An indoor UWB 3D positioning method for coplanar base stations

Zhou, N., Si, M., Li, D., Seow, C. K. and Mi, J. (2022) An indoor UWB 3D positioning method for coplanar base stations. Sensors, 22(24), 9634. (doi: 10.3390/s22249634) (PMID:36560002) (PMCID:PMC9785631)

[img] Text
288942.pdf - Published Version
Available under License Creative Commons Attribution.

4MB

Abstract

As an indispensable type of information, location data are used in various industries. Ultrawideband (UWB) technology has been used for indoor location estimation due to its excellent ranging performance. However, the accuracy of the location estimation results is heavily affected by the deployment of base stations; in particular, the base station deployment space is limited in certain scenarios. In underground mines, base stations must be placed on the roof to ensure signal coverage, which is almost coplanar in nature. Existing indoor positioning solutions suffer from both difficulties in the correct convergence of results and poor positioning accuracy under coplanar base-station conditions. To correctly estimate position in coplanar base-station scenarios, this paper proposes a novel iterative method. Based on the Newton iteration method, a selection range for the initial value and iterative convergence control conditions were derived to improve the convergence performance of the algorithm. In this paper, we mathematically analyze the impact of the localization solution for coplanar base stations and derive the expression for the localization accuracy performance. The proposed method demonstrated a positioning accuracy of 5 cm in the experimental campaign for the comparative analysis, with the multi-epoch observation results being stable within 10 cm. Furthermore, it was found that, when base stations are coplanar, the test point accuracy can be improved by an average of 63.54% compared to the conventional positioning algorithm. In the base-station coplanar deployment scenario, the upper bound of the CDF convergence in the proposed method outperformed the conventional positioning algorithm by about 30%.

Item Type:Articles
Keywords:UWB, indoor location, iteration algorithm, coplanar base station.
Status:Published
Refereed:Yes
Glasgow Author(s) Enlighten ID:Seow, Dr Chee Kiat
Authors: Zhou, N., Si, M., Li, D., Seow, C. K., and Mi, J.
College/School:College of Science and Engineering > School of Computing Science
Journal Name:Sensors
Publisher:MDPI
ISSN:1424-8220
ISSN (Online):1424-8220
Published Online:08 December 2022
Copyright Holders:Copyright © 2022 The Authors
First Published:First published in Sensors 22(24): 9634
Publisher Policy:Reproduced under a Creative Commons License

University Staff: Request a correction | Enlighten Editors: Update this record