus b for a
time slot ∆t.

• Power Allocation and Distribution Constraints

We have introduced power allocation and distribution constraints to ensure that the
power is not allocated to nonparticipant EV aggregators and that the charging demand of
critical and high-priority EV customers is consistently met. For this purpose, Equations (6)
and (7) should not be violated during the optimization process.

P(a,∆t) = 0 ∀a /∈ A,∀∆t ∈ T (6)

Pmin
(a,∆t) ≤ P(a,∆t) ≤ Pmax

(a,∆t) ∀a ∈ A,∀∆t ∈ T (7)

P(a,∆t) represents the power allocation to the candidate aggregator a from the set

of aggregators A and Pmin
(a,∆t) and Pmax

(a,∆t) which are the minimum and maximum power
distributions among the participating EV aggregators per their charging needs.

• Instantaneous Maximum Demand Constraint

To ensure that the instantaneous load demand of both residential and commercial
feeders is within their rated capacity, the maximum demand limit constraints are considered
and represented in Equations (8)–(10).

S

∑
s=1

RD(s,∆t) ≤ RDmax ∀s ∈ S, ∆t ∈ T (8)
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C

∑
c=1

CD(c,∆t) ≤ CDmax ∀c ∈ C, ∆t ∈ T (9)

(
S

∑
s=1

RD(s,∆t) +
C

∑
c=1

CD(c,∆t)

)
≤ GDmax ∀s ∈ S, c ∈ C, ∆t ∈ T (10)

where RD(s,∆t) and CD(c,∆t) are the instantaneous load demand at residential and commer-
cial feeders, respectively. RDmax, CDmax and GDmax represent the maximum demand at
the residential, commercial and grid levels, respectively.

Stage 1, presented above, determines the optimal distribution of charging power
among the participating EV aggregators while maintaining the stated constraints.

4.3. Stage-2: Coordinated EV Charging

Once each participating EV aggregator agent receives the charging power from the
DNO, its role is to manage the charging activities so that the EV customers operating in
its vicinity can enjoy economical charging without any delay. To this end, two satisfaction
indices known as (i) Minimum Cost Index and (ii) Minimum Waiting Time Index have been
introduced to ensure the charging requirements of EV customers. Thus, the goal of an EV
aggregator agent is to achieve the charging satisfaction of EV customers in terms of cost
and time. The objective function of each participating agent is given by Equation (11).

min( f2) = min(CCI + WTI) (11)

It consists of two normalized indices: (i) normalized EV charging cost, Equation (12),
and (ii) normalized waiting time, Equation (13).

CCI =

Ωe
∑

∆t=Ωs

A
∑

a=1

Nev
∑

e=1

(
Φ(e,a,∆t) × ∆t

)
× ρ∆t

γ× λ
∀e ∈ Nev,a ∈ A, (∆t, Ωs, Ωe) ∈ T (12)

where Φ(e,a,∆t) denotes the charging power of eth EV from the set of Nev EVs selected
through the optimization process for the charging interval Ωs to Ωe. The ‘a’ represents the
ath EV aggregator agent from the set of A number of agents. The charging cost in a time
step ∆t is given by ρ∆t and the total time slots are given by λ. We have introduced γ as
the incentive for the contribution towards CO2 emission reduction, which is assumed as
USD 100.

WTI =
A

∑
a=1

Nev

∑
e=1

∣∣∣Yari
(a,e) −Ycon

(a,e)

∣∣∣
Ysty
(a,e)

∀a ∈ A, e ∈ Nev,
(

Yari
(a,e), Ycon

(a,e), Ysty
(a,e)

)
∈ T (13)

Ysty
(a,e) =

∣∣∣Yari
(a,e) −Ydep

(a,e)

∣∣∣ (14)

where Yari
(a,e) is the arrival time of the eth EV of the ath agent. Ycon

(a,e) denotes connection time
eth EV, belongs to the ath agent, and it is determined through the optimization process so
that Equation (13) can be minimized. The total stay time of the eth EV controlled by the ath
agent is represented by Ysty

(a,e) and calculated by Equation (14).
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Constraints

To ensure that EVs are charged at a low cost and with less waiting time, the following
constraints are considered.

• Stay Time Constraint

To meet the changing requirements of EVs, the stay time of each EV must be greater
than or equal to the time required to achieve the requested SoC.

Ysty
(a,e) ≥ Yreq_soc

(a,e) (15)

The time required to achieve the requested SoC, Yreq_soc
(a,e) , can be calculated by

Equation (16) where ψ(e,a) and Φ(e,a) are the battery capacity (kwh) and charger rating
(kW) with the η(e,a) efficiency of the eth EV managed by the ath agent. SoCreq

(e,a) and SoCari
(e,a)

are the requested and initial SoC levels, respectively, of the eth EV’s battery.

Yreq_soc
(a,e) =

ψ(e,a) ×
(

SoCreq
(e,a) − SoCari

(e,a)

)
Φ

(e,a) × η(e,a)
(16)

The optimization problem described in stage-2 is solved by using a genetic algorithm
(GA). The proposed two-stage research design along with the interaction stages and the
control action between the two stages are explained in the next section.

4.4. Proposed Research Design with Information Exchange and Control Process

The proposed two-stage research design is summarized in Figure 2.
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4.4.1. Steps for Stage-1

Stage-1 involves the following step:

i. Input Data

Stage-1 uses the grid topology as the input data, which include line and load data
from [11]. Besides this, 24 h load profiles for commercial and residential areas are also used
at the input stage. These load profiles are described in Section 5.1.

ii. Decision Variables

The stage-1 uses charging power allocation P(a,∆t) as the decision variable. It is the
amount of power that should be distributed among the EV aggregator agents to optimize
the objective functions of stage 1.

iii. Objective Function

In order to maintain the performance of the network, stage-1 considers the power loss
index PLI and the voltage deviation index VDI as the optimization objectives. For each time
when power is allocated to the aggregators, these optimization objectives are evaluated.

iv. Optimization Method

PSO is used as the optimization method of stage-1, which determines the value of
P(a,∆t) so that objective functions are minimized. This algorithm works every time when
the aggregator requests to allocate the charging power.

v. Output data

The output of stage-1 is derived from objective functions at each execution of the
PSO algorithm. We have illustrated the output as the power loss and voltage deviation in
Section 6.

4.4.2. Steps for Stage-2

Stage-2 involves similar steps with detail as below:

i. Input Data

Stage-2 uses the EV charging data such as EV penetration level, charger rating and
the SoC of EV batteries. The relevant information can be obtained from Section 5.2. Be-
sides this, stage-2 also uses the EV mobility data and electricity pricing signals given in
Sections 5.3 and 5.4, respectively.

ii. Decision Variables

Once the power is allocated to each aggregator, each aggregator considers charging
power Φ(e,a) and connection time Ycon

(a,e) as the decision variables. These variables define the
candidates EVs involve in the charging process.

iii. Objective Function

To satisfy the distinct charging requirements of every individual EV customer, we
have considered charging cost and waiting time minimization as the objectives of stage-2.
These objectives are evaluated during each charging interval.

iv. Optimization Method

GA is used as the optimization method of stage-2, which determines the charging
power of the best candidate EVs and their connection times so that the stated objective
functions are minimized. The algorithm runs every time after power is allocated to the
aggregator from stage-1, and it is to be distributed among the EVs in queue.
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v. Output Data

The output of stage-2 is obtained in terms of objective functions for each execution of
the GA algorithm. We have illustrated the output as the connecting time of EVs and their
total charging cost in Section 6.

The interaction between the two stages and the control action is shown in Figure 3 and
explained below.
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The execution of each strategy is elaborated in the following steps:

Step 1: The DNO records the residential
S
∑

s=1
RD(s,∆t) and commercial

C
∑

c=1
CD(c,∆t) load

profiles for each time interval ∆t.
Step 2: The EV aggregator agent receives the charging information from the EVs operating

in its territory. The information includes: arrival time Yari
(a,e), departure time Ydep

(a,e),

SoC at the arrival SoCari
(e,a), requested SoC at departure SoCdep

(e,a) and customer
charging preference/priority. Each participating EV aggregator agent requests the
DNO for the allocation of charging power.
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Step 3: The DNO checks the condition of the maximum demand limit for both residential
and commercial feeders, i.e., RDmax and CDmax. Once the condition is met, the
DNO executes the objective function (f1) and allocates the charging power P(a,∆t)
to each participating agent.

Step 4: The participating agents receive the allocated power to fulfil the charging demand
of EVs.

Step 5: The EV aggregator agents execute the objective function (f2) by considering cus-
tomers’ preference/priorities.

Step 6: The EV aggregator agents then send the charging signal to the best selected EVs to
start charging.

Step 7: Once the charging process starts, the EV aggregator agents compute the charging
load and update the DNO about it.

Step 8: After receiving the information about the connected load of EVs, the DNO makes
sure that the connected charging load does not have any effect on the
network performance.

The pseudo-code of the proposed scheme for both stages is given in Algorithms 1 and 2
below.

Algorithm 1. Power Allocation to EV Aggregator Agents

Input:
S
∑

s=1
RD(s,∆t) , RDmax ,

C
∑

c=1
CD(c,∆t) , CDmax , e ∈ Nev , a ∈ A , SoCari

(e,a) , SoCreq
(e,a) , Yari

(a,e)

Ydep
(a,e) , Φ(e,a) , ∆t ∈ T,

Output: P(a,∆t) Power allocated to ath aggregator in time step∆t

1. Each EV Aggregator Agent a from the set of A agents collects SoCari
(e,a), SoCreq

(e,a), Yari
(a,e), Ydep

(a,e)
and Φ(e,a) time step ∆t

2. EV Aggregator Agent a calculates, stay time Ysty
(a,e) and time required to achieve desired SoC

Yreq_soc
(a,e) of ath EV by using Equations (14) and (16). Respectively.

3. If
(

S
∑

s=1
RD(s,∆t) ≤ RDmax

)
|
(

C
∑

c=1
CD(c,∆t) ≤ CDmax

)
then

4. DNO executes the PSO algorithm as follows.

i. Initialize PSO parameters: [Max. Iteration, population size, upper & lower bound
of population, velocity limits].

ii. Randomize the population: [set of power allocation to the aggregator agents].
iii. For each solution
iv. Evaluate the fitness functions: [using Equations (2) and (4)] and verify the

constraints [using Equations (5)–(7) and (10)].
v. Update local best (pBest) [individual best power allocated]
vi. Update global best (gBest) [overall best power allocated]
vii. Do
viii. For each solution
ix. Update solution velocity and position {search for new solutions}
x. Evaluate the fitness functions: [using Equations (2) and (4)] and verify the

constraints [using Equations (5)–(7) and (10)].
xi. Update local best (pBest) [individual best power allocated]
xii. Update global best (gBest) [overall best power allocated]
xiii. While (not reached to maximum iteration)

End process
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Algorithm 2: Power Allocation to EV Aggregator Agents

Input: e ∈ Nev , a ∈ A , P(a,∆t) , Yari
(a,e) , Ydep

(a,e) , SoCari
(e,a) , SoCreq

(e,a) , Φ(e,a) , ∆t ∈ T, ToU, RTP
price signal.

Output: Optimal charging plan i.e., charging power Φ(e,a)
of candidate EVs and their connection time Ycon

(a,e) considering their preferences.

1. Each EV Aggregator Agent a from the set of A agents receive P(a,∆t) Power from DNO to
distribute it among EVs of its locality.

2. EV Aggregator Agent a then sort EVs based on their preferences i.e., early charging and/or
low charging cost.

3. EV aggregator agents execute GA to determine the best EVs among EVs available in queue
and decide their connection time as follows.

i. Initialize GA parameters: [Max. Iteration, No. Xoms, probability of crossover,
probability of mutation, it = current iteration, pop(it) = current population].

ii. No. Xoms(it) = Randomize the initial generation of chromosome: [charging event
of randomly selected EVs].

iii. While it < Max. Iteration do
iv. randc, randm1, randm2 = random no. ranges from 0 and 1.
v. chrm1, chrm2 = select 2 chromosomes from pop (it)
vi. eliminate chrm1, chrm2 from pop (it)
vii. if randc < probability of crossover, then
viii. chrm3, chrm4 = crossover chrm1 & chrm2 [c2 offspring are generated]
ix. else
x. chrm3, chrm4 = chrm1, chrm2
xi. end if
xii. if randm1 < probability of mutation, then
xiii. mutate chrm3
xiv. end if
xv. if randm2 < probability of mutation then
xvi. mutate chrm4
xvi. end if
xvii. choose 2 best chromosomes from chrm1, chrm2, chrm3, chrm4 & add them to pop

(it + 1)
xix. it = it+1

end while

5. Test System and Simulation Setup

This section describes the test system used to evaluate the performance of the proposed
strategy, together with details on the EV fleet.

5.1. Test System

To verify the performance of the proposed strategy, an IEEE 33-node, medium-voltage
network, connected with low-voltage residential and commercial feeders has been consid-
ered, as shown in Figure 4.

The test system supplies residential and commercial customers. Among 32 laterals,
10 are dedicated to commercial customers, and the rest serve residential customers. The line
and ad data are obtained from [11]. The daily load profiles for both types of customers are
shown in Figure 5. According to the load profiles, the maximum demands for residential
and commercial loads are 1.1197 p.u. and 1.122 p.u. which occur at 05:00 PM and 03:00 PM,
respectively. The residential peak demand occurs in the evening when people return to their
homes and switch on appliances such as air conditioners, lights, TVs and other household
requirements [22]. The commercial peak occurs at a time when most commercial buildings
use electricity at the same time, often around 03:00 PM [23].
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The EV charging activities are assumed at all the 22 residential laterals and 5 commer-
cial laterals. The EV charging aggregators regulate the charging activities in these laterals.
Each aggregator is assigned to a lateral and is responsible for achieving the charging
satisfaction of the EVs customers of its vicinity.

5.2. EV Fleet Specifications

In this study, we have considered 992 EVs with 100% penetration and 496 EVs at 50%
penetration performing charging activities in 22 residential and 5 commercial charging
platforms. Each charging platform employs level-2 charging standards and the EV charging
aggregator governs it. The arrival SoCs are randomly distributed above 20% to maintain
an 80% depth of discharge. The specifications, such as EV battery capacity, charger rating,
EV penetration and residential and commercial charging events, are given in Table 2.



Sensors 2023, 23, 2925 14 of 30

Table 2. EVs Fleet Specifications.

Battery
Capacity
[13,25,26]

Charger Rating
[13]

Number of EVs Residential
Charging Fleet

[27]

Workplace
Charging Fleet

[27]

Common
Charging Fleet

[27]Penetration I Penetration II

10.5 kWh 3.3 kW 176 352

53% 14% 33%19.2 kWh 6.6 kW 164 328

20.7 kWh 7.2 kW 156 312

5.3. EVs Mobility Behaviour

The charging behavior is a random phenomenon and it depends on the travel pattern
of EV customers. It is very important for the EV charging aggregator to know the mobility
pattern of every individual EV so that the charging demands of EV activities can be
managed effectively. To this end, the survey results of [27] are used to know about the
charging behavior of EVs. The study revealed that more than 50% of EV customers preferred
home charging when they returned to their homes in the evening after completing their
daily business activities. The second-largest group of EV users are those who use both home
and workplace charging, and the workplace charging platform is the choice of only a few
percent of EV users. Among the three groups of EVs, 53% of EVs are for home charging, 14%
are for workplace charging and the remaining 33% of EVs use both home and workplace
charging platforms, as given in Table 2. Based on the findings of the study [27], we have
considered the random arrival of EVs for the three groups of EVs as shown in Figure 6.
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5.4. Electricity Pricing Schemes

To realize the economic benefits of coordinated charging, two dynamic pricing schemes,
i.e., (i) ToU pricing and (ii) real-time pricing (RTP), are investigated. ToU prices usually
consist of three ToU blocks: off-peak, mid-peak and on-peak blocks, which apply to a
specific time of day. Off-peak rates are used when the energy demand is low, whereas
mid-peak occurs when the energy demand is moderate. For the maximum energy demand,
on-peak rates are applied. ToU pricing can be applied to both residential as well as com-
mercial consumers. The price variations offer consumers the opportunity to adjust their
load demand according to their choice. Unlike ToU, RTP is updated mostly every 30 min
and offers greater flexibility to consumers to adjust their electricity consumption. RTP is
based on real-time electricity generation costs. As peak power plants are more expensive to
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operate than baseload power plants, electricity rates during peak hours are higher than
shoulder and off-peak hours under real-time pricing. In this research work, RTP is assumed
as an arbitrary variable. The purpose is to select the most suitable time to start the EV
charging activity so that the charging cost is minimized. The ToU [28] and RTP [29] are
shown in Figure 7 in units of USD/kWh.
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6. Results and Discussion

In this section, multiple test scenarios are presented and discussed in detail. The total
simulation time is 24 h, and the length of each time step is 30 min. The simulations are
performed using MATLAB (R2015a) with an Intel (R) Core i5-5200, a CPU @ 3.40 GHz and
4.0 GB RAM computer specifications. The simulation cases considered in this study to
verify the performance of the proposed scheme method are illustrated in Table 3.

Table 3. Simulation cases.

Case No. Description
Tariff Scheme Waiting Time

Minimization
Charging Cost
MinimizationToU RTP

A Uncoordinated EV Charging
√ √ √ √

B Coordinated EV charging with ToU and RTP tariff for
waiting time minimization

√ √ √
O

C Coordinated EV Charging with ToU and RTP tariff for
charging cost minimization

√ √
O

√

D Coordinated EV Charging with ToU and RTP tariff for
both waiting time and charging cost minimization

√ √ √ √

O = No,
√

= Yes.
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6.1. Case: A: Uncoordinated EV Charging

Case A is considered as a base case where EV charging activities are not regulated by
any control scheme. As soon as the EVs arrive at the charging points, they start charging
regardless of the network status and user preferences. The grid performance in terms
of power losses, voltage deviations and total power consumption during uncoordinated
charging is shown in Figure 8 and summarized in Table 4. Referring to Figure 8a, it is
observed that the random charging activities, performed either at homes or at workplaces,
increased the network power losses. During the uncoordinated charging activities, the
minimum voltage recorded at feeder 18 is 0.8931 p.u. with EV penetration level-I, and it is
further reduced to 0.8862 p.u. with penetrating level-II as shown in Figure 8b. Moreover,
the total network power consumption is increased for both penetration levels using either
platform as shown in Figure 8c. It is recognized that the impact on the network performance
is more dominant with EV penetration level-II using the workplace as the charging platform.
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Table 4. Impact of EV charging on the network performance for all four cases.

Performance
Parameters

EV Penetration
Levels

Cases
A B C D

Total Power Loss
(kW)

Level-I 6562.9858 6266.4944 6249.5636 6191.5129

Level-II 7150.0197 6591.8251 6509.6295 6495.0645

Power Loss Index
PLI (%)

Level-I 7.6933 3.3259 3.0640 2.1551

Level-II 15.2719 8.0971 6.9367 6.7280

Min. Voltage (p.u)
Level-I 0.8931 0.9024 0.9320 0.9028

Level-II 0.8862 0.9010 0.9301 0.9023

Voltage Deviation Index
VDI (%)

Level-I 7.9199 7.5421 7.5430 7.5633

Level-II 8.6309 7.9238 7.8584 7.8787

Besides this, the economic impact of random EVs charging is shown in Figure 9.
The total charging costs with the RTP scheme are USD 1340.0947 and USD 2680.1894 for
penetration levels-I and II, respectively. The ToU tariff scheme further increased this cost to
USD 1482.0960 and USD 2964.1920 for penetration levels-I and II, respectively. The impact
of EV charging on customer satisfaction is summarized in Table 5.
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Table 5. Impact of EV charging on customer charging satisfaction for all four cases.

Performance
Parameters

EV Penetration
Levels

Cases

A B C D

Total Charging Cost
(USD)

ToU Level-I 1482.09 1097.67 618.588 782.22

RTP Level-I 1340.09 1028.46 770.0326 845.86

ToU Level-II 2964.19 2303.00 1388.34 1685.5

RTP Level-II 2680.18 1974.67 1561.5171 1705.60

Charging Cost Index
CCI (%)

ToU Level-I 30.88 22.86 12.88 16.29

RTP Level-I 27.92 21.42 16.04 17.62

ToU Level-II 61.75 47.97 28.92 35.11

RTP Level-II 55.84 41.13 32.53 35.53

Average Waiting Time (Hr.)
Level-I 0 1 2.5 1.5

Level-II 0 1.5 3 2

Waiting Time Index
WTI (%)

Level-I 0 3 7.55 3.55

Level-II 0 3.75 12 4.25

6.2. Case: B: Coordinated EV Charging with ToU and RTP Tariff for Waiting Time Minimization

For case B, the coordinated charging operation of EVs with waiting time minimization
was carried out as one of the objectives of the second stage. In this case, EV customers
do not care about the cost; they want to have the required SoC without undue delay. The
technical impacts of this case are illustrated in Figure 10 and summarized in Table 4. It
has been found that the network performance is enhanced significantly by reducing the
network power losses and increasing the voltage profile of the system for each penetration
level. The network power losses are 6266.4944 kW for penetration level-I and 6591.8251 kW
for penetration level-II. These losses are reduced by 4.5% and 7.8%, respectively, compared
to case A. Similarly, the voltage profile of the system is improved from 0.8931 p.u. to
0.9024 p.u. for penetration level-I and 0.8862 p.u. to 0.9010 p.u. for penetration level-II,
respectively, as compared to case A.
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In addition to network performance, the impact of coordinated charging on customer
satisfaction in terms of early charging and cost is shown in Figure 11. Referring to Figure 11a,
the optimization algorithm scheduled the EV’s charging requests so that the connection
time closely matches with arrival time, thereby minimizing the waiting time of the EVs
participating in the charging process. The average waiting time is recorded as 1.0 and 1.5 h
for penetration levels I and II, respectively. This waiting time is higher as compared to case
A because in case A, there is no control over the charging activities as soon as the EVs arrive
at the charging point; their charging process starts with the violation of network constraints.
However, in this case, the EV aggregator agents accommodate the charging demand so
that their delay time is minimized without violating the network constraints. Additionally,
compared to case A, the charging cost, although not considered as the objective, is reduced
to USD 1097.67 and USD 2303 with ToU pricing for penetration levels I and II, respectively,
and it is further decreased to USD 1028.46 and USD 1974.67 with the RTP scheme for each
penetration level, respectively, as shown in Figure 11b and summarized in Table 5.
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6.3. Case: C: Coordinated EV Charging with ToU tariff and RTP for Charging Cost Minimization

Besides considering all two objectives of stage-1, this case only deals with charging
cost minimization as the objective for stage-2. The technical results for case C are given
in Table 4 and depicted in Figure 12. In case C, the power losses are 6249.5636 kW and
6509.6295 kW for penetration levels I and II, respectively. The recorded losses are lower for
each penetration level compared to both cases A and B. The voltage quality is improved
in this case as the voltage deviation is less as compared to previous cases, summarized in
Table 4.
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From a charging satisfaction perspective, EV customers are economically highly sat-
isfied as their charging demand for all penetration levels is managed in time slots when
electricity prices are low. For example, the charging cost index with ToU pricing is reduced
to USD 618.588 and USD 1388.34 for penetration levels I and II, respectively, as compared
to cases A and B, as shown in Figure 13a and Table 5. However, to achieve the minimum
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charging cost, the EV customers must wait for long time intervals as shown in Figure 13b.
The waiting time indices for penetration levels I and II are increased to 7.55% for penetration
level-I and 12% for penetration level-II, as summarized in Table 5.
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6.4. Case: D: Coordinated EV Charging with ToU and RTP Tariff for Both Waiting Time and
Charging Cost Minimization

In this case, all the objectives of stages 1 and 2 are considered. The weighting factor
among the objectives is uniformly distributed so that a fair analysis can be performed.
The technical impacts of this case are presented in Figure 14 and summarized in Table 4.
The power loss for each penetration level is the least compared to all the test cases. For
example, the power loss for penetration levels I and II are 6191.5129 kW and 6495.0645 kW,
respectively; these losses are the least compared to all stated test cases. Moreover, this case
avoids the overloading of the network assets and maintains the voltages at each bus within
the allowable limit.
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In this case, EV customers’ priorities are explicitly determined based on their arrival
and departure information. For example, a customer, on arrival at the charging point,
specifies a long departure time; this indicates that the customer is more concerned about
the cost rather than early charging. A delay in the charging process for such an EV customer
gives more satisfaction to them. On the other hand, EV customers with short departure
times need early charging at all costs; the satisfaction of these customers is with earlier
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charging rather than the cost. Keeping in view the explicitly determined priorities of EV
customers, this case gives promising results. The charging cost of each penetration level
with both ToU and RTP schemes is shown in Figure 15a. The charging cost for case D is
lower compared to cases A and B, as summarized in Table 5. However, it is high compared
to case C because in case C, all the charging activities are scheduled with a delay so that the
minimum charging cost is obtained. However, this does not represent the practical case
where few EVs want early charging and others care about cost. The comparatively high
charging cost is due to scheduling the charging load of such EVs at the earliest availability
of charging facility. For such EV customers, charging satisfaction lies in early charging
instead of the charging cost and it is achieved by scheduling them at the earliest as shown
in Figure 15b. For those EV customers who are more concerned about the charging cost,
their charging requests are scheduled later so that their charging satisfaction in terms of
cost is achieved.
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To highlight the net effect of the various adopted strategies, ranging from case A to D,
a comparison in terms of the overall charging satisfaction index, which is the combination
of minimum charging cost and waiting time indices, is presented in Table 6 and illustrated
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in Figure 16. It can be seen that case D, which considers both the charging cost and the
waiting time as the customers’ satisfaction indices, leads to all the other stated cases. Case
D gives the highest satisfaction to the customers in terms of cost as well as early charging
based on their needs.

Table 6. Overall charging satisfaction index for each case.

Case
No.

EV Penetration
Levels

Charging Cost Index
CCI(%) Waiting Time Index

WTI(%)

Overall Charging Satisfaction Index
ϑ(%) = 100% − [CCI(%) + WTI(%)]

ToU RTP ToU RTP

A
Level-I 30.88 27.92 0 69.12 72.08

Level-II 61.75 55.84 0 38.25 44.16

B
Level-I 22.86 21.42 3 74.14 75.58

Level-II 47.97 41.13 3.75 48.28 55.12

C
Level-I 12.88 16.04 7.55 79.57 76.41

Level-II 28.92 32.53 12 59.08 55.47

D
Level-I 16.29 17.62 3.55 80.16 78.83

Level-II 35.11 35.53 4.25 60.64 60.22
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7. Comparison with the Reported Work

The comparison of the proposed study with the literature in terms of characteristics
is presented in Table 7. The proposed study encompassed the charging activities at both
platforms, i.e., the home and the workplace, ensured better network performance and
satisfied EV customers’ charging objectives in terms of cost and early charging without
undue delay. In addition, the management of charging activities by EV charging aggregator
agents reduces the search space, as each aggregator agent is responsible for monitoring the
charging process at its location and does not have any concerns about neighboring EVs,
resulting in better computing performance.
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Table 7. Comparison of proposed work with the reported work.

Ref. Objectives Techniques Applied
Different Charging

Platforms
Customer

Satisfaction Multi-Agent-Based Control of
Charging Activities

Home Workplace Cost Early Charging

[11] Power loss minimization BPSO
√

O O O O

[12] Power loss minimization BEP
√

O O O O

[15] Power loss minimization, charging
cost minimization BPSO and AHP

√
O

√
O O

[13] Cost and system stress minimization BPSO and BGWO
√

O
√

O O

[14] Load variance minimization WFA
√

O O O
√

[16] Peak shaving and valley filling Heuristic approach
√

O O O
√

Proposed
work

Minimization of power loss, voltage deviation,
charging cost and waiting time PSO and GA

√ √ √ √ √

O = No,
√

= Yes.
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8. Conclusions

In this paper, we have presented a two-stage framework to optimize the performance
of the electric grid and maximize the charging satisfaction of EV customers. In the first
stage, the DNO receives charging requests from multi-EV aggregator agents and allocates
suitable amounts of power to participating agents by minimizing network power losses
and voltage deviations. Once power is allocated to EV aggregator agents, the agents
then distribute the allocated power among EVs operating in their locality to minimize
charging costs and waiting times based on customer requirements. The proposed method
is implemented on the IEEE-33 medium voltage system connected with a low-voltage
network. Four test cases are presented; in Case-A, random or uncontrolled charging is
executed where the highest network power losses and voltage deviation are recorded.
Moreover, this case also dissatisfies the customers regarding the minimum charging cost.
In Case-B, the coordinated EV charging is implemented by considering all the objectives of
stage-1 with only waiting time minimization as the objective of stage-2. In this case, the
waiting time is reduced; however, EV customers have to pay more to receive early charging.
In Case-C, charging cost minimization is considered as the only objective of stage-2, besides
considering all the objectives of stage-1. In this case, the customers care about the cost,
and they are not in a hurry about charging their vehicles. The results show that customers
are able to achieve minimum charging costs, however with delayed charging. Finally, in
Case-D all the objectives of stages 1 and 2 are considered. The simulation results verify that
the proposed method outperforms in terms of network performance improvement and
achieving the overall charging satisfaction of the EV customers. Future work will focus on
the V2G capability of EVs in providing ancillary services to the electricity grid along with
the integration of renewable energy sources such as photovoltaics and wind to minimize
the dependency on the electric grid.
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Abbreviations

Nomenclature
EVs Electric Vehicles
PSO Particle Swarm Optimization
DNO Distribution Network Operator
GA Genetic Algorithm
ToU Time of Use
RTP Real Time Pricing
SoC State of Charge
AECM Aggregator based EV charging Management
PLI Power Loss Index
VDI Voltage Deviation Index
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CCI Charging Cost Index
WTI Waiting Time Index
BPSO Binary Particle Swarm Optimization
BEP Binary Evolutionary Programming
AHP Analytic Hierarchy Process
BGWO Binary Grey Wolf Optimization
WFA Water Flow Algorithm
Math Symbols
PLwcp

∆t Power loss with charging power allocation
PLw/cp

∆t Power loss without charging power allocation
∆t Simulation interval (30 min)
T Total simulation time (24 h)
I(l,∆t) Current (A) through l branch
R(l,∆t) Resistance (ohm) of l branch
L Total number of branches
Vre f Reference voltage (p.u)
Vmin

∆t Minimum voltage (p.u) recorded in time step ∆t
Vmin

b Lower limit of voltage (p.u) at bus b
Vmax

b Upper limit of voltage (p.u) at bus b
V(b,∆t) Voltage (p.u) recorded at anu bus b in time step ∆t
B Total number of buses
P(a,∆t) Power allocation (kW) to the candidate aggregator a in time step ∆t
Pmin
(a,∆t) Minimum power allocation (kW) to candidate aggregator a in time step ∆t

Pmax
(a,∆t) Maximum power allocation (kW) to candidate aggregator a in time step ∆t

A Total number of aggregator agents
RD(s,∆t) Instantaneous load demand (kW) at residential feeder s in time step ∆t
RDmax Maximum residential load demand (kW)
CD(c,∆t) Instantaneous load demand (kW) at commercial feeder c in time step ∆t
CDmax Maximum commercial load demand (kW)
S Total number of residential feeders
C Total number of commercial feeders
GDmax Maximum load demand at the grid station (kW)
Φ(e,a,∆t) Charging power (kW) of eth EV operation under agent a in a time step ∆t
ρ∆t Charging cost in a time step ∆t (USD)
γ Incentive for CO2 emission reduction
λ Total time slots
Nev Set of EVs
Ωs Time interval when EV charging starts
Ωe Time interval when EV charging ends
Yari
(a,e) Arrival time of eth EV belongs to ath aggregator agent

Ycon
(a,e) Connection time of eth EV belongs to ath aggregator agent

Ysty
(a,e) Stay time of eth EV belongs to ath aggregator agent

Ydep
(a,e) Departure time of eth EV belongs to ath aggregator agent

Yreq_soc
(a,e) Time required to obtain requested SoC of eth EV belongs to ath aggregator agent

ψ(e,a) Battery Capacity (kWh) of eth EV belongs to ath aggregator agent
SoCreq

(e,a) Requested state of charge of eth EV belongs to ath aggregator agent

SoCari
(e,a) Arrival state of charge of eth EV belongs to ath aggregator agent

η(e,a) Efficiency of eth EV’s charger belongs to ath aggregator agent
Φ(e,a) Charger rating (kW) of eth EV belongs to ath aggregator agent
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