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Abstract: As an indispensable type of information, location data are used in various industries.
Ultrawideband (UWB) technology has been used for indoor location estimation due to its excellent
ranging performance. However, the accuracy of the location estimation results is heavily affected
by the deployment of base stations; in particular, the base station deployment space is limited
in certain scenarios. In underground mines, base stations must be placed on the roof to ensure
signal coverage, which is almost coplanar in nature. Existing indoor positioning solutions suffer
from both difficulties in the correct convergence of results and poor positioning accuracy under
coplanar base-station conditions. To correctly estimate position in coplanar base-station scenarios,
this paper proposes a novel iterative method. Based on the Newton iteration method, a selection
range for the initial value and iterative convergence control conditions were derived to improve the
convergence performance of the algorithm. In this paper, we mathematically analyze the impact of the
localization solution for coplanar base stations and derive the expression for the localization accuracy
performance. The proposed method demonstrated a positioning accuracy of 5 cm in the experimental
campaign for the comparative analysis, with the multi-epoch observation results being stable within
10 cm. Furthermore, it was found that, when base stations are coplanar, the test point accuracy can
be improved by an average of 63.54% compared to the conventional positioning algorithm. In the
base-station coplanar deployment scenario, the upper bound of the CDF convergence in the proposed
method outperformed the conventional positioning algorithm by about 30%.

Keywords: UWB; indoor location; iteration algorithm; coplanar base station

1. Introduction

In recent years, positioning services have become necessary in daily life. While, GNSS
can provide accurate three-dimensional (3D) positions in outdoor environments, UWB
positioning is considered a reliable positioning method in indoor environments due to its
high ranging accuracy. With the development of two-way ranging (TWR) technology, UWB
positioning can achieve centimeter-scale ranging with unsynchronized clocks between
stations [1–3]. Many researchers have built indoor positioning systems based on UWB
technology, which can achieve centimeter-level positioning accuracy. These researchers
analyzed the usability of UWB technology and showed its effectiveness with a TWR ranging
technique in harsh environments [4,5].

However, there are still some problems in UWB positioning systems. Compared with
GNSS, which can provide accurate elevation, there are various limitations in the elevation
calculations of UWB system. In the outdoor environment, GNSS satellite positions are all
located in the zenith direction, and the elevation accuracy of the unknown point solution
results is worse than the plane positioning accuracy. Different GNSS satellites have different
orbital altitudes, and even satellites at the same orbital height have differences in altitude
angles, which helps to avoid extreme situations in which the same satellite height is used
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for the unknown point solution. In downhole positioning environments, the base-station
deployment height is limited to a narrow interval near the ceiling, and the unknown point
positioning solution lacks control in the elevation direction, making it difficult to obtain
high-precision positioning results. Therefore, the precision of the z-axis coordinates is
worse than that of the x-axis and y-axis coordinates. In outdoor environments, the surface
heights do not overlap, and one horizontal position corresponds to one elevation value.
High-precision elevation can be obtained by extrapolating the information from the Earth’s
gravity field. However, with UWB positioning, the same horizontal positions for people,
cars, and equipment are at different heights. In order to achieve control over equipment
and personnel safety, a high-precision 3D position is essential.

However, available methods do not take into account the needs of coplanar base-
station deployment and 3D positioning simultaneously. In this study, an existing iterative
algorithm was improved for coplanar base-station 3D positioning. The method achieves
the correct convergence of the results through two steps: initial value selection and iter-
ative control. Furthermore, this paper provides theoretical support and analysis for 3D
localization in coplanar base-station scenarios. The contributions include the following:

(1) Initial value selection scheme: For an indoor positioning scenario with coplanar
deployment of base stations, we analyzed the influence of base-station deployment
on the iterative calculation. We present a method for avoiding the computational
difficulties caused by initial value selection;

(2) Convergence control: Since there may be multiple extreme points in the nonconvex
function, we applied a convergence control method to ensure convergence to the
correct solution;

(3) Theoretical analysis: The accuracy of the positioning results was theoretically cal-
culated based on the least-squares method. The influence of base-station coplanar
deployment on the calculation of the positioning equation was analyzed. In addition,
the effect of a near-coplanar base-station equation on the results was derived.

After the improvement of the method, the localization solution could converge cor-
rectly in the case of coplanar base stations, and the localization accuracy was less than
10 cm, which provides the possibility of high-accuracy localization in cases of special
base-station deployment.

The rest of the paper is organized as follows: Section 2 briefly describes the localization
method based on the least-squares criterion. Section 3 proposes a new method adapted
to the coplanar deployment of base stations. Section 4 describes simulations and the
experimental campaign for the new algorithm. Section 5 discusses the impact of the base-
station coplanar deployment on computation, and Section 6 concludes the paper and shows
the limitations of the algorithm.

2. Related Work
2.1. Traditional Distance-Based Indoor Position Method

To facilitate the description of the indoor positioning model, a three-dimensional
cartesian coordinate system was set, where the x- and y-axis are horizontal and the h-axis
is vertical under the right-hand rule. The measured distance, unknown point, and known
location for the base station have the following relationship:

di =

√
(Pu − Pi)

T(Pu − Pi) (1)

The base station at the known location is marked as P1(x1, y1, h1), · · · Pn(xn, yn, hn).
The measured distance between the mobile station and each base station is represented



Sensors 2022, 22, 9634 3 of 20

by d1, · · · , dn, and the location of the unknown mobile point is denoted Pu(x, y, h). The
system of equations is solved for the unknown point coordinates as follows:

(x− x1)
2 + (y− y1)

2 + (h− h1)
2 = d2

1
...

(x− xn)
2 + (y− yn)

2 + (h− hn)
2 = d2

n

(2)

The above relationship between the observed value and the coordinate value of the
point to be found in Equation (2) can be transformed into an error equation, which is
expressed as a matrix as V = F(X)− D. The vector

[
v1 . . . vn

]T is denoted V, X =[
x2 + y2 + h2, x, y, z

]T , F(X) is a function of X, and the constant term[
d2

1 − x2
1 − y2

1 − h2
1, . . . , d2

n − x2
n − y2

n − h2
n
]T is represented as D; Rearranging Equation (2)

gives the following:

v1
...

v2

 =

1 −2x1 −2y1 −2h1
...

...
...

...
1 −2xn −2yn −2hn




x2 + y2 + h2

x
y
h

−
d2

1 − x2
1 − y2

1 − h2
1

...
d2

n − x2
n − y2

n − h2
n

 (3)

where the solution results obey the following constraint limits:

X ∈
{
(x0, x1, x2, x3)

T ∈ R4
∣∣∣x0 = x2

1 + x2
2 + x2

3

}
(4)

Direct methods and iterative methods can both be used in solving the above equations.
According to the least-squares criterion, the direct method solves the X expression as:

X = argmin||F(X)− D ||2 (5)

After linearizing and organizing Equation (5), B denotes the X coefficient array and L
denotes the constant-term array, with the superscriptˆindicating the estimated value. X̂
can be expressed as:

X̂ =
(

BT B
)−1

BT L (6)

Iterative methods are widely used for the solution of nonlinear least-squares prob-
lems [6]. Under the minimum sum of squares of errors criterion, the optimized method
can be applied to obtain the solutions for the unknown points for indoor positioning.
The objective function is convex and quadratically differentiable in the solution interval.
Newton’s method can be used to iterate continuously toward the minimum residual sum
of squares and find the target position, and the solution pseudocode is as follows.

Algorithm The Newton’s method of solving the position algorithm

Step = 0;
Iteration initial value = X0;
gk = F′(X0), H0 = ∂2

xxT F(X0);
Maximum number of iterative calculations = k;
While (|Xk+1 − Xk| < threshold) and iterations < k

tkQ(xk) =
[
∂2

xxT F(xk)
]−1

;

xk = xk − gk H−1
k ;

gk = F′(Xk);
Hk = ∂2

xxT F(xk);
k = k + 1;
End
Return Xk



Sensors 2022, 22, 9634 4 of 20

More common is the TS-LS method. A set of nonlinear measurement equations is
linearized and expanded in a Taylor series at a point that serves as the initial true position
estimate. This set of linearized equations is solved to produce a new approximate position,
and the process continues until a pre-specified criterion is satisfied [7]. Considered the
TOA distance equation, the expression for the objective function matrix is as follows:

x−x1
d̂1

y−y1
d̂1

h−h1
d̂1

...
...

...
x−xn

d̂n

y−yn
d̂n

h−hn
d̂n


x

y
h

 =

d1 − d̂1
...

dn − d̂n

+

v1
...

vn

 (7)

This can be written in a compact form as:

AX = L + V (8)

The weighted LS solution of Equation (8) is:

X =
(

AT A
)−1(

AT(L + V)
)

(9)

There are many iterative optimization methods available for the iterative solution
process; for example, the Levenberg–Marquardt method [8], Broyden–Fletcher–Goldfarb–
Shanno (BFGS) methods [9], and so on.

2.2. Advanced Research

In order to achieve 3D positioning in multiple scenes, many studies have been un-
dertaken, including studies in specific positioning environments. Some researchers first
narrowed the localization scope and found a possible solution interval [10]. In scenarios
where 3D positioning needs to be acquired, researchers have improved the dispersion of
the base station in the altitude direction [11–14]. One method is to deploy a dense grid of
anchor networks [15]. The introduction of new sources of information is another type of
method used to obtain 3D positioning. Some studies have used geometric relationships
to estimate localization results [16,17]. The authors of [18] combined ranging characteris-
tics with map features for localization. Another study [19] used RFID to localize people.
Magneto-inductive technology has also been used in 3D positioning due to its ability to
obtain angular information [20]. Boosting algorithms are another class of methods used
to make results converge correctly [21–23]. In the least-squares iterative method-based
calculation, the algorithm improves the positioning accuracy by obtaining accurate initial
values [24], while other methods improve the convergence of the algorithms [16].

When it comes to coplanar localization of base stations, these methods lack adaptive
treatment of the environment, making them less effective. New improvements are needed
for the traditional methods, and the related work is presented in Section 3.

3. A Proposed Method for Base-Station Coplanar Iterations
3.1. Iterative Initial Value Selection

When using the iterative method, as algorithim1 shows, selecting an initial value close
to the true value is beneficial for correct convergence. When dealing with convex functions,
the poles are single, the iterations are always updated in the direction of the poles, and
the choice of initial values does not affect the correctness of the final result. In the case of
nonconvex functions, there may be multiple poles forming different first-order derivative
descent regions, and the iterative solution may be near any one of these poles.

When the base station is laid out near the plane, an unknown point can cause the
correct solution to be indistinguishable from the base-station high point if it is too close to
the base-station layout plane. In this paper, we assume that the base station is deployed
near the top surface of the space, all the unknown points are located below the base
station, the base station is uniformly deployed in the x and y directions, and the mobile
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unknown points are located inside the base station envelope. xANCmin < xTAG < xANCmax,
yANCmin < yTAG < yANCmax, and hTAG < hANC. The subscript TAG indicates a mobile
unknown point, and ANC indicates a known base station.

Newton’s method was chosen to iteratively calculate the value of the unknown point,
and the method can converge correctly in the x and y directions by taking into account the
calculation of the height of the near-plane deployment. The solution space for the mobile
station location is:

X =

x
y
h

 ∈
(x, y, h)T ∈ R3

∣∣∣∣∣∣
xANCmin < x < xANCmax
yANCmin < y < yANCmax
h < hANCmin < hANCmax

(10)

The superscript ∼ indicates the true value. There are two extreme-value points for the
objective function in the solution space: XTAG1 ≈

[
x̃, ỹ, h̃

]T

XTAG2 ≈ [x̃, ỹ, hANC]
T

(11)

Bounded by the extreme-value point near the true value, the initial value for the
h direction is selected in the two intervals; if the iterative initial value is between the
true value and the base station (i.e., h̃ < h0 < hANC), the iteration process may tend
toward any extreme-value point. If there is reliable prior localization information about
the unknown point, the model may be able to control the iteration to avoid the incorrect
extreme-value point, but this is often difficult to achieve in practice. If the initial value
of the iteration is smaller than the true value, h0 < h̃ < hANC, the iterative process will
necessarily approach the minimum value near the true value first. Therefore, choosing
initial values in the h direction that are smaller than the true value will facilitate iteration
toward the correct solution.

It is assumed that the a priori information is the relative relationship between the
unknown point and the base-station plane, the coordinates of the base station are known,
and the observed value is the distance between the unknown point and each base station.
The initial value xo,yo of iteration in the x and y directions can be set as any value in the
solution space, and the initial value ho of iteration in the h direction is set as the minimum
value for the height in the solution space. If the height has a priori information, ho is set to
any value less than the height of the unknown point; that is,

X ∈
{
(xo, yo, ho)

T ∈ R3
∣∣∣ xANCmin < xo < xANCmax, yANCmin < yo < yANCmax, ho < h̃TAG

}
(12)

In this case, using Newton’s method, the model will iterate in the h direction in an
increasing manner; it will first determine the vicinity of the correct solution and can then
be made to converge toward the correct solution in the elevation direction by choosing an
appropriate step size.

3.2. Iterative Process Controls

The initial value selection process provides some help in the calculation but, in practice,
the iteration points may cross the “valley” near the correct extremum due to the slow update
in the x and y directions. If the iteration step is too large, the iteration point may jump out
of the correct solution. Therefore, it is necessary to control the iteration step size based on
the initial value selection.
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The calculations for the iterative Newton’s method employed in the positioning
algorithm are as follows:

Xk+1 = Xk −
(

∂2VTV
∂X2

)−1(
∂VTV

∂X

)
(13)

The iteration step is 1, and the size of the iterative update value is determined by the
first-order derivative and second-order derivative of the function. Near the extreme value,
the value of the first-order derivative gradually decreases, and the inverse of the second-
order derivative may be larger, resulting in the direction value being larger, the iteration
update value changing too fast, and the convergence becoming problematic, causing the
model to jump out of the iterative solution space in the positioning environment. Therefore,
it is necessary to increase the step size to limit the iterations.

Assume that centimeter-level accuracy is required for the calculated positioning result,
and the step adjustment coefficients are denoted diag

(
tx, ty, th

)
. tx, ty, and th denote the

step adjustment parameters for the three directions and are set to 10−c, where C is a
nonnegative constant. After the adjustment, all three directional components are updated
to the centimeter level, which is represented as:

∆x
∆y
∆h

 =

tx 0 0
0 ty 0
0 0 th




∂VTV
∂x2

∂VTV
∂x∂y

∂VTV
∂x∂h

∂VTV
∂y∂x

∂VTV
∂y2

∂VTV
∂y∂h

∂VTV
∂h∂x

∂VTV
∂h∂y

∂VTV
∂h2




∂VTV
∂x

∂VTV
∂y

∂VTV
∂h

 <

0.1
0.1
0.1

 (14)

If the first-order bias derivative jumps positively or negatively, this means that the
current step size cannot be used to approach the extreme-value point. The step adjustment
value can be further reduced to iterate at the millimeter scale and improve the accuracy of
the positioning results.

Since there are multiple first-order derivative zeros in the coplanar direction of the
base station, the iterative calculation may still cross the correct solution after limiting the
choice of the initial value. Therefore, restrictions are added to the first-order derivative
iteration values during the generation process to avoid this situation.

After the initial value is selected, the first-order bias value of the h-axis increases
continuously from the bottom of the measurement space and reaches the first zero point
near the true value. The h value continues to increase, the first-order bias value rises
and then falls, and the second zero point exists at the base station deployment height. In
accordance with the variation, the iteration of h is restricted to the increasing direction
during localization estimation. When the first-order partial derivative value at the new
iteration point is smaller than the previous value, the continued iteration may converge to
the wrong extreme-value point. In this case, the value of the iteration point H is reduced to
ensure that the iteration is updated in the correct solution neighborhood, and the model
iterates in the direction of the increasing first-order derivatives of H.

In general, after the initial value selection and iteration step restriction, the inter-
mediate value of the iteration will not slip into the extreme point near the base-station
deployment elevation. The strongly set constraint exists only as a guarantee of the calcula-
tion process.

The flow chart for the new algorithm with initial value selection and iterative process
control is shown in Figure 1.
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Figure 1. New algorithm flow chart.

4. Experiment
4.1. Multitest Point-Positioning Simulation

In this section, we describe the simulations performed to test the proposed method,
and then the TSLS and ILS were chosen as benchmarks. Coordinate accuracy and algorithm
operation time were both considered to assess the performance of the proposed method.
In addition, experiments were carried out for different distance observation errors. The
simulation scenario is shown in Figure 2.

Base0station and test0point configuration: The coplanar station layout is shown in
Figure 2. Four base stations, the coordinates of which were known, were set at the four
corners of the ceiling in the test space, which means that the activity range of all test points
was below the height of the base stations, and their planar coordinate activity range was
limited. The coordinates were as follows: A1(1, 1, 3), A2(1, 13, 3), A3(13, 13, 3), and A4(13,
1, 3). Fifteen test points were randomly generated in the test space.

Distance observation: Observations were generated for distances between every base
station and every test point, and random errors obeying N

(
0, 52) were added to simulate
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the reality, the unit of which was centimeters. All observations were assumed to be
unaffected by occlusion and multipath points. One hundred epochs of observations were
generated at each test point: x = d1, d2, d3, d4.

Figure 2. Configuration with four base stations and fifteen test points.

4.1.1. Internal Compliance Accuracy

The results calculated with three methods were compared to the observed values. The
first was the restricted iterative least-squares (ILS) method introduced in Section 2, the
second was the classical Taylor series least-squares (TSLS) solution method, and the third
was the method proposed in this paper. The estimation results for multiple epochs showed
that these methods differed in accuracy and stability, and the cumulative distribution
function (CDF) reflects the magnitude of the localization result bias. The upper bound of
the CDF convergence results for all estimations for each point was taken to represent the
difference in localization accuracy between the three methods. The stability of the results
was determined by calculating the variance in the estimates for each test point. Table 1
gives the specific statistical values for each of the 15 test points. It can be seen that the
proposed method substantially outperformed the ILS [7] and TSLS methods in terms of
accuracy and stability.

Table 1. Multi-epoch results statistics.

Test Point
Maximum Error in Position/m Standard Deviation/m

Proposed Method TSLS ILS Proposed Method TSLS ILS

1 0.098 0.129 2.364 0.045 0.088 0.868
2 0.099 1.285 5.066 0.048 0.051 2.449
3 0.098 0.286 3.124 0.049 0.072 1.448
4 0.076 1.034 4.501 0.043 0.052 2.200
5 0.08 0.400 3.553 0.048 0.058 1.541
6 0.083 0.566 2.025 0.044 0.064 0.596
7 0.083 0.983 0.947 0.06 0.215 0.362
8 0.093 1.749 5.96 0.039 0.045 2.905
9 0.079 0.289 2.538 0.047 0.092 0.837

10 0.074 1.808 6.026 0.036 0.037 2.967
11 0.093 1.048 1.169 0.058 0.202 0.375
12 0.094 0.039 2.812 0.052 0.064 1.098
13 0.088 1.343 5.112 0.043 0.045 2.499
14 0.085 1.553 5.582 0.045 0.051 2.668
15 0.073 1.150 0.646 0.052 0.154 0.250
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The statistics show that the estimation results obtained with the proposed method
could all converge within 0.1 m, while most of the ILS results were outside of 1 m, and
the TSLS results mostly varied within 2 m. The standard deviation (SD), as a reference
indicator of internal compliance accuracy, indicated that the results of the proposed method
were more concentrated than the ILS and TSLS results, which makes it easier to find incon-
sistent values and reject coarse differences during practical applications. This difference is
visualized in Figure 3.

Figure 3. Statistical comparison of the three methods. (a) the comparison of CDF coverage upper
bound (b) the comparison of SD.

4.1.2. External Compliance Accuracy

The internal conformity accuracy reflects the characteristics of the results themselves,
and a comparison of the results with the true values can demonstrate the accuracy of
the results. Both aspects illustrate the advantages and disadvantages of different method
estimation results. A comparison of the estimated external conformity was undertaken.
Each epoch’s results were averaged to obtain a final value for the point location estimation.
The main difference in the positioning accuracy between the three methods was in the
elevation direction. The results are shown in Table 2.

Table 2. Three methods for estimating the position results.

Test Point Reference ILS δz/m TSLS δz/m Proposed Method δz/m

1 (1.248, 7.284, 1.96) 0.466 −0.132 −0.050
2 (6.038, 5.374, 0.553) 2.543 1.281 −0.003
3 (7.783, 8.064, 1.551) 1.683 0.282 −0.025
4 (7.308, 10.866, 0.821) 2.291 1.032 −0.021
5 (9.722, 2.896, 1.44) 1.763 0.397 −0.011
6 (8.932, 3.157, 2.396) 0.908 −0.570 −0.068
7 (1.621, 7.683, 2.811) 0.119 −0.986 −0.077
8 (5.778, 6.012, 0.097) 3.047 1.747 −0.001
9 (7.579, 1.174, 2.12) 1.204 −0.292 −0.049

10 (9.638, 7.617, 0.048) 2.993 1.806 −0.012
11 (7.165, 3.367, 2.869) 0.329 −1.052 −0.049
12 (10.194, 5.744, 1.879) 1.272 −0.041 −0.039
13 (4.781, 8.351, 0.501) 2.224 1.340 −0.016
14 (5.774, 8.356, 0.295) 3.266 1.549 −0.010
15 (2.698, 10.638, 2.979) 0.059 −1.153 −0.105

The comparison between the estimation results of the three methods is shown in
Figure 4. The multi-epoch localization results of these methods differed significantly in
accuracy and stability, where the red crosses indicate data outliers.
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Figure 4. Estimated position errors for the three methods.

The difference between the upper and lower quartiles of the estimation error of the
proposed method was stable within 10 cm, and the difference between the median and 0 did
not exceed 5 cm. Excluding some outliers, the absolute values of most of the estimated abso-
lute errors were less than 10 cm. This means that the average or median of the multi-epoch
results from the observations should be closer to the true values. Extending the observation
time or increasing the sampling frequency would improve the positioning accuracy.

The estimation error of the traditional ILS method fluctuated widely, and when the
estimation results were better, the error in the results could be stabilized at the centimeter
level, but most of the test points had an error of more than 1 m. The absolute error
distribution of the test points was not uniform, the median of some of the data was close to
the upper quartile, and the estimation results for the different calendar elements varied
widely. This can lead to the lack of a reference value for the normalized results.

The estimation error value using the TSLS method was stable but greater than that
using the proposed method. When the estimation results were good, the error in the results
could be stabilized at the centimeter level, but most of the test points reached the meter
level and the error was unstable, which can lead to difficulties in estimating the result error
size in application scenarios.

To compare the performance of the proposed method and ILS in estimating test point
positions, the mean square error (MSE) was used as an evaluation indicator:

MSE = E
m

∑
j=1

[(
x̂j − x̃

)2
+
(
ŷj − ỹ

)2
+
(
ẑj − z̃

)2
]

j = 1, 2, . . . 100. (15)

where ẑj and z̃ are ĥj and h̃, respectively.
(

x̂j, ŷj, ĥj

)
represent the test point estimate

coordinates in the first j epochs,
(

x̃, ỹ, h̃
)

represent the true coordinates, and j indicates the
different observation epochs. The MSE is effective in reflecting position accuracy statistics.
The MSE for each test point is listed in Table 3. Compared with the traditional ILS and
TSLS methods, the proposed method resulted in a mean improvement percentage for the
MSE of 63.54%, and all estimation improvements were above 30%. It can be seen that the
accuracy and stability of the proposed method were better than those of the ILS method.
The TSLS method itself has a large MSE, which may be due to the fact that the calculation
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results tend to diverge without control. The improvement in the MSE was very obvious
after the new method ensured the convergence of the results.

Table 3. Comparison of the MSEs of the three methods.

Test Point ILS
MSE/m

TSLS
MSE/m

Proposed
Method MSE/m

Improvement
over ILS

Improvement
over TSLS

1 0.088 0.868 0.001 36.29% 99.89%
2 0.051 2.449 0.002 76.68% 99.91%
3 0.072 1.448 0.001 76.71% 99.92%
4 0.052 2.200 0.001 40.43% 99.97%
5 0.058 1.541 0.001 78.30% 99.91%
6 0.064 0.596 0.002 77.26% 99.74%
7 0.215 0.362 0.002 82.64% 99.45%
8 0.045 2.905 0.001 29.47% 99.96%
9 0.092 0.837 0.002 71.12% 99.82%

10 0.037 2.967 0.001 88.55% 99.97%
11 0.202 0.375 0.002 64.79% 99.50%
12 0.064 1.098 0.001 65.76% 99.90%
13 0.045 2.499 0.001 77.05% 99.96%
14 0.051 2.668 0.001 34.95% 99.96%
15 0.154 0.250 0.001 80.05% 99.52%

4.2. Simulation and Estimation of Different Ranging Error Positions

The position estimate simulation was based on observations generated from a de-
termined value for the error variance. To verify the proposed method position results
according to different distance variance values, we conducted a group of distance mea-
surements of a fixed test point and calculated its position using the proposed method.
Considering that the simulation data of the last experiment were generated with a deter-
mined value of 25 cm2 error variance, a simulation using data with different variances was
necessary to verify the proposed method’s ability to calculate data with different distance
variances. In the simulation, a group of distance measurements of a fixed test point were
generated, and the position was calculated from the measurements using the proposed
method. The test point in the middle of the measurement space was selected: P(7, 7, 1.5).
The coplanar base-station configuration was the same as that shown in Figure 2, and the
range variance changed from σ = 0 cm to σ = 10 cm. One hundred epoch observation
values were generated for each variance. For each epoch observation, a position estimate
and the MSE were calculated. The position results using the three methods with different
ranging errors are compared in Figure 5. The subplot titles indicate the ranging errors
of the corresponding simulation experiments, and the two sets of data were the mean
and variance values. In each case, the localization error and the variance of the proposed
method were better than those other two methods.

To present the MSE of the position results using the proposed method with different
ranging errors in detail, the change curve for the MSE with the ranging variance is shown
in Figure 6, The line between the points indicates the trend of change.

The MSE increased linearly as the ranging error increased. The MSE was less than 0.13
when the range error was in the centimeter range, and this accuracy is sufficient for general
positioning scenarios. For higher accuracy requirements, the corresponding range accuracy
matching is required.
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Figure 5. Comparison of position results with different ranging errors.

Figure 6. MSE change with ranging variance for the proposed method results.

4.3. Dynamic Position Experimental Campaign

A DW1000 UWB system was selected as the base station for ranging. Four base stations
were deployed in the test space, and one unknown mobile station was moved around the
test space. Base stations were deployed at the four corners of a square indoor scene
(12 m × 12 m), and the height of the base stations was approximately 2 m, as shown in
Figure 7a. The coordinates were as follows: A1(1, 1, 2.066), A2(1, 13, 2.081), A3(13, 13, 2.013),
and A4(13, 1, 1.997). The unknown station was assumed to be on a mobile stand with a
height of approximately 1.5 m, and it was connected to a computer to record positioning
data, as shown in Figure 7b. The test space was in a building with a patio structure. The
ceiling was very high, which helped to avoid ranging errors caused by signal reflection
from the ceiling. The floor of the test space was square, and the base stations were laid
in the four corners of the open space with stands at a height of about 2 m. The unknown



Sensors 2022, 22, 9634 13 of 20

points moved below the surface that the base stations lay on. A top view of the layout of
the base stations and the moving trajectory of the unknown point is shown in Figure 8.

Figure 7. Erection of base stations and mobile station. (a) Base station (b) unknown station.

Figure 8. Test environment top-view diagram.

In the experiment, the experimenter moved a ground marker around the experimental
site and collected real-time UWB data. The trajectory path was almost a circle, as shown
in Figure 8. The measurement frequency was 10 Hz, and a total of 141 ephemeris dis-
tance measurement results were recorded. One positioning result was calculated for each
ephemeris, and all results were matched with the sampling time to generate the mobile
station moving track.

The positioning trajectories calculated with the proposed method, the ILS method,
and the TSLS method are shown in Figure 9. During the measurement, the accuracy of
the positioning results for all ephemeris elements was counted, and the average errors,
maximum errors, and minimum errors of the three methods are compared in Table 4. In
agreement with the simulation results, the positioning accuracy of the proposed method
was significantly higher than that of the ILS and TSLS methods, with an error of less than
5.5 cm and an average error of approximately 2.4 cm, which is suitable for the needs of
practical applications. The ILS results deviated greatly from the real measurements, with
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an average error of over 1 m. The TSLS results converged to the height around the base
station, which was caused by the multipolar value of the objective function.

Figure 9. Measured results diagram.

Table 4. Comparison of the three methods.

Method Mean Error/m Max Error/m Min Error/m

ILS 0.354 0.638 0.228
TSLS 0.565 0.579 0.553

Proposed method 0.024 0.054 0.002

5. Performance Analysis

The base-station configuration affects the objective function of the location estimation,
and this effect is quantitatively analyzed in this section. Firstly, a theoretical derivation of
the upper limit of the localization accuracy of the least-squares criterion, which is closely
related to the base-station configuration, is presented. Secondly, the reasons why the
iterations have difficulty in converging correctly during the iterative solution process for
the positioning equations when the base stations are coplanar are described. In addition,
this section provides describes an experimental comparison of the position estimation
results in different base-station deployment scenarios.

5.1. Least-Squares Algorithm Positioning Accuracy Analysis

In the location estimation process, the coordinates of the unknown point are assumed
to be X = [x, y, h]T . Based on the known base-station coordinates and the distance obser-
vations, the unknown parameters, observations, and base-station coordinates are jointly
listed in the following equation: d̂i = fi(X). The Taylor expansion of the part to the right
of the equals sign with the approximate estimated value Xo = [xo, yo, ho]

T is obtained as a
system of equations for the observations:

d̂1
...

d̂n

 =


− (x1−x)√

d2
1o

− (y1−y)√
d2

1o
− (h1−h)√

d2
1o

...
...

...
− (xn−x)√

d2
no
− (yn−y)√

d2
no
− (hn−h)√

d2
no


x

y
h

−

− (x1−x)√

d2
1o

− (y1−y)√
d2

1o
− (h1−h)√

d2
1o

...
...

...
− (xn−x)√

d2
no
− (yn−y)√

d2
no
− (hn−h)√

d2
no


xo

yo
ho

+


√

d2
1o

...√
d2

no

 (16)
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In Equation (13), we can note that the unknown [x, y, h]T is X, L̂ is the matrix represen-

tation of the vector
[
d̂1, . . . , d̂n

]T
, and A is the matrix of X coefficients. The constant term

matrix is denoted C. The equation is expressed in matrix form as L̂ = AX + C, which gives
the error equation: V = AX + C− L̂. The expression for X is obtained as follows:

X =
(

AT A
)−1

AT(L̂− C
)

(17)

Q denotes the covariance and the subscript denotes the covariance object. According to the

covariance propagation law, the covariance of X is Q∆X∆X =
(

AT A
)−1 ATQ

L̂L̂
A
((

AT A
)−1
)T

.
Each observation is assumed to have the same precision and variance of 1, which

means that Q
L̂L̂

= 1
σ2

0
D

L̂L̂
= I. The covariance array of the solution is:

Q∆X∆X =
(

AT A
)−1

AT IA
((

AT A
)−1

)T
=
(

AT A
)−1

=

 σ2
x σxy σxh

σyx σ2
y σyh

σzx σzy σ2
h

 =

a1 b1 c1
a2 b2 c2
a3 b3 c3

−1

(18)

Assuming that multiple base stations are deployed coplanarly in the horizontal direction
(that is, h1 = hi = hn), consider the expression for the accuracy of the h-positioning results:

σ2
h =

a1b2 − a2b1

(a2b3 − a3b2)c1 + (a3b1 − a1b3)c2 + (a1b2 − a2b1)c3
(19)

This includes the variance and mutual covariance of the unknown three-parameter
solution, as expressed by:

a1 = ∑n
i=1

(xi−xo)
2

d2
io

, b2 = ∑n
i=1

(yi−yo)
2

d2
io

, c3 = ∑n
i=1

(hi−ho)
2

d2
io

, b1 = a2 =

(
∑n

i=1
(xi−xo)(yi−yo)

d2
io

)
,

c1 = a3 =

(
∑n

i=1
(xi−xo)(hi−ho)

d2
io

)
, b3 = c2 =

(
∑n

i=1
(hi−ho)(yi−yo)

d2
io

)
.

As seen from the expressions, the solution on the h-axis is a function of only the base
station’s position relative to the point of interest.

The variance can be used to effectively assess the degree of dispersion in the algo-
rithm’s in the results prior to calculation. To a certain extent, it reflects the reliability of
the results. Equation (16) shows that the variance in the calculated results increases as the
base station approaches coplanarity, and the localization accuracy decreases to the point
where the correctness of the results cannot be determined. This is precisely the reason why
the localization results vary when facing different base-station configurations using the
ILS method.

5.2. Impact of the Iterative Method on Base-Station Coplanarity

Using a specific calculation process, this section analyses the localization solution for
the base station.

When the base stations are coplanar, the objective function is nonconvex, the objective
function solution constantly converges to the point where the first-order derivative is
zero, and the extreme value is not unique, leading to difficulties in finding the iterative
solution. If we set up multiple base stations at the same height h1 = · · · = hn, the first-order
derivative of the h direction is expressed as follows:

∂VTV
∂h

= 2
n

∑
i=1

(h− hi)

1− d̂i√
(x− xi)

2 + (y− yi)
2 + (h− hi)

2

 (20)

Assuming there are four reference stations laid out on a common surface, one test point
will be located at the middle of the test space. The values of fixed x and y are consistent with
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the true coordinates, and the first-order-derivative changes in the h direction are plotted
in Figure 10. The x-axis in the figure indicates the h variation and the y-axis indicates the
magnitude of the first-order derivative.

Figure 10. First-order derivative of the objective function in the coplanar direction.

As shown in Figure 10, the first-order partial derivatives appear numerically as multi-
ple zeros, h = hANC, h = h̃TAG, and h = 2hANC − h̃TAG. A previous study [25] explored the
multipolarity case can affect the objective function in the case of base-station coplanarity,
where the iterative process may fall into the vicinity of different poles due to the presence
of multiple poles.

The selection of the initial iteration value is one of the important factors that affect
the iterative process. With the initial value selection method proposed in this paper, it is
easier to obtain the correct solution by first selecting a point near the correct extremum
point in the coplanar direction in the calculation. Controlling the step size of the iterations
helps the iterative results to converge. The iterative direction control is achieved through
the combination of the limitation of the iterative initial value range and the determination
of the first-order derivatives of the computational process. With the combination of these
two aspects, the correctness of the computational results is guaranteed.

The first-order derivative of the objective function has zeros h = 2hANC − h̃TAG
around the true value; in addition, when the base stations are completely coplanar,
hANC1 = · · · = hANCn, the first-order derivative increases the zero h = hANC point
number in the localization space. The maximum value of the mutual difference in the
base-station heights is used as the representation of the degree of coplanarity, and a value
closer to 0 indicates that the base station is deployed in a nearly coplanar fashion. As the
degree of coplanarity gradually increases from 0, the first-order-derivative value close to
the coplanarity elevation value also gradually increases, and the iteration cannot take a
minimal value close to zero. When not considering the ranging error, different iterative
extrema can be judged according to the number of iterative zeros that are close to zero, and
the extrema that converge to the correct solution can be selected after discrimination. Based
on the iterative threshold setting and considering the distance error, almost-coplanar base-
station deployment can be achieved within a particular activity space. After calculation
and deduction, the base-station elevation can be determined by:

h− hANC

(
σddr

σdrdmax

)
≤ hANC ≤ h + hANC

(
σddr

σdrdmax

)
(21)

where σd is the relative maximum error value of the distance observation, σdr is the relative
error value of the current distance observation, dr is the current distance observation
value, dmax the maximum distance observation value of the observation space, hANC is the
base-station height, and h is the average height of the base station.

When the base-station height is active in the above range, the first-order derivative of
the objective function is numerically difficult to distinguish from the extreme values close
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to the base-station height and the near-real values. Therefore, it is difficult to determine the
position result. Multiple extreme points can be clearly distinguished when the base station
moves beyond this range. The range is expressed in relation to the target movement point
and the height at which the base station is deployed in the measurement environment.

In the above theoretical analysis, the error in the measurements caused by the distance
measuring equipment was not considered, and the first-order derivative can be set to 0
under the ideal distance observation condition. However, due to the limited observation
accuracy of instruments, there will be errors in the actual measurement results. The
observation results can also be disturbed by the environment so that the mean value of
the observation error is not zero, resulting in the first-order derivative not being set to
zero. In the iterative calculation process, the iterative stopping threshold needs to take into
account the above error factors to ensure that the position results can be obtained. The
threshold value of the algorithm can also be applied in positioning environments where
the base stations are not strictly coplanar and can change within a certain range near the
deployment plane.

5.3. Simulation Results for Different Base Station Layouts

In this section, the influence of the base-station configuration on the positioning
accuracy is presented.

Four base stations were set in two scenarios. First, all base stations were set at a level
of 6 m, and the base station coordinates were (1,1,6), (13,13,6), (1,13,6), and (13,1,6). Second,
four base stations were evenly distributed on two elevation planes; specifically, (1,1,0),
(1,13,6), (13,13,0), and (13,1,6). The spatial midpoint (7,7,4) was selected as the test point in
the two scenarios, and two different scenario configurations are shown in Figure 11.

Figure 11. Different scenario configurations. (a) coplanar scenario (b) uniform scenario.

The ILS algorithm and fixed Newton algorithm were used to estimate the test point
position. The estimated position result was obtained over 1000 observed epochs. The result
showed that, in both algorithms, the positioning accuracy in a coplanar layout was lower
than that in a uniform layout.

The estimation observation error conformed to a Gaussian distribution with a mean
of zero ∆d ∼ N

(
0,σ2). For real-time observations, the distance error variance is related

to the observation equipment and electromagnetic environment. In most line-of-sight
observations, the observation mean error is zero. This is the reason why we set µ = 0 and
σ2 = 0.1cm in our experiment.

The simulation was used to determine the position accuracy in different scenarios. As
shown in Figure 12, the accuracy of the estimated test point position in the coplanar scenario
was significantly lower than that in the uniform scenario, especially using the iterative
least-squares algorithm. In the coplanar scenario, the model was unable to converge to the
correct solution.
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Figure 12. CDFs for two methods. (a) Uniform scenario (b) Coplanar scenario.

With regard to the positioning error of the two algorithms, as we expected, the pro-
posed method performed better than the traditional ILS method. Positioning errors with
the same CDF were compared. The proposed method outperformed the traditional method
in both scenarios. In the uniform scenario, all estimated test point positioning errors were
less than 20 cm for both methods. In coplanar scenarios, the proposed method had an
error of less than 20 cm for 100% of the results as compared to approximately 70% for the
traditional ILS algorithm. Similarly to the mathematical formula in Equation (16) above, the
fixed point in the coplanar base-station scenario could not be obtained with the traditional
ILS algorithm.

The testing of the two methods was described in Section 4. Simulations were carried
out for random points with different spatial heights, and experimental tests were carried
out for a fixed-height stand-erected mobile station. The results were consistent with the
discussion in this section, and the positioning errors are presented in Table 5. The new
method was able to exercise control in the elevation direction and improve the accuracy of
the positioning results.

Table 5. Comparison of the two methods.

Mean Error/m Max Error/m Min Error/m

Multi-Point
Simulation

Proposed Method 0.0759 0.123 0.018

ILS 0.253 0.456 0.084

Single-Height
Experiment

Proposed Method 0.024 0.054 0.002

ILS 1.354 4.638 0.228

6. Conclusions

In the indoor point-solution problem, base-station deployment affects the calculation
results. In a nearly coplanar base-station deployment environment, the traditional algo-
rithm is not applicable. In order to resolve positioning errors in such an environment, this
paper mainly focused on the following aspects:

(1) Based on the observation equation, the influence of the initial value on the conver-
gence result during calculation was analyzed, and a method for selecting the initial
value under a coplanar base-station condition was proposed to facilitate the correct
convergence of the iterative results;

(2) Considering the observation conditions and positioning accuracy requirements, this
paper proposed an iterative convergence control method. The iterative step length
was adjusted to avoid iterative scattering; the intermediate value of iteration was
determined to control the direction of iteration and ensure that the result converged
to the correct solution;
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(3) The mathematical derivation of the localization accuracy of the least-squares criterion
settlement method was carried out. Experiments were conducted for different base-
station deployment scenarios. The results showed that the new method improved the
convergence performance by about 15% in the uniform scenario and about 30% in the
coplanar base-station scenario.

The newly proposed method was tested in both a simulation and experiment. The
average positioning accuracy of the simulation results was 7.5 cm compared to 25.3 cm for
the original method, and the positioning accuracy of the new method was improved by
about 63.54%. In the actual positioning experiment, the average error of the new method
was 0.024 m, while the average error of the traditional method was 1.35 m.

The results show that the newly proposed method can effectively improve the posi-
tioning accuracy when facing the positioning problem that arises from the near-coplanar
placement of base stations.
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