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The shape and load bearing strength of cells are determined by the complex protein
network comprising the actin-myosin cytoskeleton. In response to signals received from
the external environment, including chemical and mechanical stimuli, the organization
of the actin-myosin cytoskeleton may undergo dynamic changes that contribute to the
production of physical force necessary for many cellular processes including cell division,
endocytosis, intracellular transport and migration. The essential role of the actin-myosin
cytoskeleton in so many cellular functions means that aberrant regulation or function can
contribute to a variety of human pathological conditions and diseases.

This Special Issue of Cells includes 11 review articles that present up-to-date perspec-
tives on a range of cytoskeleton-related fields. A prominent theme linking several reviews is
the actin–myosin cytoskeleton in neurons. Mikhaylova et al. [1] discussed the roles of actin
and myosin proteins, and their localization in a structure called the membrane-associated
periodic skeleton (MPS), in neuronal dendritic spines and axonal initial segments. Costa
and Sousa [2] also focused on myosins and their functions in neuronal growth cones and
axon initial segments. Javier-Torrent and Saura [3] related the roles of non-muscle myosin
II in the brain to how their aberrant functions in neurons and glial cells may contribute
to neurological disorders. Telek et al. [4] profiled the unconventional myosin XVI, a neu-
ronally expressed protein that acts to link signalling pathways to the organization of the
actin–myosin cytoskeleton, which has also been associated with neurological disorders.
Taran et al. [5] discussed the neurodegenerative disorder Huntington’s disease and the
contribution of the Huntingtin (HTT) protein through disruption of its normal interactions
with the microtubular and actin–myosin cytoskeletons.

Blaine and Dylewski [6] examined the structural components of the actin cytoskeleton
in podocytes that are part of the glomerular filtration barrier in kidneys, as well as the
signalling pathways that regulate the cytoskeleton in podocytes and genetic alterations
that affect actin regulation and consequently lead to kidney dysfunctions. Uray et al. [7]
reviewed the evidence that microRNAs are important regulators of the actin–myosin cy-
toskeleton, and which contribute to numerous physiological processes and pathological
conditions. Brito and Sousa [8] focused on one of the most important myosin proteins, non-
muscle myosin 2A, and provide detail on its structure, function and modes of regulation.
Asensio-Juárez et al. [9] examined how mutations to the non-muscle myosin IIA heavy
chain encoded by the MYH9 gene contribute to a range of tissue-restricted syndromes
grouped together as MYH9-related diseases including May–Hegglin anomaly, Epstein syn-
drome, Fechtner syndrome, and Sebastian platelet syndrome (SPS). Miklavc and Frick [10]
described the roles of actin and myosins in the various stages involved in exocytosis in non-
neuronal secretory cells. Conway et al. [11] examined the kinase-independent functions of
the microtubule-associated serine/threonine kinase-like (MASTL) protein in the regulation
of actin–myosin contractility and its roles in cell proliferation, migration, and invasion.

This Special Issue of Cells also includes four primary research articles. García-Bartolomé
et al. [12] reported that the ratio of the actin-binding protein gelsolin found in mitochon-
dria relative to secreted gelsolin is a marker of mitochondrial oxidative phosphorylation
dysfunction that could be used as an indicator of clinical conditions resulting from aberrant
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mitochondrial function. Lehka et al. [13] demonstrated an essential role for the unconven-
tional myosin VI in the formation of myotubes during muscle development. Whitelaw
et al. [14] conditionally knockout the NCK-associated protein 1 (NCKAP1) component of
the WAVE regulatory complex (WRC) to show its significant contribution to cell spread-
ing, lamellipodia formation, and the generation of actin retrograde flow from the leading
edge of fibroblast cells, resulting in altered cell morphology and reduced migration speed
on two-dimensional surfaces. Schaks et al. [15] examined mutations to the cytoplasmic
FMR1-interacting protein 2 (CYFIP2) WRC component associated with neurodevelopmen-
tal disorders, and determined that there were two mechanisms of action that either resulted
in increased Rac-induced WRC activation or in loss of function, indicating that proper WRC
regulation is necessary for normal brain development.
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