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Abstract: Epoxy resins are important thermosetting polymers. They are widely used in 32 

many applications i.e., adhesives, plastics, coatings, and sealers. Epoxy molding compounds 33 

have attained dominance among common materials due to their excellent mechanical 34 

properties. Here, the sol-gel simple method was applied to distinguish the impact on the 35 

colloidal time. The properties were obtained with silica-based fillers to enable their 36 

mechanical and thermal improvement. The work which we have done here on epoxy-based 37 

nanocomposites was successfully modified. The purpose of this research was to look into the 38 

effects of cellulose nanocrystals (CNCs) on various properties and applications. CNCs have 39 

recently attracted a lot of interest in a variety of industries due to their high aspect ratio, and 40 

low density which makes them perfect candidates. Adding different amounts of silica-based 41 

nanocomposites to the epoxy system. Analyzed with different techniques such as Fourier-42 

transformed infrared spectroscope (FTIR) and thermogravimetric analysis (TGA), scanning 43 

electronic microscopic (SEM) to investigate the morphological properties of modified 44 

composites. The various %-age of silica composite was prepared in the epoxy system. The 20 45 

% of silica was shown greater enhancement and improvement. They show a better result than 46 

D-400 epoxy. Increasing the silica, the transparency of the films decreased, because 47 

clustering appears. This shows that the broad use of CNCs in environmental engineering 48 

applications is possible, particularly for surface modification, which was evaluated for 49 

qualities such as absorption and chemical resistant behavior. 50 

Keywords: Bisphenol epoxy; D-400 epoxy; thermal properties; silica; polymer. 51 

 52 
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1. Introduction 57 

The most advanced technology, such as autos and electronics, are unable to match the unique 58 

qualities of the materials. Metals, ceramics, polymers, and alloys are examples (Mubashir et 59 

al., 2021). As a result of the enhancement of a number of features. It is necessary to create 60 

two composite phases (Mubashir et al., 2018). The matrix and the reinforcement phase (Allie 61 

et al., 2018; Aziz et al., 2020a; Jo et al., 2018). For the manufacturing of reinforcement 62 

polymers, many types of organic or inorganic fillers are commonly used (Ali et al., 2020). By 63 

this, the mechanical, thermal, electrical, and adhesive qualities have been enhanced (Ahmad 64 

and Al-Sagheer, 2014; Aziz et al., 2019c; Park and Yun, 2018). In the epoxy system, 65 

nanoparticles in a very small proportion are typically used for enhancement. Such 66 

modification methods have an impact on inferior reduction processes including curing, heat 67 

conduction, and mechanical supplies (Aziz et al., 2020c; Reig et al., 2018; Ullah et al., 68 

2021a). Several factors influence the characteristics of the micro polymer (Ali et al., 2021a). 69 

Each component has fundamental qualities, such as shape, dimension, and the nature of its 70 

interfaces (Aziz et al., 2019a; Messersmith and Giannelis, 1994; Salahuddin, 2004). Only a 71 

modest amount of research on inorganic particles has been done in recent decades. The 72 

ability to manufacture composites containing nanofillers, i.e., nanocomposites or 73 

nanoparticles is the most significant (Aziz et al., 2020d; Zheng et al., 2021a). They're one of 74 

the most hotly debated nano-dielectric systems right now. The fillers are the reinforcing 75 

phases (Ali et al., 2021e; Aziz et al., 2019b; Tseng et al., 1999). Polymer-matrix composites 76 

are employed in a considerable amount due to their ease of processing (Aziz et al., 2020b; Li 77 

et al., 2018; Zhang et al., 2016). They are widely used in a variety of industries, including 78 

electrical, automotive (Chuah et al., 2022a; Chuah et al., 2022b), and aerospace (Ahmad and 79 

Guria, 2022). Polymer nanocomposites have received greater attention in recent years (Karim 80 

et al., 2022). It serves as a replacement for predictable polymer composites (Aziz et al., 81 
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2021c; Jamil et al., 2021; Li et al., 2016). The number of nano-size molecules in a polymer 82 

composition can significantly improve its mechanical properties (Abbasi et al., 2023; Arshad 83 

et al., 2023; Munir et al., 2023). This is mostly due to the nanoparticle’s exclusive holdings, 84 

which result in effective development properties (Kim et al., 2013; Longmire et al., 2008; 85 

Ullah et al., 2021b). Polymer nanocomposites are materials in which at least one dimension 86 

of the matrix is strengthened by particles (Aziz et al., 2021a; Aziz et al., 2021d; Chen et al., 87 

2019a). As the reinforced portion, conservative polymer composites are used in the 88 

micrometer range (Al Sheheri et al., 2019; Ali et al., 2021d; Chen et al., 2019b). The bulk 89 

polymer has a close relationship with the minor particle filling proportion and the composite 90 

quality. As a result, the developed filler filling ratio is often required to achieve significant 91 

improvements (Alston et al., 2019; Aziz et al., 2021b; Hassanzadeh-Aghdam et al., 2019). 92 

Soft rubber particles and silica particles are examples of small collective particles. However, 93 

polymer nanocomposites have received more attention than traditional polymers (Ali et al., 94 

2021c). 95 

This remarkable enhancement began to be associated with the high surface range (Ahmad et 96 

al., 2022). Between nanofillers and the polymer matrix, the volume proportion of 97 

nanoparticles sets a substantial limit (Klonos et al., 2019; Li et al., 2018). Researchers have 98 

also discovered that nanometer-scale fillers have greater active reinforcing characteristics 99 

than micrometer-scale fillers (Ali et al., 2021b; Pan et al., 2019; Terzic et al., 2019). For these 100 

active reinforcing effects, high definite surface area is largely responsible. As a result, the 101 

area of interface with the polymer matrix affects efficient transmission of load from the 102 

outside (Xie et al., 2018; Zotti et al., 2019a; Zotti et al., 2019b). Nanoparticles surface of 103 

various materials makes them more valuable is one of the basic aspects of nanotechnology. 104 

Geometry, filler kind, crystallinity, surface treatment, and degree of dispersion all influence 105 

attributes of nanocomposites. The use of several types of fillers to agglomerate polymeric 106 
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materials improves their characteristics. The polymerization technique was used to modify 107 

the surface of silica for epoxy molding compounds (EMC), such treatment was explored 108 

comprehensively in this work (Ahmad et al., 2023). The current research focuses on epoxy-109 

based nanocomposites. The use of a Fourier transformed infrared spectroscope (FTIR) and 110 

thermogravimetric measurements proved that the particles surfaces had been successfully 111 

modified. To check and confirm the structural qualities of nanoparticles and nanocomposites, 112 

several analysis and techniques were used. 113 

Cellulose nanocrystals are nano-sized components that are biodegradable, biocompatible, and 114 

renewable. It offers mechanical strength and stability. Environmental contamination is 115 

reduced by employing various bioremediation techniques. The mechanism happening 116 

between the contaminant and CNCs adsorbent should be developed in effective new 117 

bioremediation strategies. CNCs structural functionalization helps to modify the 118 

nanocellulose structure based on which it can be utilized for specific functions. Exploring the 119 

mechanisms that contribute to the implementation of CNCs helps further developments and 120 

advancement in biomedical applications. 121 

Nanocellulose has drawn a lot of investigation over the last decade since. It is a plentiful 122 

natural nanomaterial with a lot of potential. They are formed into multiphase order after 123 

dispersing in a polar solvent, resulting in excellent optical and structural characteristics. 124 

Significant progress has been made in addressing multi-dimensional qualities and a wide 125 

range of high-tech applications of cellulose nanocrystals (CNCs) in many domains, according 126 

to the report. In the long run, these qualities have an impact on the composite's overall 127 

performance. Cellulose is a polysaccharide macromolecule with a linear structure. Through 128 

Vander wall contacts and hydrogen bonds, these macromolecules combine and form 129 

microfibers that are aligned and stabilized horizontally, resulting in crystal and non-130 

crystalline areas. As a result, CNCs in all walks of life play a vital role in numerous industrial 131 
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applications to provide a complicated approach in the future, as shown in this preliminary 132 

study. We present native cellulose nanocrystals that have undergone surface modification 133 

through the use of a silane coupling agent as shown in Figure 1. 134 

 135 

2. Experimental work 136 

2.1. Materials and methods  137 

Bisphenol epoxy or E-51 (DGEBA) commercially available epoxy.  138 

Diamine D-400 also commercially available epoxy,  139 

3-aminophenyltetraethylorthosilicate (APTES) were supplied from (Thermo scientific) 140 

employed as a cross-linker were used in this experiment.  141 

The Aladdin Shanghai industry in China provided the highly pure analytical ethanol absolute 142 

(purity 99.7%).  143 

Petri dishes, hot air oven, distilled water,  144 

Silica powder from DINGLONG QUARTZ, China, purity of 99.3%. 145 

During the entire experiment, distilled water was used, as well as other lab equipment. The E-146 

51 epoxy was made by reacting an equimolar quantity with diamine at a 4:2 ratio. In the 147 

round bottom flask, 4g of E-51 epoxy and 2g of diamine were combined for this reason. The 148 

mixture was then swirled for 3 hours at normal temperature. After forming a clear and 149 

transparent solution, it was poured into 2-3 clean containers Petri dishes. These containers 150 

were then carefully placed and baked for 120 minutes at 100°C in a hot air oven. After 151 

curing, another 45 minutes at 60 °C were put in vacuum oven. A flexible thin film with a 152 

consistent of 1cm was cast. FTIR, TGA and Raman techniques were characterized on the 153 

same day. Two different types of composite systems were created, with a different quantity of 154 

silica. Each system was given a distinctive abbreviation. The measured phase separation and 155 

the percentage of silica are given in Table 1. 156 
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2.2. Epoxy-silica composite material and casting thin films 157 

Silica composite films were obtained with varying %-ages using hydrolysis methods. The 158 

separation of silica was found to be 20 percent. As the silica content increased the 159 

transparency of the films reduced. Epoxy-silica composite film was found with consistent 160 

thickness. Epoxy-silica systems were created by pouring them into petri dishes with a flat 161 

surface. 162 

 163 

2.3. Epoxy-silica composite coupled and uncoupled synthesis 164 

In a separate beaker, the uncoupled epoxy-silica composites were carefully weighed. The E-165 

51 epoxies and tetramethylorthosilicate (TMOS) were added. Stirred for an hour at normal 166 

room temperature with an anhydrous state. After obtaining a clear mixture, a stoichiometric 167 

amount of water was added and swirled at room temperature for another 2 hours. The 168 

temperature was increased up to 80 °C and swirled it for another 8 hours. After that, diamines 169 

were added to the epoxy system as a curing agent and mixed for 1 hour. The mixture was 170 

then poured and baked at 100°C for 90 minutes into petri dishes for curing process 171 

completion. The flexible films were obtained with a uniform thickness of 1cm (Ali et al., 172 

2021b; Zheng et al., 2021b). APTES was combined with TMOS to chemically connect the 173 

inorganic phase. On one side, the APTES combined with silica, while on the other, it reacted 174 

with the secondary amino group of the epoxy. As a result, chemical linkages were formed 175 

between two phases in APTES (Ahmed et al., 2019; Ahmed et al., 2021). This improved 176 

system, which is presented in Table 2 was used to make composites with varied percentages 177 

of silica, just like an uncoupled system. E-51 epoxy system, 3-APTES, and epoxy-silica 178 

linked was also carefully weighed. This mixture was added and stirred for one hour 179 

continually to form a solution in glass plates. Tetraethylorthosilicate and distilled water was 180 

added drop by drop and stirred the mixture for the next 5 hours continually at temp; 60 °C to 181 
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maintained the solution. Diamine was added to the mixture at a calculated amount, which was 182 

then agitated for 60 mints until it became homogeneous. To eliminate the contaminants, the 183 

mixture was poured onto Petri plates and baked at 100 degrees Celsius. At 110°C, films were 184 

then cured for 1 hour. A constant thickness of 1cm was used to make the solid films. 185 

Different techniques, including as FTIR, Raman, and TGA, were used to characterize the 186 

films. 187 

 188 

2.4. Characterization of the material 189 

Various analytical approaches were used to characterize epoxy-based silica nanocomposites 190 

systems with varying %-ages. The morphology of polymer nanocomposites with and without 191 

the influence of APTES was investigated. It provides qualitative information regarding 192 

conversion of monomer-to-polymer. Fourier transform infrared spectroscopy (FTIR) Nicolet-193 

5700 spectrophotometer by the KBr-pellet method and scanned from 4000-500 cm-1 with a 194 

resolution superior to 0.5 cm-1. Exciting light of 532 or 633 nm is used to perform. Raman 195 

spectroscopy measurements are performed at room temperature, using exciting radiation of 196 

532 or 633 nm, with an incident power included between 0.04 and 5 mW. Raman spectrum of 197 

polymer nanocomposites is characterized by three typical bands, namely at 1350 cm-1 the D 198 

band, at 1580 cm-1 the G band, and the 2D band at a frequency at 2700 cm-1. The D band is 199 

related to the breathing mode of carbon atoms on the aromatic ring and is not always visible; 200 

the G peak is determined by in-plane optical vibrations of the sp2-bonded carbon atoms, 201 

whereas the 2D peak is approximately double the frequency of the D band as well as arises 202 

from second-order Raman dispersion process. Thermal gravimetric analyses (TGA) TA, 203 

Q200 were used. For stirring Magnetic stirrer 85-1 type Zhi Wei Shanghai was used. (Cence 204 

TG16-WS) Hunan Xiangyi Laboratory Instrumental Development Co. Ltd was used as 205 

centrifuged for centrifugation. The thermal stability of the polymer films in these 206 
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nanocomposites added the creation of an inorganic network according to the findings. As the 207 

amount of silica in the system increased. The deterioration process has slowed as the TMOS 208 

content has increased. 209 

 210 

3. Results and discussion 211 

3.1. FTIR spectra of cured systems 212 

FTIR spectrum nanocomposites system in Figure 2, reveals a variety of peaks, revealing vital 213 

information about SiO2-epoxy. The removal of specific epoxide and amino functional group 214 

confirmed the creation peaks of the epoxy network. O-H (str) at 3741 cm-1 and N-H (str) at 215 

3642 cm-1 functional groups, respectively (Zhang et al., 2021).  216 

At 2968 cm-1 a peak develops while C-H with extending vibration. The C-H stretch at 925 217 

cm-1, confirms the successful formation. In the functional group regions, cured 218 

nanocomposites systems show some comparable peaks. The asymmetric stretching vibration 219 

peak of C-H is located at 2966 cm-1, as can be seen in Figure 3. The band appeared at 1452 220 

cm-1 corresponding to CH2 in epoxide moiety. The band generated at 1775 cm-1 attributed to 221 

the carbonyl group (C=O) in epoxide network. Similarly, the band for Si-O-Si symmetric 222 

vibrations was appeared at 129 cm-1. 223 

 224 

3.2. Raman spectra of nanocomposites system 225 

To examine the chemical groups in the nanocomposites system, Raman spectra were also 226 

study. Several Raman spectra bands conforming the epoxide vibration in the 1230cm-1 to 227 

1280 cm-1 region. At 1250 cm-1. The epoxide groups absorption in the epoxy resin mixture 228 

determines the intensity of this peak. The epoxide ring deformation appears to be weaker at 229 

912 cm-1. At 1118 cm-1, the other Raman peaks show epoxy resin backing vibrations. 230 
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Throughout the curing process, they maintain the same intensity. The oxirane ring was 231 

designated at 3070 cm-1 of C-H stretching peak are shown in Figure 4. 232 

 233 

3.3 Thermal stability of composites and nanocomposites system 234 

The polymer composite shows thermal deterioration with a maximum temperature (Tmax) of 235 

539 °C. There was no evidence of silica content. The thermogravimetric analysis curve 236 

begins at 220 °C and gradually decreases in weight until it reaches 427 °C due to TMOS 237 

moisture condensation reaction absorption. Because open-chain carbon has a lower energy of 238 

degradation than closed-chain carbon (Chuah et al., 2022c; Hii et al., 2009; Cheah et al., 239 

2016; Chuah et al., 2021). Figure 5 shows the curve of weight loss abrupt fall from 500 °C to 240 

519 °C, indicating that open chain carbon combustion begins about 450 °C. For silica-based 241 

epoxy, a two-step degrading mechanism was investigated. The neat epoxy composite 242 

polymer degradation temperature was raised. With the enormous weight loss compared to 243 

silica loadings, the thermal degradation temp; increased at 15% of silica. This research 244 

increased the thermal stability and organization of nanocomposites at high temperatures. All 245 

uncoupled silica-epoxy systems experience a reduction due to the presence of a silica 246 

network. Thermal breakdown of macromolecular chains is further slowed by the reaction of 247 

the thermograms of the uncoupled nanocomposites system as shown in Figure 6. 248 

 249 

3.4 CNCs modification 250 

Round bottom flask of 150 mL with 100 mL distilled water and 5 mL (KH-560) were added. 251 

For adjust the pH to 4, acetic acid was added to the mixture and stirred for 60 mints. 0.3 g of 252 

CNCs were added to the mixture and sonicated for thirty minutes were used for dispersion. 253 

The mixture was then agitated for 150 minutes at room temp; To remove excess silane, it was 254 

washed twice by centrifugation techniques with ethanol and once with distilled water. It was 255 
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then dried for 6 hours at 80°C in an oven. The crystals were identified as MCNCs and 256 

preserved in a glass vial for further use. 257 

One of the simple ways to obtain materials with the appropriate qualities is to purchase 258 

surface changes from various natural and synthetic resources through various treatments 259 

(Dhakal et al., 2012). The effects of monomers on particle size have been studied in the past 260 

(Jiménez Saelices et al., 2019). However, research on the effects of KH-560 treatment on the 261 

physical and chemical properties of CNCs is limited (Javanbakht et al., 2016a; Javanbakht et 262 

al., 2016b). As a result, the effects of KH-560 treatment on physical and chemical 263 

parameters, such as CNC water absorption, were investigated in this study. The CNCs' OH 264 

group was discovered to be responsible for water/moisture absorption. These functional 265 

groups, which consist of a linear polymer lacking water units joined by the glycosides bond, 266 

playing a crucial role in the surface modification of CNCs (Sun et al., 2005; Thakur et al., 267 

2013). Mercerization is the most effective method for removing contaminants from natural 268 

cellulose's surface. The CNCs function group is started utilizing the standard manner 269 

described in the literature in this study. After that, the CNCs are changed with a silane 270 

coupling agent. 271 

 272 

3.5 CNCs with coupling agent 273 

Figure 7 depicts the KH-560 modified with CNCs. OH, groups are present on the surface 274 

prior to modification. The peak of the Si-O-C bond appeared at 1028 cm-1. The existence of 275 

the silane functional groups was clearly demonstrated by the peaks at 1575 cm-1. It signifies 276 

that the surface of CNCs was successfully changed with KH-560 silane (Abraham et al., 277 

2016; Xu et al., 2013). 278 

 279 
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3.6 Thermal properties 280 

The cellulose nanocrystals (native and modified) are a dynamic approach to investigating the 281 

response to temperature change. Native cellulose nanocrystals have a different thermal 282 

behavior than modified cellulose nanocrystals (Li et al., 2011; Ma et al., 2017). Figure 8 283 

demonstrates that thermal deterioration occurs at a higher temp; range in CNCs, owing to its 284 

size, excellent thermal stability, and a considerable drop in molecular weight degradation in 285 

the high amorphous regions. The disintegration of the CNCs follows a usual pattern, with 286 

temperatures ranging from little above 340-460°C, with a minor quantity of ash remaining at 287 

600°C. The insertion of sulfate groups by hydrolysis found considerably lower the activation 288 

energy of CNCs breakdown (Feng et al., 2017; Lu and Hsieh, 2010). Furthermore, the 289 

disintegration of CNCs at low temp; 370°C implies have a quicker heat transmission rate. 290 

The thermal conductivity of the (NCNCs and MCNCs) mixtures is nearly identical, while the 291 

modified mixture's thermal conductivity is lower than that of the native ones (Fortunati et al., 292 

2012; Kumar et al., 2014).  293 

 294 

3.7 Scanning electron microscopy 295 

CNCs particularly unaltered are brittle and easily shattered. The SEM image shows a broken 296 

cross-section surface of the CNCs. The surface layers are apparent in which the orientation of 297 

the nanocrystals is clearly seen exhibit reasonable homogeneous mixture as shown in Figure 298 

9A. Agglomeration happens when more cellulose nanocrystals are added (MCNCs) as 299 

illustrated in Figure 9B. Dispersion of modified cellulose nanocrystals also appear on the 300 

surface. A micro-sized interfacial interaction between MCNCs and epoxy system could be 301 

visible (Espino-Perez et al., 2016; Majoinen et al., 2012; Peng et al., 2017). It indicates that 302 

the rough surface layer on the surface of modified CNCs materials treated with KH-560 303 
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exhibits a significant improvement. The elimination of contaminants is responsible for 304 

morphological alterations. 305 

 306 

3.8 Water absorption study 307 

The water absorption of epoxy materials has been a research topic in many studies (Chow, 308 

2007; Takeshita et al., 2014). The improved performance of epoxy materials can be 309 

considerably influenced by the amount of water absorbed; its structural applications are 310 

limited. Combining natural hydrophilic elements as enhancers, such as CNCs, may 311 

exacerbate moisture absorption and have a negative impact on nanocomposites' 312 

characteristics. Grafting boosted the water uptake capacity, according to reports (Cankaya 313 

and Temuz, 2015; Kumar et al., 2019; Mekonnen et al., 2013). CNCs hydrophobic 314 

transformation has the ability to alleviate this fundamental issue. This research looked at how 315 

adding native and enhanced CNCs to epoxy composites influences water ingress. Within 316 

seven days, the water absorption mode of native and modified CNCs is incorporated into 317 

clean epoxy resin and nanocomposite materials. Different CNCs are processed with the KH-318 

560 in accordance with the approach described in the experimental section as shown in 319 

Figure 10. CNCs surface functionalization using the KH-560 is a simple approach to modify 320 

the surface properties. Because hydrophobic polymers are grafted to CNCs, it is not as 321 

successful as transplant copolymer technique. Hydrolysis, condensation, and bond formation 322 

are all functions of the KH-560 CNCs. One of the most practical ways to produce materials 323 

with the desired qualities is to modify the surface of materials purchased from various natural 324 

and manmade resources using various treatments. The effects of KH-560 treatment on the 325 

physical and chemical properties of CNCs have been examined, as well as the impacts of 326 

KH-560 treatment on the mechanical properties of polymer composites. As a result, here 327 

investigated the impacts of KH-560 treatment on physical and chemical parameters, such as 328 
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CNCs water intake. Moisture absorption was discovered to be caused by hydroxyl groups 329 

contained in the backbone of CNCs. Because such substrates are made up of linear with 330 

repeating glucopyranose units. These functional groups are also important in surface 331 

modification. The function group of CNCs is launched in this work utilizing the standard 332 

approach and the reinforcement method of various concentrations. After that, silane couplers 333 

are used to surface-functionalize the modified CNCs. 334 

On CNCs, the KH-560 coupler was found to be the most efficient. Chemical resistance is 335 

another feature of these functional CNCs. The functionalization of silane improves the 336 

chemical resistance of CNCs. On CNCs that are vulnerable to chemical attacks, this behavior 337 

is likewise attributed to the blockage of the active function group. Water is dependent on the 338 

existence of the polymer matrix's midstream. (Becker et al., 2004; Jahan et al., 2018). By 339 

taking up available space, nanoparticles can usually restrict their acceptance. The kind, 340 

concentration, and function of nanoparticles, on the other hand, are critical in preventing 341 

moisture absorption. The absorption was higher when primary CNCs and modified ones were 342 

used instead of the neat epoxy matrix concentration range. Higher grafted modified CNCs, 343 

considerably enhanced water absorption relative to unmodified CNCs, while unmodified 344 

CNCs' moisture absorption reduced. Nanocomposites have a much lower moisture absorption 345 

rate than native CNCs, and their load is just 1% of that of modified CNCs. It becomes 346 

hydrophobic when the OH function is replaced by hydrophobicity. It appears that the 347 

modified CNCs' hydrophobic qualities are transmitted to epoxy nanocomposites, resulting in 348 

a reduction in water absorption. 349 

 350 

4. Conclusion 351 

Hydrolysis is a critical method. Different silica-based epoxy nanocomposites were used in 352 

this study. The CNCs function group is started utilizing the standard manner described in the 353 
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literature in this study. After that, the CNCs are changed with a silane coupling agent. The 354 

existence of the silane functional groups was clearly demonstrated by the peaks at 1575 cm-1. 355 

The thermal characteristics of the modified nanocomposites have been significantly 356 

improved. The surface layers are apparent in which the orientation of the nanocrystals is 357 

clearly seen exhibit reasonable homogeneous mixture. CNCs, with KH-560 coupler was 358 

found to be the most efficient. The functionalization of silane improves the chemical 359 

resistance of CNCs. The epoxy properties are developed by using an APTES coupling agent 360 

with silica. The interfacial contact was improved by using silica-based nanocomposites. The 361 

20 % of silica was shown greater enhancement and improvement. They show a better result 362 

than D-400 epoxy. The temperature has a significant effect on changed silica over the course 363 

of the experiment. The rate of hydrolysis rises with time, as does the alteration of silica. 364 

 365 
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