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Abstract 

 

Insulin secretion is critical for glucose homeostasis, and increased levels of the precursor 

proinsulin relative to insulin indicate pancreatic islet beta-cell stress and insufficient insulin 

secretory capacity in the setting of insulin resistance. We conducted meta-analyses of genome-

wide association results for fasting proinsulin from 16 European-ancestry studies in 45,861 

individuals. We found 36 independent signals at 30 loci (p-value < 5x10-8), which validated 12 

previously reported loci for proinsulin and 10 additional loci previously identified for another 

glycemic trait. Half of the alleles associated with higher proinsulin showed higher vs. lower 

effects on glucose levels, corresponding to different mechanisms. Proinsulin loci included genes 

that affect prohormone convertases, beta-cell dysfunction, vesicle trafficking, beta-cell 

transcriptional regulation, and lysosomes/autophagy processes. We colocalized 11 proinsulin 

signals with islet expression quantitative trait loci (eQTL) data, suggesting candidate genes 

including ARSG, WIPI1, SLC7A14, and SIX3. The NKX6-3/ANK1 proinsulin signal colocalized 

with a T2D signal and an adipose ANK1 eQTL signal, but not the islet NKX6-3 eQTL. Signals 

were enriched for islet enhancers, and we showed a plausible islet regulatory mechanism for the 

lead signal in the MADD locus. These results show how detailed genetic studies of an 

intermediate phenotype can elucidate mechanisms predisposing to disease. 

 

Introduction 
 

Proinsulin is a precursor to insulin that is formed in pancreatic beta cells. Some proinsulin is 

secreted into the plasma during insulin biosynthesis and secretion, and circulating levels of 

proinsulin relative to insulin are increased in individuals with type 2 diabetes (T2D) and pre-

diabetes1–3. Elevated proinsulin relative to insulin in individuals with pre-diabetes and T2D 

patients may be caused by increased demand on beta cells to release insulin, thereby encouraging 

the premature release of granules that contain a higher ratio of proinsulin to mature insulin3. 

Conversely, reduced proinsulin-to-insulin levels could result from defects in proinsulin 

processing and folding prior to cleavage into insulin, early defects in vesicular processing, or 

altered proinsulin vs insulin degredation4. 

 

Proinsulin can serve as a valuable intermediate phenotype to aid identification of genetic 

variations influencing hyperglycemia and T2D5. Additionally, the allelic effect directions on 

glucose vs proinsulin can help differentiate known T2D loci into those involved in beta cell 
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stress versus defects in proinsulin processing and secretion3,4,6–9. Previous proinsulin genome-

wide association studies (GWAS) reported 16 signals at 13 genomic loci. These studies included 

a meta-analysis of 10,700 discovery participants that reported 10 loci5, a subsequent exome array 

study of Finnish individuals that identified two more loci with low-frequency (minor allele 

frequency (MAF) < 5%) variants10, and a genetic study of participants with high risk for 

cardiovascular diseases (CVD) which identified another locus11. To provide a comprehensive 

genetic analysis of proinsulin and gain insight into glycemic trait dysregulation, we performed a 

large meta-analysis of proinsulin GWAS. This study quadrupled the sample size of the largest 

previous meta-analysis and doubled the number of proinsulin association signals, implicating 

candidate genes that regulate insulin processing and glucose regulation. 

 

Methods 

 

Cohort/study description 

As part of the Meta-Analysis of Glycemic and Insulin traits Consortium (MAGIC), we 

conducted a meta-analysis of GWAS results for fasting proinsulin levels from 16 European-

ancestry cohorts in up to 45,861 individuals (Table S1). Each of 16 cohorts collected trait and 

genotype data, assessed quality, and performed association analyses (Table S1). Each cohort 

performed imputation and reported all variants to Genome Reference Consortium Human Build 

37/hg1912. Study participants who had diabetes, were on a diabetes treatment, or had fasting 

glucose 7 mmol/L, 2-hour glucose 11.1 mmol/L, or hemoglobin A1c (HbA1c) 6.5% (48 

mmol/mol) were excluded. Fasting proinsulin values (pmol/L) were natural logarithm 

transformed and analyses adjusted for age, sex, population structure, and natural logarithm of 

fasting insulin (study-level details of fasting requirements, sample collection, and population 

structure adjustments are in Table S1). Study analysts ran models adjusted and unadjusted for 

body mass index (BMI). To control for type I error rate of low-frequency variants and to fully 

remove trait-covariate correlations, covariate adjustment was performed in two steps13. Analysts 

first modeled natural logarithm of fasting proinsulin on all covariates, then inverse normal 

transformed the residuals. Analysts then modeled the inverse normally transformed residuals on 

the covariates again and used these residuals in the final regression analysis. Analysts used an 

additive-model in a linear/linear mixed-model framework using software including EPACTS, 

rvtests, and PLINK14–16.  

 

Study-level quality control (QC) 

Central analysts assessed each cohort input file for quality control using EasyQC17. We excluded 

variants with low minor allele count (<3) or low minor allele frequency (MAF < 0.005), low call 

rate (<95%), deviation from Hardy-Weinberg equilibrium (HWE) (p-value<0.00001), low 

imputation quality (r2 <0.3), or exceptionally large effect standard errors (standard error >10). 

We also examined quantile-quantile (QQ) plots by frequency bins, assessed trends in standard 

errors relative to sample size, and checked allele frequencies relative to their frequency in HRC. 

Systematic QC issues for a study were resolved prior to inclusion in the meta-analyses.  

 

GWAS meta-analysis 

We performed a fixed-effects inverse-variance weighted meta-analysis using METAL18 using 

effect size estimates and standard error. We applied genomic-control (GC) on summary statistics 

for each study and also following the meta-analysis. Post-meta-analysis inclusion criteria 
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required that variants were represented by at least one quarter of the maximum sample size, in at 

least two studies, and had an overall MAF > 0.005; we analyzed 9,533,557 variants. We defined 

a locus as a lead variant p-value <5x10-8 and all variants within 500 kb. We used SWISS 

(https://github.com/statgen/swiss) to identify the lead variant for each locus and combined 

adjacent loci whose lead variants exhibited linkage disequilibrium (LD) (r2 > 0.4) to form an 

extended locus region. All linkage disequilibrium (LD) calculations are based on 1000 Genomes 

Europeans unless otherwise noted. We estimated the proportion of variance explained by each 

variant as 2β2f(1-f) where β is the effect size from METAL and f is the average effect allele 

frequency in the meta-analysis. We summed the variants’ proportion of variance to estimate total 

fasting proinsulin variance explained. 

 

Approximate conditional analysis 

To identify conditionally distinct signals within a locus, we performed approximate conditional 

analysis using GCTA19,20. To reduce collinearity, we excluded any variant from designation as 

part of a distinct signal if its multiple regression r2 on the other selected variants was greater than 

0.8. Since no lead proinsulin variant was within 1 Mb of another, and we noted regions of 

extended LD surrounding at least one lead proinsulin variant, we analyzed all variants within 1 

Mb of each lead variant or the extended locus region, whichever was larger. Given that GCTA 

depends on use of a large representative LD reference panel, we compared results from three 

genotype-level reference panels: METSIM (n=10,070)21 and Fenland (n= 8,925)22 are the two 

largest studies in the meta-analysis that combined represent 38% of the total sample size, and 

Electronic MEdical Records and GEnomics (eMERGE, dbGaP Study Accession: 

phs000888.v1.p1) (n=6,795) is a European-only general research subset23. We defined a signal as 

conditionally distinct if a variant from GCTA representing the signal was identified with at least 

two of the three reference panels and the variants were proxies of each other (r2 > 0.8). We 

additionally required variants to have consistent MAF across the summary data and the reference 

panels; the MAF of rs181143493 near ARAP1 was 0.12 in the proinsulin summary results and 

<0.01 in both the METSIM and eMERGE reference panels and therefore was excluded. Due to 

limitations in approximate conditional analysis with an external LD reference panel, we report at 

most three signals within a locus. 

 

Colocalization with glycemic traits 

We assessed signal overlap, or colocalization, between the 36 primary and secondary proinsulin 

signals and the conditionally distinct signals reported by three T2D studies: the European-

ancestry component of DIAbetes Meta-ANalysis of Trans-Ethnic association studies 

(DIAMANTE EUR)24, the full multi-ancestry DIAMANTE analysis (DIAMANTE TA)25, Asian 

Genetic Epidemiology Network (AGEN)/East Asian ancestry (EAS) DIAMANTE26, and four 

European-ancestry Meta-Analysis of Glucose and Insulin-related traits Consortium (MAGIC) 

glycemic traits: fasting glucose, fasting insulin, HbA1c, and glucose 2 hours after a glucose 

challenge27. We tested for colocalization using two strategies: colocalization based on pairwise 

LD (r2 > 0.8) between the lead proinsulin variant and the lead variant for another trait, and a 

Bayesian multi-trait colocalization approach, either HyPrColoc28 or coloc29. Due to differences 

in ancestry across proinsulin versus AGEN and DIAMANTE TA, we ran HyPrColoc with 

proinsulin, DIAMANTE EUR, and the four MAGIC traits. We observed some issues with 

sensitivity using HyPrColoc, including unstable trait clusters and deflated PPFC values when 

multiple signals in the cluster are marginally significant. While multi-trait HyPrColoc provided a 
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beneficial first-pass assessment for colocalization, sensitivity analyses using pairwise 

colocalization helped fine-tune the specific studies that colocalized with our proinsulin data. 

Therefore, we compared HyPrColoc’s multi-trait performance against a series of 2-trait 

colocalization analyses (i.e., proinsulin and results for only one of the other 5 traits).   

 

We performed HyPrColoc analyses using predefined, approximately independent LD blocks, and 

included all traits that had at least one variant with a p-value <10-4 within the LD block30. We 

selected the default HyPrColoc settings (prior.1 = .0001, prior.2 = 0.98). We then ran sensitivity 

analyses, varying the regional alignment thresholds from 0.6 to 0.9, the alignment thresholds 

from 0.6 to 0.9, and the prior.2 from 0.98 to 0.995. Since Bayesian colocalization methods may 

be sensitive to differences in ancestry across studies, we separately performed 2-trait coloc 

analyses between proinsulin signals and genome-wide significant DIAMANTE TA signals then 

proinsulin and AGEN T2D signals. We selected coloc’s default prior probability of 

colocalization of 1x10-5 and ran sensitivity analyses varying the priors across 100 values. The 

cumulative sensitivity score for HyprColoc and coloc was the proportion of scores that identified 

a colocalization and ranged from 0 (no sensitivity tests identify colocalization) to 1 (all 

sensitivity tests identify colocalization). Given limitations in colocalization approaches, we 

considered both Bayesian methods and LD; we considered the signals colocalized if the 

Bayesian posterior probability of colocalization was >0.6 and either the sensitivity score was 

>0.4 or LD r2 > 0.8 between lead variants. 

 

Characterization of proinsulin locus effect directions to other glycemic traits  

To assess the direction of effect of proinsulin signals on T2D and common glycemic traits, we 

looked up associations for proinsulin lead variants in the summary results for T2D in 

aforementioned three studies and the four glycemic traits in MAGIC studies24–27. If a proinsulin 

lead signal was associated with T2D or fasting glucose (p-value <10-4) or at least two outcomes 

in the same direction at a more lenient p-value threshold (p-value <0.01), we reported the 

consensus direction of effect. To evaluate proinsulin variant association with additional glycemic 

traits, we performed similar look ups in the summary results for 34 glycemic traits analyzed in 

the METSIM study (Table S2)10; briefly, these traits included proinsulin, glucose, and insulin 

levels at fasting, after an oral glucose tolerance test (30 minutes to 120 minutes), and calculated 

areas under the curve measures as well as C-peptide, HbA1c, insulinogenic index, Matsuda 

index, and T2D. We analyzed the 34 traits as a subset of a total of 1076 baseline traits for 

association with variants imputed using a reference panel from a subset of METSIM with whole 

genome sequencing31. For glucose and insulin metabolic traits, we excluded individuals known 

to be diabetic at baseline. For each quantitative trait, we inverse normalized the trait, regressed 

on covariates (see Table S2 for covariates per trait), and inverse normalized the residuals.  We 

carried out single-variant association tests using a linear mixed model in SAIGE v0.39 

(https://github.com/weizhouUMICH/SAIGE) on the normalized residual trait values. 

 

We additionally looked up proinsulin lead variants for loci not identified in T2D or glycemic 

trait association results. We used genetics.opentargets.org to find significant associations (p-

value < 5x10-4) with the lead variants at these loci32,33. The online resource identifies associations 

from the GWAS Catalog34, Neale lab UK Biobank summary statistics 

(http://www.nealelab.is/uk-biobank/), SAIGE UK Biobank summary statistics35, and FinnGen 

Summary statistics36. 
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Candidate genes  

We obtained nearby gene’s islet expression specificity index (iESI) deciles37. iESI deciles 

indicate the extent to which genes are both highly expressed in islets as well as the specificity for 

islet expression versus ubiquitous expression across other tissues, with values near zero 

representing genes that have low islet specificity or low expression in islets and values near 10 

representing genes whose expression is highly specific to islets. We define high iESI genes as 

those with a decile above 7. We consolidated gene labels across sources using Entrez gene 

symbols. 

 

Next, we performed colocalization of proinsulin signals with two eQTL datasets. First, a human 

islet RNA-seq-based eQTL study from the InsPIRE consortium (n=420)38, which reported 

significant eQTL for 4,312 genes (FDR <1%), and second, a subcutaneous adipose tissue RNA-

seq study from 434 Finnish men in the METSIM study39, which reported at least one significant 

eQTL at 9,687 genes (FDR <1%). We used LD and HyPrColoc to test for colocalizations with 

genes within 1 Mb of each lead proinsulin variant; as described in the previous section, we used 

a multi-study framework with proinsulin, European-ancestry DIAMANTE 24, MAGIC glycemic 

traits27, and one eQTL gene at a time, as well as testing with only proinsulin and each gene. We 

considered the signals colocalized if HyPrColoc posterior probability for colocalization (PPFC) 

scores were >0.6 and either the sensitivity score was >0.4 or LD r2 > 0.8. We plotted signals 

using LocusZoom40. Additionally, we performed summary Mendelian randomization (SMR)41 to 

begin assessing potential causal relationships by using the genetic variants as an instrumental 

variable to test for the causative effect of gene expression on proinsulin. To account for multiple 

hypothesis testing, we used a Bonferroni-corrected significance threshold. To evaluate evidence 

of pleiotropy from linkage between two distinct causal variants, we ran heterogeneity in 

dependent instruments (HEIDI) as part of the SMR analysis.  

 

Identification of extended credible set variants 

We determined 99% credible sets using regions ± 500 kb around each lead variant, using the 

following equation for Bayes factors: 

ln(BF) ∝ 0.5 
𝛽2

𝑆𝐸2, 

 

where 𝛽 and SE are the effect sizes and standard errors from the meta-analysis 42. For loci with 

multiple significant signals, we used the approximate conditional analysis option in GCTA, using 

eMERGE as the reference panel, to define credible sets. Variants with a low posterior probability 

are less likely to be causal; however, variants that are not represented or poorly represented in 

the meta-analysis may erroneously be excluded from consideration as a putative causal variant. 

We therefore extended the credible set to include all variants in high LD (r2 > 0.8 in 1000 

Genomes European) with the lead variant. This approach recognizes variants that are not 

included in the meta-analysis due to analytic or technical factors (e.g. indels are not imputed by 

HRC and variants with MAF < 0.5%), as well as variant that are poorly represented in our meta-

analysis due to factors such as low sample size. 

 

Coding and regulatory elements 

To identify potential candidate genes for each signal, we considered protein-coding genes within 

~100 kb of the signal’s lead variant43, with special attention to genes for which a coding variant 
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is included in a signal’s extended credible set and those that are highly and specifically expressed 

in islets. To identify genes through coding effects, we obtained annotation for all variants in our 

extended credible set using Variant Effect Predictor (VEP)44, Sorting Intolerant from Tolerant 

(SIFT)45, PolyPhen-246, Combined Annotation Dependent Depletion (CADD)47,48, and 

MutationAssessor49. For all functional predication tools, we selected default thresholds. 

 

We tested proinsulin signals for regulatory element enrichment using the following epigenomic 

annotations: chromatin states in islets, adipose, and skeletal muscle50, bulk ATAC-seq peaks38,51, 

islet sn-ATAC cluster peaks52, and other islet chromatin annotations53. We used the Genomic 

Regulatory Elements and GWAS Overlap algorithm (GREGOR) to evaluate global enrichment 

of proinsulin-associated variants in epigenomic regulatory features54. GREGOR observes the 

signal overlap in annotated regulatory data among lead GWAS variants or their LD proxies (r2 > 

0.8) relative to expected overlap-based control variants matched to index variants for number of 

variants in LD, minor allele frequency, and distance to nearest gene. 

 

Transcriptional activity assays 

Cell culture 

We cultured INS1-derived rat insulinoma pancreatic beta-islet 832/13 cells (provided by C. 

Newgard, Duke University, Durham, NC) in RPMI 1640 medium (Corning, NY) supplemented 

with 10% FBS, 10 mM HEPES, 2 mM L-glutamine, 1 mM sodium pyruvate, and 50 μM 2-

mercaptoethanol, and we cultured murine insulinoma MIN6 cells (provided by C. Rhodes, Joslin 

Diabetes Center, Boston, MA) in high-glucose DMEM (Sigma-Aldrich, St. Louis, MO) 

supplemented with 10% FBS, 1 mM sodium pyruvate, and 100 μM 2-mercaptoethanol. All cells 

were maintained in a humidified incubator at 37°C with 5% CO2, and prior to transfection, both 

cell lines tested negative for Mycoplasma contamination in accordance with the MycoAlert 

Mycoplasma Detection Kit (Lonza, Morristown, NJ).  

 

Transcriptional reporter assays  

To test for allelic differences in transcriptional activity, we performed dual-luciferase reporter 

assays as previously described55. We used genomic DNA of individuals homozygous for the 

reference or alternate alleles to amplify fragments surrounding rs10501320, cloned amplicons 

into the firefly luciferase reporter vector pgL4.23 (Promega, Madison, WI), and sequence-

confirmed five purified clones for each allele, in each orientation (Azenta, Research Triangle 

Park, NC); alleles at additional variants within each amplicon were kept consistent (Table S3). 

Twenty-four hours prior to transfection, we seeded 832/13 and MIN6 cells in 24-well plates 

(200,000 cells per well). Upon reaching 90% confluence, we transfected 832/13 cells in duplicate 

with 500 ng of plasmid DNA and 1 μL of Lipofectamine 3000 (Thermo Fisher Scientific, 

Waltham, MA) per well, and we transfected MIN6 cells in duplicate with 250 ng of plasmid 

DNA and 1 μL Lipofectamine LTX (Thermo Fisher Scientific) per well; we co-transfected both 

832/13 and MIN6 cells with 80 ng of phRL-TK Renilla (Promega) per well. We used two 

independent preparations of empty vector pgL4.23 as negative controls. After 48 hours, we 

performed dual-luciferase reporter assays (Promega), normalized luciferase to Renilla, and 

calculated fold-change relative to empty vector controls using two-sided t-tests assuming equal 

variance (α=0.05). We independently repeated transfections on different days and observed 

consistent results. Results show ten biological replicates (separate transfections) and two 

averaged technical replicates (luciferase and Renilla readings). 
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Results 
 

Identification of proinsulin association signals 

We identified 28 loci associated at genome-wide significance (p-value < 5x10-8) with proinsulin 

adjusted for BMI, including 16 loci >500 kb away from a previously-reported proinsulin 

association (Table 1, Table S4, Figures S1-S2). Combined, the 28 lead variants explained an 

estimated 8.9% of the total proinsulin variance in the meta-analysis, with the estimated percent 

of trait variance explained by each variant ranging from 2.1% (STARD10) to 0.07% (JARID2).  

 

Association results for fasting proinsulin without BMI adjustment yielded results similar to those 

obtained in the BMI-adjusted analysis (Pearson correlation of effect estimates = 0.97; Figure S3, 

Table S5). Variants at two additional loci, SLC2A10 and BCL11A, which narrowly missed the 

significance threshold in the analysis with BMI adjustment (p-value = 6x10-8 and 1.5x10-7, 

respectively) attained genome-wide significance in the analysis without BMI adjustment (Table 

1). 

 

We performed subsequent approximate conditional analysis and identified six additional signals 

at genome-wide significance located within 500 kb of the lead variant of five known proinsulin 

loci near STARD10, MADD, PCSK1, SGSM2, and DDX31 (Table 2, Table S6, Figures S4-S5). 

We identified three previously-reported signals near MADD, including one signal that consists of 

a proinsulin-associated10 nonsense variant (rs35233100) that is now genome-wide significant 

after conditioning on the lead signal (rs10501320). Both the primary and secondary signals at the 

SGSM2 locus have been previously reported5,10,11. We also identify secondary signals located 

near STARD10, PCSK1, and DDX31. At DDX31, although both signals (rs368476 and 

rs7864386) were within 50 kb of the previously-reported female-specific DDX31 signal 

(rs306549)11, neither was in high LD with the previously-reported lead variant (r2< 0.1, Figure 

S5)5, validating the DDX31 locus, but not the previously-reported signal. For subsequent 

analyses, unless otherwise stated, we included the 28 primary signals and six conditionally 

distinct signals for proinsulin adjusted for BMI, as well as the two signals for proinsulin not 

adjusted for BMI, for a total of 36 signals at 30 loci. 

 

This meta-analysis replicated four low-frequency (MAF < 0.05) proinsulin-associated signals 

originally identified in an exome array analysis of Finnish participants in the METSIM exome 

study10 (Table S7, Figures S6-S7). We validated missense or nonsense lead variants in 

TBC1D30, SGSM2, and MADD; all of which were genome-wide significant in the meta-analysis 

even after excluding METSIM. The signal at the KANK1 locus was only genome-wide 

significant in the full meta-analysis (lead variant rs146375546, p-value = 4.3x10-11), as the lead 

variant is rare in general European-ancestry populations but enriched in Finnish ancestry 

populations (1000G MAF = 0.003 in 1000G European ancestry populations vs 0.015 in the 

Finnish population). The replications of associations at the four low-frequency variants highlight 

the utility of exome arrays in finding low-frequency variants and the challenges in replicating 

variants that are not equally represented across populations.  

 

Proinsulin signals and other glycemic traits 
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We compared all 36 proinsulin signals described above to up to 568 GWAS signals identified for 

T2D24–26 and up to 218 signals in four glycemic traits including fasting and 2-hour glucose, 

HbA1c, and fasting insulin27 (Tables S8-S10). We performed colocalization analysis and 

identified colocalizations for 15 proinsulin signals with signals for T2D (N=12) or glycemic 

traits (N=9): 6 previously-known proinsulin signals near STARD10, MADD, TCF7L2, SGSM2, 

SLC30A8, and C2CD4A/B, and 9 additional proinsulin signals near SIX3, TLE1, RNF6, PAM, 

NKX6-3, FAM185A, BCL11A, GIPR, and FAM46C. We also identified colocalizations between 

an additional 10 T2D or glycemic trait loci that were associated with proinsulin at a less stringent 

significance threshold (5x10-8 < p-value < 1x10-4) (Table S8). Eight proinsulin loci (STX16, 

DLC1, SLC7A14, WIPI1, JARID2, SLC2A10, ELAPOR1, and PCSK2) were not colocalized with 

T2D or any glycemic trait.  

 

We obtained the direction of allelic effect of the 30 lead proinsulin leads on fasting glucose27 and 

more than 30 other related glycemic traits including proinsulin levels after an oral glucose 

challenge10 (Figure 1, Tables S2, S10). The allele associated with higher glucose was associated 

with higher proinsulin for half the lead variants (15 of 30) and associated with lower proinsulin 

for the other half. 

 

Putative candidate genes 

To identify potential candidate genes for each signal, we identified nearby genes, obtained their 

iESI deciles, and performed colocalization and SMR analyses with eQTL data (Tables S11-

S14)38,39.  Genes with high expression levels in islets, particularly those that are not highly 

expressed in other tissues, represent strong candidate genes for influencing the proinsulin to 

insulin processing pathway.  These genes that are highly and specifically expressed in islets will 

have a high iESI values (defined as iESI decile > 7)37. Most (29/36) proinsulin signals fell within 

100 kb of at least one gene with a high iESI (Table S11). Top iESI genes included well-

documented beta-cell genes such as MADD, PCSK1 and PCSK256–58, as well as genes at loci not 

previously described in glycemic trait studies: ELAPOR1 and SLC7A14.  

 

To identify additional candidate genes underlying the proinsulin association signals, we 

colocalized them with eQTL signals38,39 (Table S12-13).Through colocalization with eQTL in 

pancreatic islets from the InsPIRE consortium38, we identified 11 proinsulin signals that 

colocalized with eQTL signals for 17 genes (Table S12); six proinsulin signals colocalized with 

eQTL for more than one gene. The alleles associated with higher proinsulin were associated with 

higher expression of eight genes (MADD, RNF6, CDK8, SLC2A10, SNX7, ARAP1, STARD10, 

and TCF7L2), and lower expression of nine protein coding genes or noncoding transcripts (SIX3, 

SIX2, RP11-89K21.1, AC012354.6, ARSG, WIPI1, SLC7A14, FAM46C, and LARP6). All 17 

colocalizations also passed the experiment-wide significance threshold for SMR (p-value < 

0.0029). Using HEIDI, we detected heterogeneity for just 1 gene at p-value < 0.0029: STARD10. 

While this may indicate the correlation is due to linkage rather than pleiotropy, the result may 

also be due to the complicated structure of this locus, which may violate the assumption of only 

one causal variant in the eQTL region. 

 

Signal colocalization at the NKX6-3/ANK1 locus provided additional data with which to interpret 

this complex locus. The locus includes two T2D signals24,26: one colocalized with the NKX6-3 

eQTL in islets24 and the other colocalized with an ANK1 eQTL in adipose and muscle26,59.  
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NKX6-3 is highly and specifically expressed in islets (iESI decile = 10), while ANK1 is not (iESI 

decile = 2). The T2D risk alleles for the two signals were associated with lower islet NKX6-3 

expression and higher ANK1 expression in adipose and muscle, suggesting that the signals affect 

T2D risk in different tissues. We observed only one proinsulin association signal at this locus. 

While we might have expected it to align with the proposed islet NKX6-3 eQTL signal, it instead 

colocalized with the adipose ANK1 eQTL signal (Figure 2, Figure S8, Table S13). The proinsulin 

lead variant rs13266210 is in strong LD with the ANK1 eQTL (rs3802315, r2 = 0.84) and the 

East Asian AGEN T2D lead variant (rs62508166, r2 = 0.92), and HyPrColoc shows strong 

evidence of colocalization across all three studies (PPFC = 0.92). The A allele of rs13266210 is 

associated with increased T2D risk, higher ANK1 expression in adipose, and lower proinsulin. At 

this proinsulin signal, proxy variant rs6989203 (LD r2 = 0.84 with rs13266210) overlaps with an 

islet beta-cell single nucleus ATAC peak52 and is in high LD with the ANK1 eQTL site (r2 = 

0.93). Of the two T2D signals at the ANK1/NKX6-3 locus previously proposed to act in different 

tissues on different genes, the proinsulin signal colocalizes with the adipose ANK1 signal, versus 

the expected colocalization with islet NKX6-3. 

 

Credible sets and variant annotation and function 

We built a credible set of putative causal variants for each of the 36 signals. These 36 sets 

together contained 814 variants (Table S15). We extended the credible sets to include 276 

additional variants exhibiting LD r2 ≥ 0.8 (1000 Genome European-ancestry reference) with the 

lead variants, including 142 variants that were unavailable in the meta-analysis and therefore 

could not have been included in the Bayesian credible set. Three signals had one variant in the 

extended credible set (SGSM2, ELAPOR1, and the second signal in DDX31) and 14 signals 

(39%) had ten variants or fewer.  

 

The extended credible sets for 17 proinsulin signals contained coding variants (Table S16). 

Across all credible sets, we observed 1 nonsense, 18 missense, and 31 synonymous variants. The 

credible sets for 13 proinsulin signals contained at least one missense variant: seven signals in 

previously-identified proinsulin loci (TBC1D30, PCSK1, KANK1, FAM185A, the first and 

second signals at SGSM2, and the third signal in MADD), four in loci known in other glycemic 

trait GWAS (SLC30A8, GIPR, FAM46C, and PAM), and two that are not known proinsulin or 

glycemic trait genes (ELAPOR1 and WIPI1).The lead variant rs74920406 at the ELAPOR1 locus, 

a missense variant of low-frequency (p.His55Tyr, MAF = 0.04), was not previously associated 

with proinsulin or other glycemic traits but was associated with LDL (Table S17)60. This variant 

is conserved across species48,61,62 and has a probably damaging effect on the protein46. ELAPOR1 

encodes endosome-lysosome associated apoptosis and autophagy regulator 1 and inhibits beta-

cell insulin signaling by accelerating recycling of the insulin receptor and insulin-like growth 

factor receptors63. The credible set for WIPI1 contained a coding missense variant (p.Thr31Ile; 

rs883541). WIPI1 is a phosphatidylinositol-2-phosphate effector gene, which encodes a 

component of the autophagy machinery; skeletal muscle from severely insulin resistant patients 

with T2D displayed decreased expression of autophagy-related genes, including WIPI164.  

 

Among the 1,090 variants in the extended credible sets for all signals, 62 overlapped with an 

active enhancer in islets and 76 overlapped with an islet cell type single-nucleus ATAC-seq peak 

(Table S18). We thus examined regulatory annotations of proinsulin-associated credible sets. 

The variants were enriched in islet active enhancers (Figure 3, fold enrichment = 8.8, p-value = 
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4.6 x10-12). Among islet single-nucleus ATAC-seq peaks, beta cell peaks were most enriched 

(fold enrichment = 2.9, p-value = 5.1 x10-10).  

 

To further investigate plausible allelic effects of one variant located in an annotated ATAC-seq 

peak, we examined the regulatory function of lead variant rs10501320, at MADD, in 

transcriptional reporter assays. MADD is a well-documented proinsulin locus associated with 

proinsulin-to-insulin conversion65. Compared to a negative control, a genomic fragment spanning 

rs10501320 and the surrounding ATAC-seq peak showed ~3-fold increased transcriptional 

activity in rat insulinoma 832/13 cells and a ~4-fold increase in transcriptional activity in mouse 

insulinoma MIN6 cells, consistent with a role as an enhancer (Figure 3, Figure S9). The 

rs10501320-G allele showed 1.3 to 1.6-fold greater transcriptional activity than the C allele (p-

value <0.0001); the G allele was associated with higher proinsulin in this GWAS meta-analysis 

and higher fasting glucose previously27. The direction of effect was consistent with the MADD 

nonsense mutation rs35233100, which has been predicted to cause a loss of function and was 

associated with decreased proinsulin (Figure S9). These data suggest that rs10501320 may 

contribute to allele-specific differences in MADD transcriptional activity in islets. The direction 

of effect was consistent with the MADD nonsense mutation rs35233100, which has been 

predicted to cause a loss of function and was associated with decreased proinsulin (Figure S9)10. 

These data suggest that rs10501320 may contribute to allele-specific differences in MADD 

transcriptional activity in islets and further suggest that MADD is a causal transcript at this multi-

gene locus10,66.  

 

Discussion 

 

These genetic analyses of circulating proinsulin levels, based on large GWAS meta-analyses, 

identified 36 signals at 30 loci. We identified 12 previously-reported proinsulin loci and 18 

additional proinsulin loci. We replicate associations with low-frequency variants at TBC1D30, 

SGSM2, and MADD, loci that had previously been reported in an exome array analysis in a 

single cohort10. The only previously-described proinsulin locus that our study did not replicate 

was one reported as a cohort-specific signal near SV2B (p-value = 0.17)11. Characterization of 

these loci through eQTL colocalization, coding and regulatory annotation, and nearby gene 

function (Tables S11-S14) provided candidate genes that may influence insulin processing and 

secretion. 

 

Understanding how glycemic trait signals influence proinsulin can help elucidate potential 

pathways by which the variants may ultimately influence T2D.  We identified five plausible 

broad groups of encoded proteins: prohormone convertases, beta-cell transcription, G-protein 

modulators, regulation of cytoskeleton dynamics, and lysosomal maturation/endosome recycling 

(Tables S11, S14). In the first group we include genes PCSK1 and PCSK2 encoding the 

prohormone convertases PCSK1/3 and PSCK2 that are respectively responsible for cleaving the 

B-Chain and A-Chain from the C-Peptide during proinsulin processing to insulin. While targeted 

studies have implicated an association between genetic variants in PCSK2 and glucose 

homeostasis and T2D67, the association had not yet reached significance in a GWAS with T2D or 

other glycemic traits, and one study had suggested that PCSK2 did not significantly impact the 

beta cells’ ability to produce mature insulin68. We now demonstrate that the association reaches 

genome-wide significance in proinsulin, supporting a significant role for PCSK2 in beta cells 
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during the processing of proinsulin to insulin. The second group includes candidate genes 

implicated in beta-cell differentiation (BARHL1 at the DDX31 locus, JARID2, NKX6-3, SIX2, 

and SIX3) or the activation and maintenance of beta-cell transcription (BCL11A, C2CD4B, 

TCF7L2, and TLE1). For example, JARID2 has been shown to play a role in pancreatic and 

endocrine cell differentiation and beta-cell mass in mouse embryos69–71. The third group consists 

of genes mediating vesicle translocation and membrane fusion events by affecting the activity of 

small G proteins, such as Rab and Rho GTPases. DLC1, at the DLC1 locus, encodes a GTPase 

activating protein that promotes actin polymerization through regulating the Rho/Rock1 and is 

modulated by insulin-responsive pathways72,73. The three remaining loci in this group are 

established proinsulin loci whose nearby genes have been described previously (MADD, SGSM2, 

and TBC1D30)10. The fourth group is comprised of genes affecting the cytoskeleton, which 

undergoes dynamic changes during the processing and secretion of proinsulin at basal and 

stimulated states: ANK1, KANK1, LRRC49, and RNF6. KANK1 promotes exocytotic events by 

mediating actin polymerization74; LRRC49 at the LARP6 locus is a member of the tubulin 

polyglutamylase complex75; and RNF6 is an E3 ubiquitin-protein ligase that regulates actin 

remodeling76,77. Finally, the fifth group includes genes (ELAPOR1, SNX7, STX16, TPD52, 

WIPI1, and ARSG) implicated in endosome recycling and lysosomal maturation. In the beta cells, 

proinsulin is degraded in autophagosome-derived lysosomes via an endocytotic pathway that 

contributes to the tight regulation of insulin secretion and glucose homeostasis78,79. Both SNX7 

(encoding a sorting nexin80) and WIPI1 (encoding a WD40 repeat protein) play a role in forming 

autophagosome and transiting autophagosome to early endosome81,82. STX16 encodes a t-

SNARE involved in secretory vesicle membrane fusion and endosome recycling in the Golgi83,84. 

These genes might help further elucidate the mechanisms for insulin synthesis, processing, and 

secretion. 

 

Previously proposed clusters of T2D loci included two related to insulin deficiency that differed 

based on the direction of effect of the T2D risk allele on circulating proinsulin levels6–9. The 

allele associated with higher glucose was associated with higher proinsulin for half the lead 

variants, including all variants located near genes involved in beta-cell dysfunction and 

transcriptional regulation (Tables S10, S11, S14). For the remaining proinsulin loci, the alleles 

associated with higher glucose were associated with lower proinsulin; many of these variants are 

located near genes involved in cytoskeleton dynamics, lysosomal maturation, or endosome 

recycling (e.g. WIPI1, ELAPOR1, and RNF6). Thus, the directions of allelic effect on proinsulin 

relative to glucose can help distinguish between clusters of T2D loci6–9. 

 

As another approach to identify potential causal genes, we integrated GWAS signals with islet 

eQTLs through colocalization and SMR analyses. This approach identified four potential 

candidate genes at three loci that that have not previously been reported in proinsulin or any of 

the T2D and glycemic studies: SLC2A10, SLC7A14, WIPI1, and ARSG. Loci that colocalized 

with eQTL signals of more than one gene, such as SIX3 and WIPI1, could correspond to allelic 

effects on more than one gene, sequential effects, or effects on both genes for which only one 

gene is physiologically relevant to the trait. Our eQTL colocalization analyses also showed that 

the proinsulin signal at the NKX6-3/ANK1 locus does not colocalize with the primary AGEN 

T2D signal and NKX6-3 in islets, but rather with the secondary AGEN T2D signal and the ANK1 

eQTL in adipose26,38,39. Larger eQTL datasets and further characterization of their conditionally 

distinct signals may be valuable to better interpret colocalization with GWAS signals. Together, 
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the several GWAS traits and eQTL colocalizations at this locus suggest that the underlying 

mechanisms are not yet fully understood. While we attempt to offer plausible candidate genes for 

all our proinsulin signals, the genes identified through physical proximity to the lead variant, 

coding variants in the credible set, islet expression, and literature searches (Table S11-14) are 

predictions; functional work is invaluable to elucidate genes’ roles in the proinsulin.  

 

The SIX3 proinsulin locus was described previously as a T2D and glucose signal in East 

Asians26,27,85. Both SIX3 and SIX2 are highly and specifically expressed in islets, with an iESI 

score of 10 for both genes. SIX3 regulates beta cell development coordinately with SIX2, and 

knockdown of either gene impairs insulin secretion86,87. Despite a common allele frequency 

(MAF > 0.13 for all 1000 Genomes ancestries) across ancestries and evidence that the lead 

variant affects transcriptional factor binding and transcriptional activity85, GWAS meta-analyses 

of T2D and fasting glucose have failed to date to identify an association at p-value<5x10-8 in 

European-ancestry individuals24,27. Our proinsulin results demonstrate that the glycemic 

associations at this SIX3 signal are not specific to East Asians (Figure S10).  

 

The primary STARD10 signal, which colocalized with a T2D24–26 signal, also colocalized with 

both the STARD10 and ARAP1 lead islet eQTL signals (Figure S11). The proinsulin-decreasing 

allele at the STARD10 lead variant (rs77464186) was associated with decreased expression of 

both STARD10 and ARAP1. Although the strength of association was stronger with STARD10 

expression (eQTL p-value with rs77464186 for STARD10 expression = 5x10-34 vs. ARAP1 

expression = 6x10-7), the evidence for colocalization was stronger with ARAP1 (ARAP1 r2 = 

0.99, Posterior Probability of Full Colocalization, PPFC = 0.9) vs. STARD10 (r2 = 0.93, PPFC = 

0.60). Both STARD10 and ARAP1 are highly expressed in islets, with iESI scores of 9 and 7, 

respectively. The strength and direction of association between proinsulin and STARD10 were 

consistent with the evidence that STARD10 influences insulin granule biosynthesis and insulin 

processing by binding to phosphatidylinositides; beta cell deletion of Stard10 in mice led to 

impaired insulin secretion while overexpression of Stard10 improved glucose tolerance in high 

fat-fed animals88,89. 

 

Approximate conditional analysis software such as GCTA requires use of a large LD reference 

panel representative of the study participants. Even among single-ancestry analyses like this 

European-only proinsulin meta-analysis, use of different LD reference panels of the same broad 

European ancestry can result in strikingly different signals. This issue is particularly noticeable 

in regions with at least one strongly significant signal. For example, at the MADD locus (p = 

1.4x10-165), GCTA analyses identified nine, twelve, or twenty-two conditionally distinct signals, 

depending on which reference panel we employed (Table S6). The discrepancy in results led us 

to report a signal only when we observed it in at least two of three reference panels, reducing the 

total number of signals in the MADD locus to three – all of which had been previously reported 

to be associated with proinsulin, adding further confidence to the validity of these signals. While 

identifying conditionally distinct signals using meta-analysis summary results is invaluable, 

caution in interpretation of signals is warranted. 

 

To identify potential causal variants driving our observed signals that would have been missed in 

the regular credible sets built by the Bayesian fine-mapping approach from the association 

results alone, we defined an extended credible set as the union of variants in the Bayesian 
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credible set and variants in high LD with the lead variant (r2 > 0.8 in 1000 Genomes European). 

This approach recognizes that standard fine-mapping approaches may be mis-calibrated when 

applied to meta-analyses90, and that variants may have been excluded from the meta-analysis due 

to analytic or technical factors (e.g. indels are not imputed by the Haplotype Reference 

Consortium or variants with MAF < 0.5%), as well as variants that were poorly represented in 

our meta-analysis due to factors such as low sample size. The extended credible set approach 

added 276 variants, including 142 variants that were not included in the meta-analysis and 

therefore could not have been included in the Bayesian credible set. The extended credible set 

identified an additional missense variant in PCSK1 (rs6234), 15 variants that overlap active 

enhancers in islets, and 24 variants that overlap islet single nucleotide ATAC-seq cluster peaks. 

The extended credible sets provide a more comprehensive pool of candidate variants for 

mechanistic studies. 

 

Integration of proinsulin loci with complementary glycemic traits, expression data in trait-

relevant tissues, and functional follow-up provide candidate genes for T2D and hypotheses on 

potential avenues of mechanism for known T2D loci. While these proinsulin meta-analyses 

include a large sample size, the difficulty and cost in obtaining proinsulin measurements limits 

the sample size compared to studies of many other glycemic traits. Future research into genetic 

contributors to proinsulin will benefit from more and more diverse cohorts. Nonetheless, these 

findings may help accelerate our understanding of T2D disease pathology and promote 

translation into new therapeutics. 
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Table 1: Thirty loci associated with plasma proinsulin levels 
Locus rsid Chr Position EA/NEA EAF Beta StdErr P-value 

SIX3 rs12712928 2 45192080 C/G 0.16 0.09 0.01 1.5X10-21 

ELAPOR1 rs74920406 1 109704525 C/T 0.96 0.15 0.02 3.7X10-16 

TLE1 rs2796441 9 84308948 G/A 0.59 0.05 0.01 9.6X10-14 

TPD52 rs1346146 8 81047278 T/C 0.45 0.05 0.01 2.0X10-13 

GIPR rs10423928 19 46182304 A/T 0.22 0.06 0.01 7.6X10-12 

STX16 rs218473 20 57235980 C/T 0.32 0.05 0.01 1.5X10-10 

DLC1 rs2977105 8 12794444 C/T 0.82 0.06 0.01 1.0X10-09 

FAM46C rs826415 1 118153977 T/G 0.67 0.04 0.01 1.3X10-09 

PCSK2 rs111925767 20 17331621 T/G 0.23 0.05 0.01 1.6X10-09 

RNF6 rs10507349 13 26781528 G/A 0.78 0.05 0.01 1.9X10-09 

PAM rs75457267 5 102658770 C/T 0.96 0.10 0.02 2.2X10-09 

SLC7A14 rs56252324 3 170334547 A/C 0.87 0.06 0.01 5.4X10-09 

WIPI1 rs2302783 17 66447073 C/T 0.72 0.04 0.01 1.1X10-08 

NKX6-3/ANK1 rs13266210 8 41533514 G/A 0.21 0.05 0.01 2.1X10-08 

FAM185A rs10228495 7 102440184 C/T 0.45 0.04 0.01 2.9X10-08 

JARID2 rs16876519 6 15496122 A/G 0.85 0.05 0.01 3.5X10-08 

Previously-reported loci         

STARD10 rs77464186 11 72460398 C/A 0.19 0.26 0.01 3.7X10-202 

MADD rs10501320 11 47293799 G/C 0.76 0.21 0.01 1.3X10-165 

PCSK1 rs13169290 5 95729406 A/G 0.28 0.12 0.01 3.3X10-59 

CDC4A/B rs11856307 15 62399093 A/C 0.54 0.09 0.01 6.4X10-40 

TCF7L2 rs7903146 10 114758349 T/C 0.26 0.10 0.01 1.9X10-39 

SLC30A8 rs4300038 8 118217915 G/A 0.66 0.09 0.01 4.1X10-39 

LARP6 rs113350503 15 71111437 G/A 0.57 0.06 0.01 6.5X10-18 

DDX31 rs368476 9 135456552 A/G 0.65 0.07 0.01 7.6X10-21 

SNX7 rs6702126 1 99199954 G/A 0.65 0.04 0.01 8.7X10-10 

SGSM2 rs61741902 17 2282779 A/G 0.01 0.47 0.03 5.8X10-49 

TBC1D30 rs150781447 12 65224220 T/C 0.02 0.30 0.04 9.1X10-17 

KANK1 rs146375546 9 727176 G/A 0.03 0.26 0.04 4.3X10-11 

Loci in model without BMI adjustment 

SLC2A10 rs3091537 20 45332200 A/C 0.64 0.04 0.01 3.9X10-08 

BCL11A rs243018 2 60586707 G/C 0.45 0.04 0.01 2.4X10-08 

 
Chr, chromosome; EA, effect allele; NEA, non-effect allele; EAF, effect allele frequency; 

StdErr, standard error of beta. Loci are labeled by one or more nearby candidate genes. 
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Table 2: Six conditionally distinct proinsulin signals  

  Marginal associations Conditional associations   

Locus rsid 

EA/ 

NEA EAF Beta StdErr P-value bC bC_se pC 

LD with 

Primary 

(r2) 

STARD10 rs481206 C/T 0.69 0.12 0.01 3.8X10-62 0.06 0.01 1.0X10-16 0.068 

MADD rs35233100 C/T 0.94 0.35 0.02 1.9X10-104 0.23 0.02 3.0X10-46 0.154 

MADD rs1449626 A/C 0.78 0.01 0.01 4.8X10-01 0.06 0.01 7.0X10-15 0.068 

PCSK1 rs2117141 C/T 0.41 0.06 0.01 4.0X10-16 0.07 0.01 1.9X10-24 0.008 

SGSM2 rs2447103 C/A 0.51 0.07 0.01 3.5X10-26 0.07 0.01 5.3X10-22 0.004 

DDX31 rs7864386 G/A 0.56 0.03 0.01 1.6X10-06 0.04 0.01 1.8X10-10 0.027 

Conditionally distinct signals identified using GCTA-COJO and the eMERGE reference panel. 

EA, effect allele; NEA, non-effect allele; EAF, effect allele frequency; StdErr, standard error of 

beta; bC, conditional beta; bC_se, conditional standard error of beta; pC, conditional p-value. 

Results for both MADD signals are from the analyses conditioning on the other two MADD 

signals. 
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Figure 1. Direction of allelic effect of fasting glucose vs. fasting proinsulin. Standardized 

effect sizes for lead variants are shown from this study compared to fasting glucose from Chen 

(2021)27.  Left of the vertical line, alleles associated with higher fasting glucose and lower 

proinsulin; right of the vertical line, alleles associated with higher fasting glucose and higher 

proinsulin. 

 

Figure 2: The ANK1/NKX6-3 locus associations with proinsulin, T2D, and adipose ANK1 

expression. The proinsulin signal at this locus colocalizes with the second AGEN T2D signal 

and the METSIM adipose ANK1 eQTL signal (HyPrColoc PPFC = 0.92). We used approximate 

conditional analysis results for the AGEN second signal in HyPrColoc as well as for the plot 

shown above. AGEN results colored by ASN 1000G LD reference. 

 

Figure 3: Candidate variants may influence regulatory activity. A) regulatory element 

enrichment analyses using enhancers, accessible chromatin, and other data from islets, skeletal 

muscle, and adipose.  Proinsulin variants are enriched in islet active enhancers and accessible 

chromatin, especially in beta cells. B) The MADD locus in proinsulin, lead variant rs10501320. 

The MADD region is an area of extensive LD – the full locus is shown in Figure S3. C) The lead 

variant of the primary MADD signal is located in an intron of MADD and is in accessible 

chromatin in islets and an enhancer state and a region conserved across species. D) A 411-bp 

genomic element spanning the lead variant rs10501320 showed strong enhancer activity in a 

transcriptional reporter assay in two beta cell lines: MIN6 and 832/13. EV: empty vector; G/C: 

alleles at the lead variant rs10501320. In the eQTL and GWAS data, the G allele at rs10501320 

that showed higher transcriptional activity showed higher MADD expression levels in islets and 

is associated with higher proinsulin.  
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Figure 3 Click here to access/download;Figure;Figure 3 20221212.tif
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