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ABSTRACT Multi-vector smart local energy systems are playing an increasingly importantly role in the
fast-track decarbonisation of our global energy services. An emergent contributor to global decarbonisation
is green hydrogen. Green hydrogen can remove or reduce the burden of electrification of heat and transport on
energy networks and provide a sustainable energy resource. In this paper, we explore how to optimally design
a standalone hybrid green power system (HGPS) to supply a specific load demand with on-line charging of
Electric Vehicles (EV). The HGPS includes wind turbine (WT) units, photovoltaic (PV) arrays, electrolyser
and fuel cell (FC). For reliability analysis, it is assumed that WT, PV, DC/AC converter, and EV charger can
also be sources of potential failure. Our methodology utilises a particle swarm optimization, coupled with
a range of energy scenarios as to fully evaluate the varying interdependences and importance of economic
and reliability indices, for the standalone HGPS. Our analysis indicates that EV charging with peak loading
can have significant impact on the HGPS, resulting in significant reductions in the reliability indices of the
HGPS, therefore enhance the operation of HGPS and reduces the overall cost. Our analysis demonstrates
the importance of understanding local demand within a multi-vector optimization framework, as to ensure
viable and resilient energy services.

INDEX TERMS Smart local energy system, green hydrogen, reliability, economics, optimization, electric
vehicle charging.

NOMENCLATURE
ACRONYMS
BES Battery Energy Storage.
DGs Distributed Generation Sources.
EENS Expectation Of Not Served Energy.
ELF Equivalent Loss Factor.
ESS Energy Storage System.
EV Electric Vehicle.
FC Fuel Cell.

The associate editor coordinating the review of this manuscript and

approving it for publication was Frederico Guimarães .

GA Genetic Algorithm.
HGPS Hybrid Green Power System.
HST Hydrogen Storage Tank.
LOE Loss of Energy.
LOEE Loss Of Energy Expectation.
LOLE Loss Of Load Expectation.
LPSP Loss Of Power Supply Probability.
PSO Particle Swarm Optimization.
PV Solar Photovoltaic.
RES Renewable Energy Sources.
SLES Smart Local Energy Systems.
V2G Vehicle-to-grid.
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V2H Vehicle-to-home.
V2V Vehicle-to-vehicle.
WT Wind Turbine.
VARIABLES
AND PARAMETERS
A Coefficient for wind speed.
Ainv Probability of being available for

inverter.
APV Probability of being available for

PVarray.
AWT Probability of being available

for WT.
Achr Probability of being available for

EV charger.
BZbrand Battery size of each brand.
C Cost function.
Chrreq Charging required for each EV.
Closs Average cost of loss due to unmet

load ($/kWh).
Cmax Maximum value of cost function.
Cmin Minimum value of cost function.
CCi Initial investment cost equipment

i ($/unit).
Ctotal Total cost of HGPS ($).
D Vector described by P-R.
D (t) Load demand for tth (kW).
EHST (t) Energy stored in the HST at time

step t (kW).
ELFmax Maximum equivalent load

failure.
E[X ] Mathematical expectation.
f Inflation rate.
fHGPS Probability function for PV

and WT.
fsystem Probability function for PV and

WT and inverter.
GH (t) Horizontal element of solar

irradiation (W/m2).
GV (t) Vertical element of solar

irradiation (W/m2).
G(t, θPV ) Incident solar irradiation perpen-

dicular to panel surface at time
step t and Installation
angle (W/m2).

h WT-Height (m).
href Reference height (m).
HHVH2 Higher heating value of

hydrogen (39.7 kWh/kg).
i Index of equipment.
Inchr Initial charge of each EVs.
ir Real interest rate.
irnom Nominal interest rate.
K Factor to convert replacement

cost into a single present cost.
L Useful lifetime.

LOE(t) Loss of energy for tth.
LOL(t) Loss of load for tth.
m Counter.
mHST (t) Mass of hydrogen in HST in time

step t (kg).
MHST Capacity of HST (kW).
MCi O&M cost of equipment i ($/kWh).
mean Function for meaning.
n Counter.
N Number of times that load is lost.
Ni Number of installed equipment

i (kW or kg).
NPV Total number of PV.
Nvar Number of dimensions of problem.
NWT Total number of WT.
nfailPV Number of failures of PV.

nfailWT Number of WT failures.
NPCi Net present cost of equipment

i ($/kWh).
NPCloss Net present cost of unmet

load ($/kWh).
Penalty Penalize the objective function

where the reliability indices are
violated (for each time violation,
Penalty gets bigger with adding to a
coefficient 1010($)).

Pel−HST (t) Output power of electrolyser at time
step t (kW).

PFC−inv(t) FC output power delivered to
inverter (kW).

Pfurl(t) Output power of WT at cut-out wind
speed (kW).

PHGPS−el(t) Input power to electrolyser at time
step t (kW).

PHGPS−inv(t) Injected power to inverter from
renewable resources at time
step t (kW).

PHGPS
(
nfailWT , n

fail
PV

)
Purchased power by HGPS compo-
nents with failure probability.

PHGPS (t) Generated power by HGPS in time
step t (kW).

PHST−FC (t) Power of the HST injected to FC at
time step t (kW).

Pinv−load (t) Injected power to the load at time
step t (kW).

Pload (t) Load demand in time step t (kW).
PPV Output power of PV array (kW).
PPV ,rated Rated power of each PV array

at G = 1000W/m2.
Print Percentage initial charge of each EV.
Ps Probability of state s occurrence.
PWT WT output power (kW).
PWT ,max Maximum output power

of WT (kW).
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PWA Factor to convert operational cost
into a single present cost.

Qs Lost load at state s
occurrence (kWh).

R Vector with the same dimension as P.
r Random number with uniform

distribution.
RCi Replacement cost of equipment

i ($/unit).
round Function for rounding.
S Set of all possible states.
t Time step index.
Ts Duration of loss of load at state s.
vcut in Cut-in wind speed of WT (m/s).
vcut out Cut-out wind speed of WT (m/s).
vrated Rated wind speed (m/s).
vW Wind speed (m/s).
vhW Wind speed at a given installation

height h (m/s).
vrefW Wind speed at reference

height (m/s).
z Constant.
ηel Electrolyser efficiency.
ηFC FC efficiency.
ηHST Efficiency of HST.
ηinv Inverter efficiency.
ηPV ,conv The efficiency of PV’s DC/DC con-

verter and Maximum Power Point
Tracking System (MPPT).

1t Simulation Time step (1 hour).
ψ Constant (0.14-0.25).
θ Add a value working as an angle

to x.
θPV Installation angle of PV array (deg).

I. INTRODUCTION
In the global response to the climate change crisis, access
to affordable renewable energy resources (RES) represents
a key element of both a global environmental response, but
is also a primary requirement of an inclusive energy tran-
sition [1]. The needs of communities and the associated
infrastructure throughout the world is highly variable, under-
standing this local energy demand is vital to future solutions
[2], [3]. Improving the utilisation of locally generated renew-
able energy is vital not only to the decarbonisation of primary
energy services e.g., heating, cooling, light etc., but local
energy systems must also support the new energy demand
of decarbonised transport which is becoming increasingly
coupled to these local energy services. This has created a
catalyst for exponential growth in the deployment of RES
and also presents new challenges to energy networks, both
on grid and hybrid, in terms of managing new uncertainties
in energy demand profiles coupled with network constraints
e.g. voltage violations [4]. Therefore, the optimization of
energy systems and services, represents a complex social,
techno-economic and environmental challenge [5], [6], [7].

With an emphasis on the challenges of communities in
remote locations or with limited/constrained energy infras-
tructure, hybrid green power systems (HGPSs), which com-
monly incorporate renewable energy sources (RESs) such as
wind turbine (WT) and solar photovoltaics (PV), have made
significant progress in electricity production over the past
decade [8]. Such hybrid energy solutions, albeit not neces-
sarily coupled to an existing energy network, still represent
a complex multi-objective optimization if they are to deliver
resilient, reliable and affordable energy services [9]. With the
integration of RESs into the HGPS, significant reductions
can be made in terms of carbon dioxide emission from fossil
fuel consumption. However, intermittent output power from
RESs needs to be addressed as part of their integration into
the HGPS [10]. This is a key concern since RES are unre-
liable as standalone technologies due to the mechanism of
generation not necessarily being coupled to energy demand
requirements.

To overcome this variability in supply, the fluctuating
power from the RES must be integrated with other comple-
mentary distributed generation sources (DGs) such as energy
storage systems (ESS) to improve the system’s reliability.
Commonly, for HGPS, battery energy storage (BES) is used
as the ESS to store the excess generation from the RES [11],
[12], [13]. Subsequently, BES is discharged when the RES is
less than the demand to ensure continuous power supply to
the varying load. Alternatively, a Fuel Cell (FC) was used as
the ESS by authors in [14] and [15] for stand-alone HGPS.
For this HGPS, the excess generation from the RES is used
to power the electrolyser to produce hydrogen which is stored
in the hydrogen storage tanks. The FC can then be used as
a backup source of power when the RES is not available
or sufficient to meet the load demand. Authors in [15] also
compared the economic analysis on various combinations
of stand-alone HGPS alongside ESS such as BES and FC
for a commercial centre load supply. This analysis suggests
that stand-alone HGPS should consists of both PV and WT
alongside the ESS to improve system reliability and reduce
the overall costs of the system. However, HGPSwith ESSwill
result in significantly higher capital expenditure as the ESS
are typically oversized to improve reliability of the HGPS.
Thus, there is a need to identify the optimal combination for
the DGs within a HGPS using sizing optimization.

Many optimization techniques have been documented in
literature to identify the optimal size of HGPS based on
reliability and cost. Loss of power supply probability (LPSP)
is commonly used as a reliability index in sizing of HGPS
optimization because it can calculate how frequent a system
is able to sustain a loss of power supply within a period of
time [16], [17]. Authors in [17], [18], [19], and [20] utilized
LPSP as the reliability index while seeking to minimize the
annualized cost of the system. Optimization was done using
genetic algorithm (GA) [21], [22] and fuzzy logic [23] to
determine the optimal configuration for a stand-alone HGPS.
Simulated annealing optimization strategy was also used
in [24] to size the stand-alone HGPS, where the objective
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function was to minimize the total energy costs. By using the
wind speed, solar irradiation and load demand data, an opti-
mizationwas done in [25], [26], and [27] using particle swarm
optimization (PSO) to obtain the optimal units for the stand-
alone HGPS. Application of various optimization methods to
obtain the optimal size of HGPS can be found in literature.
However, the application of optimization of HGPS for on-
line charging of electric vehicles is found to be less in the
literature.

Electric vehicles (EV) are seen as a promising technology
to tackle the climate change issue and a replacement to the
traditional road transportation technology that are dependent
on the depleting fossil fuel supply [28]. This is because the
source of energy of an EV comes solely from the battery
on board [29]. However, EVs require frequent charging as
its driving range is much shorter compared to traditional
transportation [30]. Hence, efforts are focused on installing
charging infrastructure as to accommodate the growth of EV
worldwide [31]. Although EVs havemany green benefits, it is
seen as a load from the distribution network perspective [32].
If there is a large growth of EVs in a distribution network,
it will lead to an increased load demand when the EV requires
charging. If the charging is conducted simultaneously, it can
affect the overall grid stability and the power quality as well.
Apart from that, grid operators may also be facing with
other power issues such as unfavourable peaks in demand or
reduced reserve margin [33]. Hence, solutions to mitigate the
impact of EV charging on the distribution network are being
developed by researchers.

Authors in [34] proposed a load management scheme by
scheduling and coordinating the EV charging to minimize the
peak loads and improve grid stability. Similarly, EV charging
load scheduling was also implemented in [32] and [35] to
match the excess energy from the RES as an additional form
of ESS. Apart from that, advance concepts such as Vehicle-to-
Grid (V2G), Vehicle-to-Vehicle (V2V) and Vehicle-to-Home
(V2H) are also being developed to allow EV to sell electricity
by discharging the EV battery [36]. In the ideal situation,
the EV would then be able to support the grid as a reserve
generation or load, similar to an ESS, to further improve the
grid stability.

There is already extensive literature that explores the
varying levels of complex techno-economic analysis of DG
and storage technologies. Given the importance of dis-
tributed multi-vector SLES, in terms of their requirement to
meet key performance criteria e.g. reliability, decarbonisation
and affordability, and whilst being inclusive of a range of
multi-vector technologies our research focuses on HPGS-FC.
Such multi-vector energy systems and hydrogen technologies
are typically relevant to constrained network scenarios with
curtailed green (renewable energy) [37], [38]. For example,
Hydrogen is a valid decarbonised energy vector for the ser-
vice needs of transport such as HGVs [39] and heating solu-
tions [40]. Considering future trends there are also potential
risks associated with the cost, availability and sustainability

FIGURE 1. HGPS structure used in this study.

of other storage solutions such as Li-ion batteries, due to
limited global reserves of lithium, cobalt, rare earth elements,
lifecycle, ethical sustainability, etc ( [41], [42]). Hence, our
research focuses on creating a transferable methodology to
address open research questions associated with the future
sustainability of SLES while providing a valuable contribu-
tion to both optimised of SLES and the context of hydrogen
technology inclusion.

On examination of the literature, the contributions of the
paper are as follows:

• EV load patterns using a multi-vector standalone HGPS
has not addressed the interdependent reliability and eco-
nomic requirements of an operating energy system solu-
tion. Hence, the objective of this study is to optimally
design a multi-vector standalone HGPS to supply a fleet
of EVs during a full year with considerations for eco-
nomic and reliability indices.

• The HGPS includes WT units, PV array, electrolyser,
and FC to represent a multi-vector energy system and
actual data used for simulation are annual solar irradia-
tion and wind speed for the northwest region of Iran.

• EV demands were modelled based on various car brands
and with random initial state of charge and random
plug-in and out duration for different days of a week
including weekends to better represent a realistic case.

• For optimization, due to the discontinuity of variables
and non-linearity of the objective function, Particle
Swarm Optimization (PSO) is selected for this study.

The remainder of our paper is structured as follows;
Section II will describe the problem formulation including
HGPS and reliability modelling. Then, the objective problem
solving for the applied PSO are outlined in Section III fol-
lowed by the simulation result and discussions in section IV.

II. FRAMEWORK
‘For the standalone HGPS, the system operates indepen-
dent from the electrical network. As shown in Figure 1, the
HGPS feeds the load via EV chargers and consists of WT
units, PV array, electrolyser, Hydrogen Storage Tank (HST),
FC units, and DC/AC inverter. All variables and symbols are
explained in the nomenclature section.
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The total produced power by the HGPS is the sum of WT
and PV outputs. In each hourly time step, one of the following
conditions exists:

(a) All generated power by HGPS, PHGPS is sent to DC/AC
bus to supply load demand through EV chargers,

PHGPS (t) =
Pload (t)
ηinv × ηchr

(1)

(b) Excess power is delivered to electrolyser to produce
hydrogen, then whenever transferred power to electrolyser
is more than its rated capacity or HST reaches its maximum
capacity, excess power is dissipated bymeans of a dump load,

PHGPS (t) >
Pload (t)
ηinv × ηchr

(2)

(c) Portion of load demand not supplied byWT and PV is met
by FC and electrical network,

PHGPS (t) <
Pload (t)
ηinv × ηchr

(3)

Note that whenever the sum of FC is not adequate to
supply load demand, there is an increase in loss of reliability,
as discussed and analyzed in details later.

A. MODELLING OF HGPS COMPONENTS
1) WIND TURBINE
The power output, PWT in regard to wind speed, vw can be
calculated as:

PWT =



0;
vW ≤ vcuti, vW ≥ vcutout

PWT ,max ×

(
vW − vcutin
vrated − vcutin

)z

;

vcutin ≤ vW ≤ vnuted

PWT ,max +
Pfwrl − PWT ,max

vcutout − vruted
×(vW − vruted ) ;

vruted ≤ vW ≤ vcutout

(4)

In our study, vcutin, vcutout and vrated are 3, 25, and 13 m/s,
respectively. In addition, Pfurl and PWT ,max are considered
5.8 and 8.1 kW, respectively. Parameter z is a constant
(assumed = 3) [10].
Wind speed at a given installation height is modelled by

the exponent law [10].

vhW = vrefW ×

(
h
href

)ψ
(5)

whereψ is the exponent law coefficient which varies between
0.14 and 0.25 depending on the landscape. For this study,
a value of 0.14 is used which represents a relatively flat
surface.

TABLE 1. Costs and specifications of HGPS equipment [44], [45], [46].

2) PV ARRAY
The power from PV array is modelled as [27]

PPV =
G(t, θPV )
1000

× PPV ,rated × ηPV ,conv (6)

G (t, θPV ) = GV (t)× cos (θPV )+ GH (t)× sin (θPV ) (7)

PV systems are typically connected to a MPPT, either
together with their DC-DC converters or inverters, in order
to maximize the output power. Thus, in our study, we have
connected the PV arrays with a MPPT with an efficiency of
95% (ηPV ,conv = 95%). It is important to note that the effects
caused by temperature are not considered in this study.

3) HYDROGEN STORAGE TANK
The energy stored in the HST at each hourly time step (1t)
is [27]

EHST (t) = EHST (t − 1)+ Pel−HST (t)×1t

−PHST−FC (t)×1t × ηHST (8)

From there, the mass of hydrogen in the HST, mHST can be
calculated and is given as [43]

mHST (t) =
EHST (t)
HHVH2

(9)

where HHVH2 is the Higher Heating Value of hydrogen and
is equal of 39.7kWh/kg [43]. Note that in order to store
produced power by electrolyser in the hydrogen tank in form
of hydrogen, a compression of hydrogen is required which
results to energy loss. This value is captured in ηHST .

4) ELECTROLYSER
The relation between output and input power of electrolyser
is [27]

Pel−HST (t) = PHGPS−el(t) × ηel (10)

It is important to note here that the electrolyser efficiency,
ηel is assumed as constant for all operating conditions.

5) FUEL CELL
The FC output power delivered to inverter, PFC−inv is [27]

PFC−imv(t) = PHST−FC (t) × ηFC (11)

The FC efficiency, ηFC is assumed as constant for all
operating conditions as well.
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6) INVERTER
The effect of inverter is modelled by its efficiency as [27]

Pinv−load (t) = (PFC−inv(t) + PHGPS−inv(t))× ηinv (12)

7) EV CHARGER
The effect of EV charger is modelled by its efficiency as

Pchr−load (t) = Pinv−chr (t) × ηchr (13)

B. OBJECTIVE FUNCTIONS
In this study, to address various approaches that may be used
for design analysis of HGPS, four types of objective functions
are formulated as one objective function using weighting
factor technique with equal weighting to treat all objectives
similarly [48]. The expected useful life of equipment is based
on Table 2 and all terms in the objective functions are con-
verted to the net present cost.

The first objective function considers the cost for capital
investment and operation of the HGPS, given by

Min {Ctotal} =

∑
i

NPCi + NPCloss + Penalty (14)

For the HGPS examined, Eq. (14) is formulated to find
the optimum number of WT units and panels in PV array,
installation angle of PV array, and capacity of electrolyser,
FC, DC/AC inverter, HST and number of EV charger units.
In general, the operational costs and capital investments of
equipment used is

NPCi = Ni (CCi + RCiK +MCiPWA) (15)

where K and PWA are factors to convert replacement and
operational costs into a single present cost, respectively,
defined as

K =

Y∑
n=1

1
(1 + ir)L×n (16)

and

PWA =
(1 + ir)n − 1)
ir(1 + ir)n

(17)

where

ir =
(irnom − f )
(1 + f )

(18)

The costs of loss of energy expectation (LOEE) or expected
energy not supplied represents the penalty that must be paid
for energy not supplied to meet load demand by HGPS and it
appears in the term that accounts for losses,

NPCloss = LOEE × Closs × PWA (19)

And the third term of Eq. (14) (Penalty), a large number
greater than 1015 depending the total cost, is considered to
penalize the objective function where the reliability indices
are violated.

The second objective function considers the cost for capital
investment and operation of the HGPS located at a distance
from the site, as follows

Min {Ctotal} =

∑
i

NPCi + NPCloss + Penalty (20)

In Eq. (20), the first term accounts for operational costs
and capital investments of equipment for HGPS, where the
operational cost is equal to maintenance cost with no consid-
eration for fuel cost. The second term is described by Eq. (18).
The third term is the penalty for violation of the reliabil-
ity indices. Note that the significance of penalty terms in
Eqs. (14) and (20) are discussed later, when reliability indices
are introduced.

The optimal design problem of HGPS is accomplished in
three different scenarios, where the above-described objective
functions are utilized on individual basis or in combination.
For totally reliable HGPS (Case 1) with a very high cost for
LOE, there is no concern with regard to reliability indices
and the optimal design problem is solved in a single-objective
form based on Eq. (14) taking into account the fact that the
cost of LOE is high enough so that the optimal design is
in a way to avoid any load loss. For the second scenario,
reliability indices are considered and cost of LOE is not
severely penalized so that the optimal design of HGPS would
be chosen in a way to consider all these elements. For the third
scenario, the optimal design system is examined on two daily
load profiles that are not similar to the original yearly load
profile and are produced again using the algorithm explained
in details for the load profile production later in this study.
The idea is to see if the optimal design system is good enough
to provide a newly generated load with minimum load loss
considering all the reliability indices.

C. RELIABILITY INDICES
The probability is that a device functions properly to partici-
pate in supplying the load demand, under operating condition
during a specific period of time, is discussed in [10]. The var-
ious indices defined in the literature for calculating reliability
level include loss of load expectation (LOLE), LOEE, loss of
power supply probability (LPSP), and equivalent loss factor
(ELF) given in [1] and [18]:

LOLE =

N∑
t=1

E [LOL (t)] (21)

where

E [LOL] =

∑
s∈S

Ts × Ps (22)

LOEE =

N∑
t=1

E [LOE (t)] (23)

where

E [LOE(t)] =

∑
s∈S

Qs × Ps (24)
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LPSP =
LOEE
N∑
t=1

D (t)

(25)

ELF =
1
N

N∑
t=1

Q (t)
D (t)

(26)

It must be noted that ELF incorporates more information
about both the number of outages and the amount of not
supplied load demand [27]. In this study, all above 4 formu-
lates indices represented by Eqs. (21), (23), (25), and (26) are
calculated and presented in terms of an average value for the
year (8760 h). The maximum permissible ELF in the devel-
oped countries is considered as 0.0001 [27], however, for the
standalone HGPS designed in this study, ELF is restricted
to 0.01. Note that probability of encountering each state is
calculated through binomial distribution function [27].

The assessment of reliability is carried out based on the
assumption that failure is possible for WT units, PV array,
DC/AC inverter, and EV charger while other equipment, such
as, HST, electrolyser and FC are assumed 100% reliable.
In this study, an approximate model for calculating the relia-
bility is utilized. In the approximate model, the average pro-
duced power byWT units and PV array is exploited instead of
considering single conditions for outage of WT units and PV
array and, finally, the mathematical expectation of reliability
indices is calculated. It is suggested to consider the output
power of HGPS as its mathematical expectation [27]

E [PHGPS ] = NWT × PWT × AWT + NPV × PPV × APV
(27)

where, PWT and PPV are the output power of wind turbines
and photovoltaic arrays, respectively.

III. CONSTRAINTS
The objective function described by Eq. (14) is optimized
subject to following constraints:

• ELF should not exceed an allowable value [27]

E [ELF] ≤ ELFmax (28)

• Number of installed equipment is not negative

0 ≤ Ni (29)

• Installation angle of PV array is limited

0 ≤ θPV ≤ π
/
2 (30)

• Energy stored in the HST at the end of year is not less
than its value at the beginning.

EHST (0) ≤ EHST (8760) (31)

To guarantee meeting the reliability indices for the HGPS,
the penalty terms in objective function given by Eq. (14)
is assigned large values (in the order of 1015) compared to
the expected objective function value. When the reliability
indices are met, the values for penalty terms are set to zero.

Note that if the penalty terms are not added to the noted
object, it is possible to arrive at solutions that correspond to
lower costs without satisfying reliability indices.

IV. METHODOLOGY
A. OPTIMIZATION METHOD
Particle swarm optimization (PSO) is selected as the opti-
mization method for our study due to the large number of
variables and their discontinuity. PSO is a population-based
metaheuristic optimization algorithm, inspired by the social
behavior of birds and fish in nature, that have the capa-
bility to solve complex mathematical problems existing in
engineering.

In PSO algorithm, firstly it is initialized with a population
of random particles to identify the potential solutions, the
variables set out in Table 4 with respect to the objective func-
tion given by equation (14). For every iteration these particles,
which contain information of the variables and objective
function, will then find their ‘‘best’’ positions (minimum
objective function) and update the group based on the min-
imum values for the objective function and their associated
variables per particle. If this is the group’s ‘‘best’’, its’ value
is updated as well. After its evaluation, it will store the best
values and will repeat the entire process again in search for
the optimal solution until the maximum number of iterations
is met. Figure 2 represents a flowchart for the PSO algorithm.

B. LOAD SETUP
In this study, we want to plan and test a hybrid renewable
system that can feed a number of EV loads during a sample
year. In order to size and plan the hybrid system, we need to
know the load per hour over the year. In this regard, we need
to create a meaningful demand that represents the EVs.

C. ASSUMPTIONS
We consider a leisure site that its charging station is only
open from 16 to 4 every day. We assume that EVs are among
the following brands with their corresponding battery sizes as
shown in Table 2 [33]:
In addition, we assume that all the EVs that arrive to the

site have an initial charging of a number between 20% - 80%
of their battery sizes. The maximum charging power for the
charger is 19.2 kW per hour given in Table 2. Note that the
EV car brand and its initial charge is assigned to each car
completely random for each day of the sample year. We also
assume that a different number of EVs arrive at the site for
different days of a sample week. The numbers of EVs that
arrive on each day of the week are assumed as shown in
Table 4. Note that seasonal effect was not considered in our
EV demand modelling and it is assumed that EV demand
varies per different day of a week including weekends for the
full year. Therefore, we will have a varying load profile per
different day of the year as shown in Figure 3.

Therefore, initial charge (energy storage) of each EV is
calculated from the following equation:

Inchr = BZbrand × Print (32)
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FIGURE 2. PSO algorithm flow chart [32].

where, Inchr, BZbrand and Print are initial charge of each EVs,
battery size of each brand and percentage initial charge of
each EVs, respectively. Thus, the kWh required to charge
each EVs is calculated from the following equation:

Chrreq = BZZbrand − Inchr (33)

where, Chrreq is the charging required for each EVs.
The distribution of hourly number of EV arrivals to the site

is assumed to follow a random number from beta distribution
for a daily range from 16 to 23 of each day. Note that the
pattern of EV arrivals differs daily based on the distribution
for the year.

We assume that each EV stays at the site for either 2 or
5 hours and it assumed that 40% of cars stays at the site
for 2 hours and the rest for 5 hours. This poses a constraint
on the Chrreq for each EVs despite how much kWh charge
is required for a particular EV. If the required charge takes
longer than the time that the EV is staying at the site, then the
EV is charged up to the point that it is staying at the charg-
ing station. The opposite term is also applicable when the
required charge is less than the amount that can be delivered
to the EV considering its time of staying at the site and the
hourly kWh delivered to the EV by the charger. It is assumed

TABLE 2. EV brand and their corresponding battery size.

TABLE 3. Number of EV arrive on each day of the week.

that each EV is unplugged if it is fully charged despite its
duration of staying at the site.

D. RESULTANT LOAD
In order to moderate the randomness of the resultant load,
we produced an average load profile from 100 various yearly
load profiles for this study. The EV yearly demand is shown
in Figure 3. Note that no V2G capability has been considered
for this study.

V. RESULTS
The result section is divided to two sets of results. The first
set of results express the first two scenarios of the paper
related to reliability. We optimised HGPS components for
two different scenarios: first when all the reliability indices
are in place and we have a reasonable value for LOE cost.
In the second scenario, we assumed that all the components
are 100% available and the LOE cost is very high so that no
load will be lost.

For the second set of results, we tested our optimised
HGPS for two randomly generated daily loads for winter and
summer for weekend and weekday, respectively.

A. HGPS OPTIMIZATION
In order to produce the results, it was required to have wind
and solar radiation data as one of the inputs of the study.
For this study, wind speed at the height of 15m and solar
radiations data in the Northwest region of Iran were used as
the inputs.

Figure 4 illustrates the convergence of PSO towards the
optimum point for this problem from iteration 1 to 500 for
two different scenarios 4(a) when the system is fully reliable
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FIGURE 3. Yearly demand.

and LOE cost is very high so that no load is allowed to be
lost and 4(b) when the units reliabilities are considered and
LOE cost is 5.6 US$/kWh. Number of particles in PSO for
this study was 300. The planning horizon for this study is
20 years and the variables that need to be known for each
individual scenario are shown in Table 4 for two different
cases. Note that the outcome of PSO convergence depends on
several factors such as swarm size, 200 in this study, number
of iterations, 500 in this study, and acceleration coefficients
together with the random vectors, control the stochastic influ-
ence of the cognitive and social components on the overall
velocity of a particle. In this study, the optimization focuses
on exploration in the early stages of optimization, while
encouraging convergence to a good optimum near the end of
the optimization process by attracting particles more towards
the neighbourhood best (or global best) positions [49]. Exper-
iments were run on a computer with 11th Gen Intel(R) Core
(TM) i5-1145G7@ 2.60GHz processor using 8MB of RAM,
running Windows version 11.

Table 4 shows optimal combinations of components in
HGPS in this study for our scenarios. NWG, NPV and Nchr
are ‘number of WT, PV and EV charger units, respectively.
Pel(kW), Mtank(kg), PFC(kW) and Pinv(kW) show optimal
capacity for electrolyser, storage tank, fuel cell and DC/AC
inverter, respectively. θPV(degree) is also PV panels tilt angle
in degrees.When all the units are 100% reliable and LOE cost
is very high, then the system configurations will be in such
a way to support the full load at any time given. The peak
demand is 312.8 kW, which Pinv(kW), the size of inverter,
and Nchr, the number of chargers, will be able to support
considering their efficiencies. Themaximum delivered power
to chargers via inverter at peak load is Pinv(kW) × Nchr =

347.6 × 0.9 = 312.8 kW which is equal to the maximum
demand.

Nchr is chosen to be 18 for the second scenario in this study
which does not fully cover the peak demand (312.8 kW),
18 × 19.2 (kW) × ηchr (0.96) × Achr (0.9)= 298.62 kW. ηchr
is the efficiency of each EV charger unit. Therefore, we will
have LOE during peak demand which will be penalized by
LOE cost. It should be noted that the rated power of each
WT unit is 7.5 kW, thus the optimal capacity of installed WT

FIGURE 4. PSO convergence for (a) full availability and (b) not 100%
reliable.

for the second scenario is NWG (6) × Prated,WG (7.5 kW) =

45 kW. This capacity is significantly lower than the capacity
of installed PV due to high cost associated with eachWT unit.

Table 6 provides optimal costs including total cost,
J (MUS$/yr), Investment cost (MUS$) and cost for loss of
energy, ACloss (MUS$/yr), and reliability indices including
ELF, LOEE (MWh/yr), LPSP and LOLE (h/yr). As defined
before, ELF should be lower than 0.01 in this study. There
is almost 307 hours per year that the optimal solution cannot
support EV drivers and 5.6 $/kWh penalty is considered for
this. The corresponding lost energy due to LOLE value is
8.6 MWh/year for LOEE value and the penalty associated
with LOEE is 0.6 MUS$/year, ACloss.
Fig. 5 shows reliability indices (LOLE, LOEE and ELF)

for a year in this study. As it can be seen from the graphs, the
timing of the occurrences for all the indices is the same over
the year.

B. ENERGY SCENARIOS
In order to assess how the optimal HGPS behaves in facing
of a random daily load profile, two different energy scenarios
are considered: In the first energy scenario, load is generated
based on the strategy given in section V for week 5 of the
year from 1st of January and on Saturday. The second energy
scenario demand is generated for week 28 and for Tuesday.

Therefore, the first scenario is for winter and a busy day
and the second scenario is for summer and a lightly loaded
day (middle week). All the reliability factors are considered.
This is true that the inverter is nearly impossible to fail for
a sample day but we wanted to take its reliability factor into
account which otherwise all the reliability indices would have
been within in their ranges for any sample day that was not
desirable.

Figure 6 shows the demands on 6(a) day 1 and 6(b) day 2.
The demand on day 2 is significantly lighter the demand on
day 1, nearly six times larger. The charging happens between
4 pm until 4 am next day.

Figure 7 illustrates the RES units output for the sample
days 7(a) day 1 and 7(b) day 2. As can be seen, despite
having a little bit difference in their magnitude and timing,
the generations are quite similar for PV and WT units.

Figure 8 presents hourly expected amount of stored energy
in the hydrogen tank during the sample 8(a) day 1 and 8(b)
day 2. As can be seen the stored energy had risen in the tank
when we had generations and then was sent to electrolyser to
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TABLE 4. Optimal combination of components.

TABLE 5. Optimal costs and reliability indices.

FIGURE 5. Reliability indices (LOLE, LOEE and ELF) over the sample year.

FIGURE 6. Demand for the sample (a) day 1 and (b) day 2.

produce power when the demand had risen during peak load
for both days. The tank stored the energy in itself to support
the load when required using electrolyser and FC.

Table 6 gives values for LOEE, LPSP and LOLE for days 1
and 2. Clearly the values for the second day is much lower
than the first day as the demand of day 2 is considerably
lighter than the first day and thus no load were nearly lost.
LOLE and LOEE values for day 1 indicates that the demand
was lost for hours 19, 20 and 21 as the demandwas larger than
the size of inverter installed and therefore, a 5.6 US$/kWh

FIGURE 7. RES units output for the sample (a) day 1 and (b) day 2.

FIGURE 8. Hourly expected amount of stored energy in the hydrogen tank
during the sample (a) day 1 and (b) day 2.

TABLE 6. Reliability indices for the sample days 1&2.

LOE cost was applied. Note that these numbers cannot be
absolute zero as we have a very small percentage of chance
for our inverter to fail during a day/year and therefore we will
lose our load no matter what the situation is.

VI. CONCLUSION
In our research, we have evidenced from the state-of-the-art
literature that on-line charging of EVs using a standalone
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HGPS in combination with reliability and economics opti-
mization remains an open challenge. Therefore, our method-
ology has aimed to address this knowledge gap by designing
an optimal multi- vector standalone HGPS to supply a fleet
of EVs during a full year with considerations for economic
and reliability indices. This paper successfully designed a
standalone HGPS, consisting of WT, PV, electrolyser and
FC, to supply a load profile of an EV charging station.
The data used for simulation represents actual annual solar
irradiation and wind speed for the northwest region of Iran.
The HGPS is then optimized using PSO to determine the
optimal combinations of components with consideration to
economics and reliability indices. The optimal combination
of components resulted in a high PV/WT ratio due to high
capital and maintenance cost for each WT unit. As a result
of the optimization, considering unreliable supply from the
renewable energy, the investment cost of the HGPS was
brought down to 6.6 MUS$ with an ELF of 0.004 (ELF
should be less than 0.01) and LPSP of 0.0271. Thus, our
proposedmulti-vector HGPSmodelling offered a reliable and
cost-efficient approach to on-line charging of an EV fleet for
different days and seasons of a full sample year.

To further explore and demonstrate the different levels of
importance for economics and reliability indices, two energy
scenarios were considered for standalone HGPS where the
first scenario is for winter and high demand and the second
scenario is for summer and a lightly loaded day. Despite the
difference in the magnitude and timing, the generations are
quite similar for PV and WT in the two different scenar-
ios. As for the FC, the stored energy had risen in the tank
higher in the first scenario but then depleted faster than the
second scenario as it was required to produce more power to
meet the higher peak load later in the day. We can conclude
from the reliability indices of LOEE, LPSP and LOLE that
the EV charging from the peak loading during the winter
affected the reliability significantly. In comparison with the
EV charging for the lighter loading, the reliability was nearly
zero in the analysis for the second day. Thus, we proposed the
future works on EV charging HGPS design, which takes into
account the uncertainties of wind speed and solar irradiation,
to forecast loads on busy days to ensure loads can then be
scheduled as it can improve the reliability of the system.
To better account for random behaviour of EV drivers, it is
recommended to use different assumptions about the daily
range, the hours that each EV stays at the site and the per-
centage of cars stays at the site for the future studies.
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