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Dental caries detection using 
a semi‑supervised learning 
approach
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Early diagnosis of dental caries progression can prevent invasive treatment and enable preventive 
treatment. In this regard, dental radiography is a widely used tool to capture dental visuals that are 
used for the detection and diagnosis of caries. Different deep learning (DL) techniques have been 
used to automatically analyse dental images for caries detection. However, most of these techniques 
require large‑scale annotated data to train DL models. On the other hand, in clinical settings, such 
medical images are scarcely available and annotations are costly and time‑consuming. To this end, we 
present an efficient self‑training‑based method for caries detection and segmentation that leverages 
a small set of labelled images for training the teacher model and a large collection of unlabelled 
images for training the student model. We also propose to use centroid cropped images of the caries 
region and different augmentation techniques for the training of self‑supervised models that provide 
computational and performance gains as compared to fully supervised learning and standard self‑
supervised learning methods. We present a fully labelled dental radiographic dataset of 141 images 
that are used for the evaluation of baseline and proposed models. Our proposed self‑supervised 
learning strategy has provided performance improvement of approximately 6% and 3% in terms of 
average pixel accuracy and mean intersection over union, respectively as compared to standard self‑
supervised learning. Data and code will be made available to facilitate future research.

Dental caries, also sometimes referred to as dental cavities or tooth decay, is one of the most prevalent global 
chronic diseases. The American Dental Association has classified dental caries into different grades by consid-
ering the spread and extent of lesions that include normal, initial, moderate, and extensive  spread1. In clinical 
practice, diagnosing the initial posterior proximal caries using routine clinical examinations is very  difficult2. 
To overcome these limitations, dental radiography is used as a major tool for the identification of dental caries 
that provides a visual depiction of the bitewing. Although dental radiography makes it easy for human experts 
to identify dental caries and other abnormalities, however, the detection of posterior initial proximal caries is 
quite challenging. However, working out a viable solution for this challenge can prevent invasive treatments and 
more importantly reduce healthcare costs.

Dental radiography despite being the most recommended and widely used tool for caries identification in 
dental practice is very subjective. The observations of different human experts (i.e., oral radiologists) vary and 
often contain major disparities in the diagnosis of initial caries (i.e., whether they are present or not). There are 
many factors influencing this subjectivity, such as radiographic image quality, expert expectations, viewing condi-
tions, time consumed per examination, and variability across  examiners3. In the literature, such a phenomenon 
has already been observed experimentally; for instance, 34 dentists showed notable disparities in analysing 
dental radiographs for caries  identification2. Therefore, the development of automated tools for caries detection 
is required that will not only reduce the subjective bias associated with human examiners but will also enable 
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early detection of initial caries (which are often overlooked). Such a method will also reduce the burden on oral 
radiologists who have to manually analyse large sets of images in their daily routine clinical practice.

In the literature, different deep learning (DL)-based solutions have been proposed for the identification of 
dental caries. However, one of the major limitations of these methods is that they require a large-scale annotated 
dataset for the training of DL  models4. Whereas, in realistic clinical settings, such data collections are scarcely 
 available5. Also, the annotation of unlabelled images is very costly, time-consuming, and unfeasible sometimes, 
e.g., due to the unavailability of human  experts6. If we somehow manage to arrange for human experts to per-
form data labelling, it can be frustrating for expert radiologists to spend their valuable time fully understanding 
different annotation tools used by technical data annotators. This motivates the development of unsupervised 
methods that do not require large-scale labelled training data.

In addition to the data availability issue, most DL models need sufficiently high computational resources for 
their training, e.g., graphical processing units (GPUs) and tensor processing units (TPUs)7,8. On the contrary, 
such resources are generally not available in clinical settings. To overcome the aforementioned challenges, we 
present a low-cost self-supervised learning-based framework for the development of an efficient caries detection 
model in dental radiographs. The following are the major contributions of this paper. 

1. We present the dental caries detection dataset (DCD2 ) containing 229 dental X-ray images for the car-
ies detection problem that contains 141 annotated and 88 unlabelled images. Alongside, we also present 
benchmarks by evaluating state-of-the-art DL segmentation models in a supervised learning setting using 
real labelled data.

2. We present a student-teacher method-based self-training framework for caries detection that leverages both 
labelled and unlabelled images. To improve self-training, we propose a centroid cropping-based sampling 
(CCS) method for extracting caries region(s) in dental X-ray images for the development of low-cost and 
efficient self-supervised learning.

3. We perform an extensive experimental evaluation of the proposed method using DCD2 ) that includes vali-
dating the performance of various teacher and student models using varying input samples and the same 
model architecture used in teacher and student networks. We also evaluate the generalisability of self-training 
across different architectures of the student model.

Related work
In literature, different methods for caries detection have been presented including traditional image processing-
based methods and as well as DL-based methods. For instance, Geetha et al.9 utilised statistical features obtained 
from Laplacian/Gaussian filters and image dilation and erosion operations for classification with MLP to detect 
caries. Prerna et al.10 first applied a median filter for noise removal in dental radiographs and then trained CNN 
and LSTM-based hybrid models for caries segmentation. Similarly, the use of different image processing opera-
tions such as Gaussian filtering and Sobel operator for caries segmentation in intra-oral radiographs is presented 
 in11. A Principal Component Analysis (PCA) was then performed on the obtained features for dimensionality 
reduction, and a Multi-Layer Perceptron (MLP) was trained for the detection of caries to provide a detection 
accuracy of 89% on the dental radiographs. Rad et al.12 utilised an MLP neural network model for the classifica-
tion of caries. Moreover, the authors extracted teeth from images using segmentation and applied the model 
both to the images and the extracted segments with an accuracy performance of 90% and 98%, respectively.

Moutselos et al.13 applied a Mask R-CNN model for caries recognition. They applied various image augmen-
tation operations that include flipping, rotations, and affine transformations to increase the training data for 
efficient learning of the underlying model. Vinayahalingam et al.14 proposed using the MobileNet V2 model for 
the detection of caries in mandibular as well as maxillary molars. Muthu et al.15 first extracted features from 
panoramic radiographs and then trained the AlexNet model for the detection of caries which was formulated 
as a classification problem. Vinayahalingam et al.16 performed manual extraction of regions of interest (ROI) 
in the image and applied the MobileNetV2 model for caries classification. Haghanifar et al.17 performed vari-
ous preprocessing steps, including vertical edge filtering, Gaussian and bilateral filtering, along with Savoula 
binarization, before extraction of ROI and features from the radiographs, which are then used as input to the 
proposed DL-based model named PaXNet. Cantu et al.18 utilised image augmentation operations such as flipping, 
cropping, translations, and rotations before applying sharpening and contrast operations for classification by a 
U-Net segmentation model for the detection of caries. Similarly, Ezhov et al.19 used tooth localization and ROI 
extraction before performing image segmentation for caries with a U-Net model. Zhang et al.20 utilised a single-
shot detector DL model for the detection of caries from intra-oral photographs. Javid et al.21 sharpened the dental 
images with a sharpening filter before applying a Mask Region-based CNN (R-CNN) for the detection of caries.

Khan et al.22 proposed a combination of DL models that include U-Net and DenseNet121 for caries detec-
tion. The authors performed image augmentation steps of flipping and rotation before using the images for the 
training of models. Similarly, Casalegno et al23, performed rotation, translation, and contrast transformations to 
the image before using the augmented images as input to the U-Net and VGG16 models for caries segmentation. 
Jung et al.24 presented an autoencoder-based model, DeepLab-v3, which is based on the ResNet18 model, for 
multi-classification into 6 classes, including caries. In contrast to the aforementioned articles that mainly rely 
on labelled training data, we present a self-training-based semi-supervised learning approach that only utilises 
20 labelled images for the training of a teacher model. Then the trained teacher model is inferred to get pseudo 
labels for unlabelled images that are used to train the student model in a self-supervised learning fashion. To 
the best of our knowledge, this paper is the first attempt towards leveraging self-supervised learning for dental 
caries segmentation.
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Methodology
In this section, we present our proposed methodology for caries detection in dental radiographs, which is 
mainly illustrated in Fig. 1. We will start this section by first describing the data collection process and formally 
formulating the problem.

Dental Caries Detection Dataset (DCD2). Data collection strategy. The data collection process involves 
two main steps (as depicted in Fig. 1), i.e., clinical sample collection and panoptic annotation and verification 
by an expert dentist. The data collection process was carried out in the College of Medicine, Ajman University, 
United Arab Emirates and a MyRay X-ray scanner was used for data collection. Note that informed consent from 
data subjects and ethical approval (having reference number: D-H-F April 25) from Research Ethics Committee, 
Ajman University, UAE was obtained before initiating the data collection and all ethical guidelines were followed 
in the data collection, annotation, and analysis processes.

Data preprocessing and annotation. The annotation of dental caries requires pixel-level identification of the 
caries region and to accomplish this task we carefully designed a data annotation method that comprises three 
steps: (1) training of a data annotators team by a dental expert; (2) annotation of dental images by carefully fol-
lowing the guidelines provided by the expert; and (3) validation and rectification of annotations by expert. The 
oral radiologist has more than 20 years of field experience and we considered only those annotations that were 
verified by him. We used a widely used tool named “Labelme” for annotating dental  radiographs25. Moreover, 
appropriate preprocessing was applied to all images to eliminate any privacy-related information. As it is very 
common in radiography to have patients’ names on the X-ray image, such images were cropped to ensure the 
privacy of patients.

Data statistics. The final dataset contains a total of 229 dental radiographs of which 141 are annotated and 88 
are unlabelled. In our dataset, there are a total of 114 male dental scans and 115 female dental scans. The labelled 
images were used for the evaluation of DL models trained using fully supervised learning and self-supervised 
learning strategies. A visual depiction of different data variations along with a generated segmentation mask 
(using doctor’s annotations) for the training of DL models is presented in Fig. 2.

Problem formulation. We have formulated caries detection as a segmentation problem in which we are 
interested in segmenting a dental X-ray image into two components, i.e., background (region without caries) 
and foreground (region containing caries). As discussed above, in medical settings, data annotation is very chal-
lenging due to the annotation cost, time, and availability of human experts, e.g., physicians and radiologists. 
Considering such a case, we have formulated caries detection as a self-supervised learning problem. Let’s assume 
we have two sets of data samples, i.e., annotated and unannotated images. We denote the labelled dataset as 
DL = {(xli , y

l
i)}

Nl
i=1 , which is used to train the teacher model MT in supervised learning fashion. Where, xli and yli 

represent the labelled dental X-ray image and its corresponding label, respectively. Nl denotes the total number 
of labelled images and yli ∈ {0, 1} denotes labelled binary images consisting of 0 and 1 representing background 
and foreground (caries region in our case), respectively. Unlabelled dataset is denoted as DU = {(xuj )}

Nu
j=1 , which 

is used to train the student model MS , where Nu is the total number of labelled images. To train MS using self-
training method, we first get the pseudo label of unlabelled input xuj  (which is denoted as ypj  ), then the pair 
{xuj , y

p
j } is used to create a pseudo label dataset DP = {(xuj , y

p
j )} , which is used for training student model. In this 

way, binary cross entropy loss (as given in Eq. 1) is minimized to enhance the performance of student model MS 
in segmenting caries region in unlabelled dental radiographic images (i.e., xuj ).
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Figure 1.  Illustration of our proposed method for caries detection in dental X-ray images that consists of two 
major parts (1) data collection and annotation; and (2) end-to-end training of caries detection models.
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Where, ŷj represents the predicted mask from the neural network (i.e., the output of the student segmentation 
model) and ypj  is the pseudo label generated by the teacher model. Our proposed method for efficient self-
supervised learning is described next.

Proposed self‑training method for caries segmentation. Our proposed efficient self-training 
method for caries image segmentation is depicted in Fig. 3. Our method contains two models, i.e., the teacher 
model ( MT ) and the student model ( MS ). Initially, MT is trained using a small set of labelled images DL (we 
evaluated different number of images for training MT in a fully supervised learning strategy). Then unlabelled 
images (i.e., DU = {(xuj )}

Nu
j=1 ) are used to infer MT to get pseudo labels (i.e., ypj  ) for unlabelled images, which are 

then merged with the corresponding unlabelled images to form a pair {xju , y
p
j } that is used for training student 

(1)L (y
p
j , ŷj) = y

p
j log(ŷj − (1− y

p
j ) log(1− ŷj))

Figure 2.  Illustration of different variations in our dataset. The first, second, and third rows contain original 
images, the doctor’s annotation, and the corresponding generated mask, respectively.

Figure 3.  An overview of our proposed self-supervised learning-based method for dental caries segmentation. 
Firstly, the training data is re-sampled through our centroid cropping-based sampling (CCS) approach that 
initially extracts the cavity region from the input images and employs state-of-the-art transformation techniques 
to increase the data samples. Secondly, the teacher model MT is trained in a fully supervised learning fashion 
on real data (to guarantee high-quality pseudo-label generation), which is then used to generate pseudo labels 
for unlabelled images for training student model MS . Lastly, the student model is trained on both the real and 
pseudo labels to ensure better generalization.
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model MS in supervised learning fashion. The generated pseudo labels for five examples of unlabelled images 
using trained MT are demonstrated in Fig. 4. The figure highlights that the trained teacher model was efficiently 
able to capture the problem-specific features (i.e., caries information) from unlabelled dental X-ray images, 
which was used for training MS in the self-supervised learning paradigm. We also proposed to dynamically crop 
the caries region from the dental X-ray to significantly reduce the size of input image pairs used for training our 
DL models in self-supervised learning, i.e., centroid cropping-based sampling (CCS). This strategy improves the 
overall training process of underlying DL models in terms of training time and also results in the development of 
a low-cost solution for caries segmentation. Note that initially, we train the MS as a single pair (i.e., {xju , y

p
j } ) to 

get the baseline results for standard self-supervised learning. Then to improve the performance of MS , we used 
different data augmentation techniques namely horizontal flip, shear, rotation, and vertical flip that were applied 
on the cropped image pair (i.e., {xujc , y

p
jc
} ). An illustration of these augmentation techniques, when applied to 

the cropped patches of input images containing caries and their corresponding, cropped segmentation masks is 
shown in the first block of Fig. 3. Applying these augmentations consequently increased the size of the training 
set used for optimizing MS , i.e., after performing these data augmentation techniques, we have 635 images in the 
training set. Therefore, this technique provided significant performance improvement in terms of different per-
formance metrics. The results of baseline models and our proposed framework are described in the next section.

Benchmarking fully supervised baseline models for caries segmentation. As one of the prime 
contributions of this paper is a fully labelled database of 141 images containing dental radiographic scans. There-
fore, we first evaluated six different state-of-the-art models for caries detection that consists of two parts, i.e., the 
generative model and the backbone classification model. The key role of the backbone network is to learn the 
pixel-wise binary classification foreground (caries region) and background by optimizing binary cross entropy 
loss (defined in Eq. 1). Note that for model training using fully supervised learning strategy, the loss is computed 
between the predicted mask by the model and the ground truth (actual human labelled) mask. Specifically, we 
have used three generative models and three detector networks that are used for the generation of caries seg-
mentation masks (prediction of the models). The generative models are used for the generating final segmenta-
tion mask that includes Deeplab-v326, fully convolutional network (FCN)27, and Lite Reduced Atrous Spatial 
Pyramid Pooling (LRASPP)28. In addition, these models work with a classifier model working as the backbone 
that learns pixel-level classification of caries region and background region. The classifier models that are used 
as a backbone of segmentation models include ResNet-5029, ResNet-10129, and Mobilenet-v330. All these models 

Figure 4.  Visual examples of pseudo label generation using teacher model MT that are used for training 
student model MS in conjunction with unlabelled data DU . It can be seen that MT has accurately predicted the 
pseudo labels for unlabelled images (it is also supported by the quantitative results).
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are state-of-the-art models used in benchmarking segmentation datasets. Benchmark results using the baseline 
supervised learning models will be presented in the next section.

Experiments and results
In this section, we present the results of our proposed efficient self-supervised learning framework for caries 
segmentation. Results of our proposed method are also compared with two baseline approaches that include 
models trained in fully supervised settings and models trained using a standard self-supervised learning strategy. 
We will first briefly discuss the data description and experimental setup that was used for training our proposed 
framework and baseline approaches.

Data description and experimental setup. As discussed above, our dataset contains a total of 141 
labelled images. Firstly, to get the baseline results, we train six models in supervised learning settings using a split 
of 90% and 10% for training and testing sets, respectively. For semi-supervised training methods, we randomly 
selected different number of images from the training set for training of teacher model MT and the remaining 
images were considered as unlabelled images that were used for the generation of pseudo labels (from trained 
MT ). Pseudo labels were then paired with their corresponding images to create pseudo labelled data for train-
ing of MS . Initially, these models were trained using images having a size of 300× 300 . However, we observed 
that in images of this size, the size of the caries region is on average 10× 10 and due to pixel imbalance in high-
dimensional radiographs, the performance of self-supervised learning was not up to the mark. Therefore, to 
overcome this issue, we propose the use of centroid cropping for training MT and MS in a self-supervised learn-
ing strategy. Specifically, this approach works by cropping the caries region in high-dimensional radiographs and 
their corresponding label images. MT was trained using cropped labelled training set and MS was trained using 
cropped unlabelled images and their corresponding pseudo labels generated by MT . We used transfer learning, 
where the models were initially pre-trained on Microsoft’s COCO  dataset31. All models were trained using a 
batch size of 8 with a learning rate of 10−3 for maximum epochs of 100. Furthermore, to prevent overfitting, we 
relied upon early stopping, which was based on the loss of five consecutive epochs.

Performance evaluation. We have evaluated the performance of models trained using benchmark meth-
ods and our proposed efficient self-supervised learning approach using three widely used metrics: average pixel 
accuracy, mean intersection over union (mIoU), and dice score.

Average pixel accuracy is defined as the percentage of correctly classified pixels in the generated image (seg-
mentation mask) from the model as defined below.

where, mPA is the mean average pixel accuracy; njj represents the total number of pixels that are correctly clas-
sified as label j, i.e., predicted and actual labels are the same (true positives); and tj is the total number of pixels 
that are classified as class j.

Intersection over Union (IoU) is a metric that is used to measure the overlap between two regions. In our case, 
IoU is used to quantify the overlap between the ground truth segmentation mask (labelled by an expert radiolo-
gist) and the segmentation mask predicted by our proposed method. Mathematically, it is computed as follows.

where, TP represents true positive, FP represents false positive, and TN represents true negative. Note that for 
segmentation problems, IoU is calculated using pixel-by-pixel analysis. The IoU can also be calculated as

Dice similarity is a widely used metric for evaluating the quality of segmentation in medical imaging. The dice 
score for a binary case (i.e., foreground and background segmentation) is calculated as:

Benchmark results for models trained using supervised learning. As discussed previously, to 
benchmark our dataset (DCD2 ), we have evaluated six different state-of-the-art DL-based segmentation models 
for the tasks of caries segmentation using dental X-rays that include: (1) Deeplabv3-mobilenetv3; (2) Deeplabv3-
resnet50; (3) Deeplabv3-resnet101; (4) FCN-resnet50; (5) FCN-resnet101; and (6) LRASPP-mobilenet-v3. All 
these models were trained in a supervised learning fashion using 90% of the data, and the remaining 10% was 
used for the evaluation. The results of these models in terms of three performance metrics are summarised in 
Table 1. The table highlights that the Deeplabv3 model with ResNet101 backbone outperformed all other models 
in terms of mPA, mIoU, and dice score. The remarkable performance of Deeplabv3 with ResNet101 backbone is 
mainly attributed to the architecture of ResNet101, as it has a comparatively much larger network with skip con-
nections that enable efficient learning during training. Whereas, LRASPP-Mobilenet-v3 has provided the lowest 
performance, which is expected as it has a smaller architecture as compared to other models.

(2)mPA =
1

k
�k

j=1

njj

tj
,

(3)IoU =
TP

(TP + FP + TN)
,

(4)IoU(X,Y) =
|X ∩ Y |

|X ∪ Y |
,

(5)Dice score =
2TP

2TP + FP + FN
,
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Baseline results using student–teacher method‑based self‑training. Over the last few years, 
utilizing unlabelled data along with the labelled dataset to train DL models in a semi-supervised fashion has 
received widespread adoption from the ML research community. Semi-supervised training-based methods such 
as self-training have been shown to be quite successful in leveraging unlabelled data and have provided competi-
tive results as compared to fully supervised learning  methods32. In this section, we present the baseline results 
for student-teacher method-based self-training when evaluated on DCD2 . Inspired by the supervised learning 
results, we selected the Deeplabv3 with ResNet101 backbone as a teacher model MT (as it provided higher 
performance as compared to the other five models (Table 1)) and the remaining five models are trained as a 
student model MS using self-training paradigm. To improve the performance of MT and to ensure the efficacy 
of generated pseudo labels, the teacher model is trained using augmented data, i.e., high-dimensional images 
having a size of 300× 300 and centrally cropped images having a size of 10× 10 (as shown in Fig. 3). We ran-
domly selected 20 images from the labelled training set for training of MT and the remaining (labelled) images 
were considered as unlabelled images (i.e., the labels were ignored) that were used for the generation of pseudo 
labels (from trained MT using 20 images). Whereas, the ignored ground truth labels were used to evaluate the 
efficacy of MT in generating pseudo labels (visual examples depicting pseudo labels can be seen in Fig. 4). We 
used only real (human-labelled) test images to evaluate baseline models trained using self-supervised learning 
to ensure the effectiveness of the proposed method. The illustration of the learning behaviour of different models 
in terms of accuracy (Fig. 5a) and loss (Fig. 5b) is presented in Fig. 5. It is evident from the figure that models 
smoothly converge using our proposed CCS-based self-training approach. Furthermore, the results of these two 
approaches are summarised in Table 2. It is evident from the table that our proposed CCS-based self-training 
approach significantly outperformed the baseline self-training method in terms of all performance metrics. 
Also, we can see a similar trend as noted in fully supervised learning results, i.e., Deeplabv3 with ResNet101 
backbone is providing superior performance as compared to other models. A visual depiction of model perfor-
mance trained using our proposed method is presented in Fig. 6.

Evaluating the effect of labelled data on teacher model for caries detection. We quantitatively 
evaluate the performance of teacher model training in the self-training paradigm by varying the number of 
labelled data samples. Specifically, we used 20, 40, 60, 80, and 120 real labelled images for training MT . The 
model is then evaluated using unlabelled data. In addition to the models that were evaluated using fully super-
vised learning (using real labelled data) and student-teacher method-based self-training. We evaluated three 
more state-of-the-art models in self-training strategy to demonstrate their efficacy on our DCD2 that include 
 PSPNet33,  FPN34, and  LinkNet35. These models are widely used for the evaluation and benchmarking of segmen-
tation datasets. The quantitative results demonstrating the effect of a varying number of labelled samples on the 
performance of various models in terms of mIoU are summarized in Table 3. It can be seen from the table that 

Table 1.  Baseline results of six different models using fully supervised learning strategy. Significant values are 
in bold.

Model Backbone Avg. accuracy mIoU Dice

Deeplabv3

ResNet-50 96.37 48.99 0.48

ResNet-101 98.38 50.18 0.50

Mobilenet-v3 96.10 48.05 0.48

FCN
ResNet-50 96.33 48.19 0.48

ResNet-101 96.38 47.83 0.47

LRASPP Mobilenet-v3 93.54 45.65 0.45

Figure 5.  Models trained using the proposed self-training method demonstrate smooth learning behaviour in 
terms of accuracy and loss with an increase in iterations.
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Figure 6.  Qualitative results of proposed self-supervised learning strategy for caries detection in dental 
radiographs.

Table 2.  Comparative analysis of different models trained using our proposed CCS-based self-training 
technique with standard self-training in terms of average accuracy (Avg. Acc), mean intersection over union 
(mIoU), and dice similarity score. Significant values are in bold.

Standard self-training CCS-based self-training

Teacher model Student model Backbone Avg. Acc mIoU Dice Teacher model Student model Backbone Avg. Acc mIoU Dice

Deeplabv3 
(ResNet-101)

Deeplabv3

ResNet-50 91.77 45.07 0.45

Deeplabv3 
(ResNet-101)

Deeplabv3

ResNet-50 94.57 46.35 0.46

ResNet-101 93.22 47.83 0.47 ResNet-101 99.43 50.73 0.50

Mobilenet-v3 90.15 44.38 0.44 Mobilenet-v3 95.08 45.60 0.45

FCN
ResNet-50 90.04 44.81 0.44

FCN
ResNet-50 97.61 47.52 0.47

ResNet-101 92.98 45.95 0.45 ResNet-101 95.84 45.87 0.45

LRASPP Mobilenet-v3 87.41 42.73 0.42 LRASPP Mobilenet-v3 91.72 40.16 0.40

Table 3.  Performance evaluation of various segmentation models by training on a different number of 
randomly sampled sets selected from the actual training set of our dataset for supervised learning. Significant 
values are in bold.

Model Backbone

No. of Labelled Samples

20 40 60 80 120

mIoU

FCN ResNet-101 44.13 48.87 48.16 47.91 47.83

PSPNet ResNet-101 42.84 45.91 45.29 44.50 44.28

LRASPP MobileNet-v3 43.47 47.38 46.27 45.86 45.65

FPN ResNet-101 44.21 48.65 47.95 47.33 47.06

LinkNet ResNet-101 43.46 47.87 47.54 47.02 46.87

Deeplab-v3 ResNet-101 46.57 52.41 51.63 50.47 50.18
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all models provided superior performance when trained using 40 labelled images and their performance is least 
on 20 labelled images-based training. Moreover, we see that if we increase the number of labelled samples for 
training, the models start showing the overfitting behaviour, as their performance deteriorates with the increase 
of input samples (e.g., all models provided less performance when they were trained using 120 labelled images).

Evaluating the effect of unlabeled data on student model for caries detection. In addition to 
evaluating the effect of varying labelled data on the performance of MT in self-training, we also validated the 
performance of MS by varying the number of unlabeled images (i.e., pseudo labelled samples). Moreover, we 
also analyze the effectiveness of our proposed CCS-based data sampling when MS is trained with a different 
number of unlabelled images. Note that for these experiments we used Deeplabv3 with ResNet101 backbone, as 
these models provided superior performance as compared to other models. Also, the teacher model was trained 
using 40 images, as we got the best performance using this setting. Then we evaluated the performance of MS 
by varying the number of pseudo-labelled samples, i.e., 10, 20, 40, 60, and 80. The quantitative results depict-
ing the effect of varying pseudo-labelled samples on the performance of MS trained using self-training strategy 
in terms of mIoU are presented in Table  4. We also present the results of MS with and without CCS-based 
self-training to demonstrate the efficacy of our proposed data sampling technique. From Table 4, it is evident 
that the performance MS being trained using self-supervised strategy increases with the increasing number of 
unlabelled (pseudo labelled) input samples. Moreover, we can see that our proposed CCS-based data sampling 
provides significant performance improvement in the training teacher models and as well as student models 
using self-training. The key reason behind the efficacy of CCS is the elimination of class-wise pixel imbalance in 
efficiently cropped images. This class imbalance issue arises due to class-wise pixel ratio, i.e., pixels belonging to 
the foreground (caries) and background in the high-dimensional images (where the foreground pixels are much 
smaller than the background pixels).

Evaluating the generalization to different student models. In our all previous experiments, we 
used the same model architecture in the teacher and student models. Here we evaluate the generalizability of 
the self-training method across different architectures of student models using DCD2 with and without our 
proposed CCS-based. Note that we used the same model (i.e., Deeplabv3-ResNet101) as the teacher model 
(owing to its superior performance in generating the pseudo labels). We used four different model architectures 
as the student model (including  BiSeNet36, PSPNet, LRASPP, and LinkNet) and evaluated their performance of 
caries segmentation using validation data (taken from real labelled samples) and test data (unlabelled samples). 
Student model generalizability results are presented in Table 5, from the table is clear that our proposed self-
training technique is generalizable across different student architectures as well. We see that the PSPNet model 
with ResNet-101 backbone outperformed all other models when trained using our proposed CCS-based data 
sampling technique. Also, it can be seen that the difference between the models’ performance on validation and 
test data is negligible that also demonstrates the effectiveness of pseudo labels generated by the teacher model.

Table 4.  Comparative analysis of student-teacher method-based self-training with and without proposed 
CCS-based data sampling. Significant values are in bold.

Model Real Pseudo w/o CCS CCS

Teacher 40 – 52.41 56.49

Student 40 10 52.94 56.61

Student 40 20 54.73 58.34

Student 40 40 56.47 58.87

Student 40 60 56.98 59.42

Student 40 80 57.12 59.76

Table 5.  Generalizability of student methods irrespective of different backbone network architectures on our 
dataset. Significant values are in bold.

Model Backbone Val mIoU Test mIoU

BiSeNet ResNet-50 54.21 54.63

BiSeNet w/ CCS ResNet-50 55.80 55.97

PSPNet ResNet-101 53.42 53.66

PSPNet w/ CCS ResNet-101 56.18 56.43

LRASPP MobileNet-v3 49.74 49.86

LRASPP w/ CCS MobileNet-v3 49.95 49.98

LinkNet ResNet-101 53.61 53.85

LinkNet w/ CCS ResNet-101 54.26 54.52
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Conclusions
To address the problem of data scarcity and the reduced cost associated with annotation in medical imaging, we 
present a student-teacher method-based self-supervised learning approach for dental caries detection that uses 
both labelled images and unlabelled images. We first present a dental X-ray image database, which is annotated 
by a team of experts trained by an expert dental radiologist (having experience of more than 20 years). Then, we 
present a centroid cropping-based approach for dynamically cropping the caries region in dental X-ray images, 
which is used for the training of models in a self-supervised learning fashion. Centroid-cropped images have 
much smaller dimensions as compared to original (high-dimensional) images and have also outperformed 
models trained using original data in self-supervised learning settings. Our method works by only utilising 
20 labelled images, and the rest of the images are considered unlabelled for training models in self-supervised 
learning (we got best results when 40 labelled images are used). We have compared our proposed approach 
with a baseline fully supervised learning strategy (in which models are trained with fully labelled data) and 
self-supervised learning (where the models are trained using high-dimensional images). Also, we perform an 
extensive evaluation of the proposed method to ensure better generalizability. Our experiments demonstrate 
that our approach outperformed baseline methods in terms of average pixel accuracy, mean intersection over 
union (mIoU), and dice score. Our future work includes the development of a more diverse and larger database 
for dental caries detection.

Code and Data Availability
The code along with data collected and analysed in this study is available at this GitHub repository (https:// 
github. com/ madna nq/ dental- caries- detec tion). The data collected and analysed in this paper is available from 
the corresponding author upon reasonable request.
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