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Abstract—In a space-air-ground integrated network (SAGIN),
managing resources for the growing number of highly-dynamic
and heterogeneous radios is a challenging task. Symbiotic com-
munication (SC) is a novel paradigm, which leverages the analogy
of the natural ecosystem in biology to create a radio ecosystem in
wireless networks that achieves cooperative service exchange and
resource sharing, i.e., service/resource trading, among numerous
radios. As a result, the potential of symbiotic communication
can be exploited to enhance resource management in SAGIN.
Despite the fact that different radio resource bottlenecks can
complement each other via symbiotic relationships, unreliable
information sharing among heterogeneous radios and multi-
dimensional resources managing under diverse service requests
impose critical challenges on trusted trading and intelligent
decision-making. In this article, we propose a secure and smart
symbiotic SAGIN (S4) framework by using blockchain for en-
suring trusted trading among heterogeneous radios and machine
learning (ML) for guiding complex service/resource trading.
A case study demonstrates that our proposed S4 framework
provides better service with rational resource management when
compared with existing schemes. Finally, we discuss several
potential research directions for future symbiotic SAGIN.

I. INTRODUCTION

The space-air-ground integrated network (SAGIN) is a
promising architecture that incorporates the benefits of space,
air, and terrestrial infrastructures to achieve the goal of ubiqui-
tous coverage for mobile communication networks [1]. Before
fully achieving the potential of SAGIN, one critical challenge
is to design an efficient resource management scheme that
accommodates the network features of large scale, hetero-
geneity, and high dynamics. Meanwhile, the diversified service
requirements make resource management more demanding.

Catering to the above challenges, symbiotic communica-
tion (SC) [2] is introduced as a potential solution, which
orchestrates different radios to share resources in a cooper-
ative manner, thus achieving an enhanced resource utilization.
Generally, SC borrows the analogy of biological symbio-
sis, where symbiotic relationships are formed among natural
species, thus communication radios could establish symbiotic
relationships via resource sharing and service exchange, i.e.,
service/resource trading [2]. Distinct from the traditional net-
work where communication resources are pre-allocated and
service exchanges among different service operators are not
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permitted, SC views the entire SAGIN as a radio ecosys-
tem, where all symbiotic radios (SRs) achieve coevolution
by service/resource trading [3]. Therefore, different resource
bottlenecks for individual SRs can complement each other by
trading diversified resources and services.

Nevertheless, two crucial technical challenges are high-
lighted in order to achieve the SC in SAGIN, i.e., trusted
trading among various SRs and optimal decision-making of
service/resource trading, as shown in Fig. 1. In view of
the long transmission distance, high network dynamics, and
intricate electromagnetic interference, even in a hypothetical
SAGIN that is not under attack, unreliable information ex-
changes may be extremely prevalent. Additionally, without
an efficient consensus, it is challenging to achieve trusted
trading because SRs in SAGIN could belong to various
network operators. Therefore, a trusted trading solution is
required for an SC-enabled SAGIN. Moreover, even when
a trusted service/resource trading environment is secured,
because heterogeneous SRs have various individual design
objectives in terms of throughput, latency, dependability, etc.,
it is complicated to make mutually beneficial trading decisions
for all SRs. Meanwhile, a symbiotic relationship is typically
built on a variety of resources and services, which adds to the
complexity of the decision-making process.

Fortunately, a promising trend that combines deep reinforce-
ment learning (DRL) and blockchain can intuitively come to
the rescue [4]. Blockchain can be employed as a digital ledger
recording service exchanges in an immutable and traceable
manner, thus establishing a trusted trading environment [5].
By encryption and transaction verification, only valid trading
transactions can be recorded, which ensures the trust of
coevolution among SRs [6]. Moreover, in order to achieve
intelligent decision-making, machine learning (ML) can be
exploited in the blockchain-secured trusted environment to
efficiently guide SRs in optimal decision-making [7]. With
the help of powerful neural networks, ML can process the
multidimensional and multivariate data produced by several
SRs and determine the coevolutionary mechanism by which
various services and resources are traded [8].

Accordingly, in this article, we propose a secure and smart
symbiotic SAGIN (S4) framework to achieve a highly ef-
ficient resource management mechanism, which is the first
work to provide a visionary study in applying symbiotic
communication to SAGIN. In the S4 framework, blockchain
secures the precondition of coevolution, i.e., a trusted trading
environment for heterogeneous SRs, while ML takes charge of
intelligent decision-making for complicated service/resource
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Fig. 1. The challenges and motivations for symbiotic SAGIN.

trading during coevolution. Especially, we discuss several
technical challenges and the associated potential solutions to
better exploit ML and blockchain in S4 framework. Moreover,
we demonstrate a case study to verify the superiorities of
our proposed S4 and discuss future research directions and
challenges.

The article is structured as follows. First, we present an
overview of the S4 network framework. Then, we discuss the
two main technologies in S4, namely blockchain and ML.
Furthermore, we present a case study where S4 is implemented
and provide numerical results accordingly. Finally, we discuss
the future research directions of S4 framework before conclu-
sion.

II. SYMBIOTIC COMMUNICATION IN SAGIN

In this section, we first briefly introduce SC with obligate
and facultative symbiotic relationships. Subsequently, we elab-
orate on the proposed S4 framework empowered by SC.

A. Preliminary: Symbiotic Radio Ecosystem

Borrowing the idea from biology, each SR can be regarded
as a specific biological species forming a radio ecosystem
[3]. While organisms consume resources (like food, light,
and water), SRs as the biotic components of the ecosystem
consume the radio resources (e.g., time, energy, and spec-
trum). Moreover, analogous to species relationships (such as
protection and phoresy) in the biological ecosystem, SRs
can accomplish specific tasks and services (e.g., relaying,
transmitting, computing) and interact with other SRs.

Similary to the biological relationship, symbiosis is the
long-term relationship among different SRs. Mutualism, amen-
salism, and parasitoidism are different forms of symbiotic

relationships. In the SR ecosystem, mutualism is the relation-
ship, in which both SRs benefit from each other. Meanwhile,
amensalism is that when one SR receives benefits while the
other is unaffected. Moreover, when one SR is harmed and the
other receives benefits, it is called parasitoidism. In symbiotic
relationships, different connections can be built between SRs
based on service/resource trading. In this work, we only
discuss mutualism as a win-win relationship to efficiently
manage resources.

Specifically, mutualism symbiosis can be obligate or facul-
tative from a biological perspective. In SC, a facultative rela-
tionship is when multiple SRs cooperatively provide services
for user equipments (UEs) to improve the service qualities
[2]. Meanwhile, it is acceptable for every SR to work as
an independent server, which is analogous to the shark and
remora relationship (Remoras collect more food like the scraps
of prey dropped by the shark and parasites on the shark’s
skin and mouth, while the shark obtains cleaning service.)
For example, in Fig. 2, both SR 1 (BS) and SR 2 (BS) are
capable of independently providing network access services
to UEs, while if one of them is unavailable, another BS can
serve UEs alternatively. In an obligate relationship of SRs, one
SR can provide services to UEs merely under the support of
other SRs [2]. Similar to the mutualism relationship between
figs and fig-wasps (fig-wasps help pollinate figs while these
insects cannot survive and reproduce without the living space,
nursery, and nutrition provided by the figs), SR 3 (SAT) cannot
transmit signals to terrestrial UEs without SR 4 (UAV) relaying
signals as a satellite receiver, as shown in Fig. 2.

B. S4 Framework

With respect to the features of symbiotic communications,
we propose the S4 framework for guiding SRs to trade
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services/resources cooperatively and establishing firm obli-
gate or facultative relationships. In S4, the objective is to
improve resource utilization, as well as the service quality
experienced by UEs via symbiotic coevolution. The conception
of symbiotic coevolution is cooperatively optimizing SRs’
service/resource trading policies in evolutionary cycles to form
stable obligate or facultative relationships. In service/resource
trading as shown in Fig. 2, blockchain is used to establish
a trusted trading environment via verifying transactions and
evaluating the trustworthiness and activeness of SRs. By
deploying ML algorithms, SRs are capable of exchanging
services according to the specific local environments, thus
overcoming the resource bottlenecks of different clusters, as
shown in Fig. 2. With the help of trusted trading and intelligent
decision-making, SRs can establish firm symbiotic relation-
ships with appropriate neighbors. Accordingly, as resources
are more efficiently managed across SRs via coevolution, the
design objective can be accomplished.

We consider multiple terrestrial UEs and various SRs be-
longing to the three segments of SAGIN, i.e., the satellite
(SAT) segment, unnamed aerial vehicle (UAV) segment, and
ground base station (BS) segment. As per the idea of symbiotic
communications, all SRs can trade services/resources with
neighbors and provide network services to UEs within their
coverage. In our S4 framework, three categories of resources
(i.e., spectrum, computing, and energy resources) are consid-
ered. Supposing that two SRs (SR 1 and SR 2) cooperate

with each other to share resources with the exchanges of the
four services, thus forming different symbiotic relationships,
as detailed below.
1) Relaying service: When UEs cannot directly access service

from the connected SR 1, SR 2 utilizes its spectrum
resources to relay the radio signal that is sent from SR
1. This forms an obligate relationship.

2) Transferring service: If SR 1 cannot provide the required
network services to UEs, it transfers the network access
task to SR 2, and the network access point changes from
SR 1 to SR 2. Transferring service can lead to a facultative
relationship.

3) Computing service: The SR 2 supports computing tasks for
SR 1, when SR 1 is struggling with inadequate computa-
tional or energy resources. Computing services can help to
build either obligate or facultative relationships.

4) Power supply service: SR 2 provides energy resources to
ensure the general service of SR 1, which can be achieved
via changing the power source, refueling the power source,
simultaneous wireless power transfer, etc. Based on the
power supply service, an obligate or facultative relationship
can be formed between the two SRs.

III. THE ROLE OF BLOCKCHAIN AND ML IN S4

In this section, we discuss in detail how the two technolo-
gies, namely, blockchain and ML can be exploited in the S4

framework, as shown in Fig. 3.
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A. Trusted Trading Environment Based on Blockchain

In order to accomplish symbiotic coevolution, blockchain is
exploited in the S4 framework to secure a trusted trading and
establish firm obligate or facultative relationships. The main
functions achieved by blockchain are as follows.

Trusted service/resource trading: Since in SAGIN, SRs
might belong to different network operators with different
service providers, it is necessary to establish a trusted envi-
ronment among SRs for service/resource trading. The smart
contract, as a public agreement, directly sends the prices of
services between SRs. Then, the balances of SRs’ accounts
are autonomously updated as per symbiotic service/resource
trading without third-party involvement, which ensures all the
service/resource transactions are traceable, transparent, and
irreversible.

Efficient and reliable transaction verification: In S4, perva-
sive connectivity is accomplished among SRs, which brings
a ubiquitous symbiotic service/resource trading. In addition,
the information sharing in S4 tends to be time-sensitive.
Therefore, high scalability and fast transaction verification
are required in the blockchain used in S4. To meet the
requirements, as a kind of data structure that assembles the
relations of transactions as tree logic, the directed acyclic
graph (DAG)-based blockchain with high transaction through-
put is a promising solution. By applying a gossip algorithm
in the DAG-based blockchain, SRs have the right to record
and broadcast their transactions after verifying and packaging
a certain number of neighbors’ transactions [9]. Because com-
plex hash calculations and global verifications are not essential
for DAG-based blockchain, SRs can mutually secure each
other and verify neighbors’ transactions in a short time [10].
Moreover, in the DAG-based blockchain, all newly created
transactions must acknowledge several existing transactions
via verification and reference [11], as shown in Fig. 3. For

transactions that are built by malicious nodes, the probability
of being ignored by other SRs is increasing. As fake and
fault transactions are not preserved, DAG-based blockchain
can contribute to trusted trading.

Creditable SR selection: A concept of cumulative weight
can be used to measure the trustworthiness and activeness of
different SRs, thus helping SRs find creditable policy-sharing
partners. The cumulative weight of an SR is defined as the sum
of the trustworthiness weights of its all transactions, while
the trustworthiness weights of a transaction are issued by
SRs who agree with it and are proportional to the consumed
computing and energy resources for verification. Therefore, if
an SR maintains a higher cumulative weight, it means this
SR has more verified transactions and its transactions are
trusted by more SRs. Through sharing policies with these
creditable SRs with high cumulative weights, it is efficient
to enhance the obligate and facultative symbiotic relationships
and accomplish symbiotic coevolution.

B. Intelligent Resources Management in Coevolution

ML should be utilized for guiding SRs to cooperatively
make optimal service/resource trading decisions for intelligent
resource management in symbiotic coevolution [12]. However,
applying ML to the S4 framework introduces a number of
challenges due to SAGIN’s large-scale, heterogeneity, and
high-dynamics characteristics, as well as complicated ser-
vice/resource exchanges in SC [13].

Centralized/decentralized learning scheme: One fundamen-
tal issue to discuss is whether to use centralized or decentral-
ized learning schemes to achieve optimal service/resource trad-
ing. In the S4 framework, centralized learning schemes require
collecting all SRs’ observed data to train a global resource
management policy, while in decentralized schemes, each SR
acts as an agent to train and maintain its own policy. Due to the
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large number of SRs in SAGIN, tackling complex states with
a single centralized model is extremely difficult, resulting in a
severe learning performance degradation. Furthermore, some
UAVs might require multi-hop transmissions to get decisions
from the central controller, which may incur the concern
on delay and reliability. Therefore, in the S4 framework, it
is preferable to deploy decentralized learning schemes on
SRs to decide service/resource trading, as demonstrated in
Fig. 3. Even partial SRs do not have enough computing
and energy resources to support the intensive computation of
neural networks, the resource limitations on these SRs can be
effectively addressed via symbiotic service/resource trading.

Huge observation size: To perform model training in the
S4 framework, SRs should observe their environments and
determine the states. Normally, SRs need both its own and
other SRs’ observations to better understand their present state.
To avoid the huge amount of shared data, only crucial infor-
mation such as location and resources allocation should be
shared among the nearby SRs. Moreover, due to geographical
isolation, interactions with SRs in different regions may be
limited, even for the SRs from the same SAGIN segment.
Accordingly, rather than sharing data with all SRs in the
SAGIN, SRs should emphasize observation sharing with their
nearby neighbors.

Large state space: With respect to the massive SRs and
multiple types of resources in S4, designing intelligent ser-
vice/resource trading schemes normally requires a large state
space to precisely describe the SAGIN network environment.
Therefore, exploiting deep Q network (DQN)-based or actor-
critic-based algorithms is attractive.

Large action space: In the S4 framework, the action of an
SR should be service/resource trading decisions that might
include the type of shared resources, the amount for sharing,
and the target SR shared with. Therefore, in this symbiotic
SAGIN scenario, high-dimensional action spaces should be
necessary within policy learning. To address this challenge,
modeling SR policy using a multivariate distribution and
developing multiple separate learning models are identified
as two promising methods. However, for granular resource
allocation, continuous action space might still result in ultra-
large action space issues. Accordingly, DQN-based algorithms,
which are often employed to solve discrete action space
problems, could be ineffective in S4, whereas actor-critic is a
viable alternative.

Reward design: In an intelligent coevolution scheme, re-
wards can be obtained by providing any kind of the four
services discussed in Section II. In local model learning, to
avoid SRs only focusing on their own rewards, two methods
are generally utilized. One is to use the entire system’s global
reward in local model training, which indicates that all SRs use
the same average reward; another method is to design the same
reward calculation function for all SRs that produces distinct
rewards for each SR based on their actions and corresponding
environment. Because an SR’s environment includes only itself
and its neighbors, rather than all SRs, the second method
should be more appropriate in the S4 framework.

Policy contradiction: Contradiction can exist between the
policies of different SRs due to the partial observation. There-

fore, a policy-sharing ML is needed in the S4. According
to the facultative and obligate symbiotic relationships, SRs
are capable of determining which neighbors’ policies might
influence them most. Afterwards, SRs can save and use the
newest policies shared by their related creditable neighbors in
local model training, thus avoiding conflicts of interest.

IV. IMPLEMENTATIONS OF S4

In this section, we present how blockchain and policy-
sharing ML are operated in the S4 framework. We assume all
the SRs are with adopted resources to participate in execut-
ing the blockchain consensus mechanism, cooperative policy
learning and distributed decision-making. Basically, it contains
three steps, which are 1) initialization, 2) service/resource
trading and transaction verification, and 3) policy sharing and
model update, as shown in Fig. 4.

A. Step 1: Initialization

Initially, the SAT network starts the SC participation ver-
ification. Then, SRs send their information, like location,
radio type, power supply type, network condition, etc. via the
SAT communication link to apply for participation. Subse-
quently, the SAT controller decides which agents meet the
minimum requirements of service/resource trading, and sends
the initialization information to these SRs. The initialization
information includes the architecture of the policy-sharing
ML model, DAG blockchain transaction generate principle,
reward calculation function, all SRs’ and UEs’ locations, etc.
Although the same information is shared to every SR, the
observations and learning models generated by different SRs
are not the same, leading to different policies.

B. Step 2: Service Exchanging and Transaction Recording

In the decision-making step, SRs allocate communication
resources based on actions (step 2.a in Fig. 4). Subsequently,
the DAG consensus execution process starts, where SRs begin
to trade services/resources via smart contract and cooper-
atively provide network access services for UEs according
to the received network access requests in their coverage
area (step 2.b). The unverified dataset like service/resource
trading records, the state of the environment, and cumulative
trustworthiness weights will be first preserved in transactions
locally by SRs. By using a gossip algorithm, SRs can broadcast
their local transaction to all neighbor SRs. Once the neighbors
receive a transaction, they will check the signature and verify
the validity of this transaction as verifier SRs (step 2.c). The
trustworthiness weight of this transaction will be issued by
verifier SRs in proportion to the consumed computing and
energy resource. After that, this transaction can be packed
and recorded into the head of a new transaction generated
by verifier SRs. In the end, only the longest chain should be
reserved while others are deleted as per the longest chain rule
[10] (step 2.d).
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C. Step 3: Policy Sharing and Model Updating

First, the cumulative trustworthiness weight of an SR can be
calculated based on its transactions’ trustworthiness weights.
Then, SRs share their own latest policies with neighbors and
save the policies from neighbor SRs with high cumulative
weights as reference. After that, SRs get partial corresponding
observations from neighbors (step 3.a), and integrate their
individual observations and their neighbors’ observations to
determine their own states. Meanwhile, SRs use the reward
calculation function to access their action reward based on
validated service/resource trading data (step 3.b). Finally, as
learning information like action, state, reward, and relevant
neighbor policy are fetched, SRs begin to train and update
their local models (step 3.c).

V. CASE STUDY

In this section, simulations of a case study are presented to
evaluate the performance of the S4 based resource manage-
ment scheme. Based on the aforementioned rules in Section
III for choosing ML algorithm and blockchain consensus, the
resource management scheme in S4 of this case study is DAG-
based blockchain empowered multi-agent proximal policy
optimization (MAPPO) [14]. A DAG consensus algorithm
inspired from Tangle [15], is used in our blockchain to ensure a
high transaction throughput with a low resource consumption
since it can process amounts of transactions simultaneously
in an asynchronous manner without mining and complicated
hash calculation. Meanwhile, a modified MAPPO promotes
symbiotic coevolution because it allows SRs to learn the
approximate policies of their creditable symbiotic cooperators,
which avoids conflicts in policies. For comparisons, the three
benchmarks are as follows.

1) Non-SC: No symbiotic service/resource trading, re-
sources are pre-allocated, rest parts are the same as S4

(Benchmark for verifying the effectiveness of SR).
2) Non-blockchain: Similar to S4, except DAG-based

blockchain is disabled (Benchmark for verifying the
effectiveness of blockchain).

3) Non-ML: The policy is giving priority to SRs with
high cumulative weights, rest parts are the same as S4

(Benchmark for verifying the effectiveness of ML).

A. Simulation Settings

In our simulation, we consider a SAGIN containing 45 BSs,
4 UAV clusters (each UAV cluster contain 10 UAVs), and 1
SAT. There are 200 UEs with two hot spots in the considered
area. Meanwhile, the UAV clusters are uniformly distributed
within the area, while the SAT is 1000km above the ground.
Moreover, the radius of the coverage area for a BS and a
UAV cluster are set as 200m and 100 + 150m (transmission
distance and flight radius), respectively. In this study, only
spectrum resource is considered, where the bandwidth of a
BS, a UAV, and a SAT are set to 20MHz, 10MHz, and
500MHz, respectively. We assume all UEs are fixed, but with
a dynamic service requirement, where the transmission rate
requirement range is [10, 1000]Mbps, and the range of latency
is [1, 100]ms.

In the proximal policy optimization (PPO)-based local
model, an actor network has an input layer with 8 neurons and
a single neural output layer, as well as 2 hidden layers with 256
neurons. We employ ReLU as the activation function between
the input layer and the two hidden layers, and Softmax as
the activation function between the second hidden layer and
the output layer. The critic network is the same as the actor
network except that there is no activation function between the
second hidden layer and the output layer. The learning rate α
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is set as 0.0003, and mini-batches of one training iteration are
set to 16.

B. Numerical Results

We first show the reward convergence for the four schemes,
as depicted in Fig. 5. The reward is proportional to UEs’
satisfaction with the maximum value 1. It is noted that
fault/fake transactions can be randomly generated by an SR
and might make chaos in training. Obviously, the proposed
S4-based scheme achieves the highest reward of around 0.9 in
25 training iterations. Without securing trusted trading by the
DAG-based blockchain, the Non-blockchain scheme attains
the reward of around 0.85 in 50 iterations with a large variation
in rewards. The Non-ML scheme achieves a reward of about
0.6 because the distributed heuristic algorithm cannot guide
SRs in effective cooperation, whereas the rewards of the Non-
SC scheme are all below 0.55 since there is no symbiotic
cooperation.

Fig. 6 compares the average satisfaction ratios under dif-
ferent number of UEs for four schemes. It is noted that
UE’s satisfaction is the weighted average ratio of each service
quality value required by UE and its corresponding actual
experienced quality value, where the service quality factors
including delay and transmission rate. We observe that the
proposed S4-based scheme always outperforms the other three
schemes, and it keeps a satisfaction ratio of about 0.9 when
the number of UEs is lower than 200. Because of intelligent
decision-making, the proposed S4-based scheme can guarantee
the service requirements of more UEs compared with the
Non-ML and Non-SC schemes. Moreover, without the trusted
trading secured by blockchain, the Non-blockchain scheme
attains a lower satisfaction ratio than that of S4.

VI. CHALLENGES AND FUTURE DIRECTIONS

This article introduces a fundamental framework S4 for
intelligent resource management for the SAGIN. To unlock
the full potential of the S4, some challenges and research
directions are discussed for further exploration in the future.
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A. Diversified Symbiotic Relationships

In the current S4 framework, we only investigate the mu-
tualism relationship, which may not accurately describe the
wireless communication system in every application scenario.
Other symbiotic relationships might be co-existed because a
symbiotic system generally cannot only benefit from cooper-
ation but also from competition. To form different symbiotic
relationships, SRs’ objectives might need to alter between self-
interest and altruism according to environments. Therefore,
the adjustable symbiotic coevolution objective requires further
research to exploit diversified symbiotic relationships.

B. Signaling Storm in SC

In S4, signaling overhead is occurred in ML model training
and the service/resources trading process, especially the trad-
ing process may incur massive signaling. SRs should cooperate
to provide service for UEs, which might require a huge volume
of signaling exchanges not only between massive UEs and
numerous SRs but also among SRs. In this case, signaling
storm may happen when the service exchanges are extremely
frequent in an SR ecosystem, which can overwhelm network
resources and lead to intolerant service outages. Adjusting
the coevolutionary cycle and resource trading period based
on the local model convergence and the formed symbiotic
relationships could relieve the burden on signaling overhead
in SR ecosystems.

C. Functionality Modularity of SRs

In S4, we assume all the SRs are capable of participating in
both ML and blockchain systems, which may lead to an over-
complexity of the system and unnecessary waste of computing
and energy resources. For example, the SR without sufficient
computing power needs to pay extra cost to get computing sup-
port from other SRs via service/resources trading to participate
in blockchain/ML. To avoid this, SR functionality modularity
is a promising remedy, in which SRs are divided into different
functionality groups based on computing capability, energy
resources, storage size, etc. so that different SRs can take
charge of appropriate tasks.
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D. Fast Convergence in Distributed Learning

For the practical deployment of distributed cooperative
learning, accelerating the convergence of model training is
challenging. The learning models in our S4 are updated asyn-
chronously because of the difference in computing resources
among SRs. However, since each individual policies in S4

affect each other during policy-sharing ML model training,
the models converged slowly under low computing resources
may delay the convergence of other SRs’ models. Moreover, in
S4, all newly participated SRs have to train their models from
scratch, which also causes the low convergence speed. To solve
that, federated learning, transfer learning and meta learning
might be promising directions to speed the convergence by
sharing model parameters.

VII. CONCLUSION

In this article, we proposed an S4 framework that introduces
symbiotic communication into SAGIN and that is powered by
ML and blockchain to achieve intelligent resource manage-
ment via secure service trading. Simulation results of a case
study demonstrated the superiorities of the S4 framework, in
terms of communication resources utilization and the quality
of service provided to UEs. In addition, a forward-looking
vision on future research directions is offered. In general, we
expect this work to be a pioneer in setting the steppingstone
for intelligent resource management scheme for a symbiotic
SAGIN with the interplay of ML and blockchain.
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