

Lan, J. and Zhao, D. (2023) Finding the LQR weights to ensure the associated Riccati

equations admit a common solution. IEEE Transactions on Automatic Control, 68(10),

pp. 6393-6400.

Copyright © 2023 IEEE. Reproduced under a Creative Commons Attribution 4.0
International License.

For the purpose of open access, the author(s) has applied a Creative Commons
Attribution license to any Accepted Manuscript version arising.

https://eprints.gla.ac.uk/288767/

Deposited on: 4 January 2023

Enlighten – Research publications by members of the University of Glasgow
https://eprints.gla.ac.uk

https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://eprints.gla.ac.uk/288767/
https://eprints.gla.ac.uk/
https://creativecommons.org/licenses/by/4.0/

1

Finding the LQR Weights to Ensure the Associated
Riccati Equations Admit a Common Solution

Jianglin Lan, and Dezong Zhao, Senior Member, IEEE

Abstract—This paper addresses the problem of finding the
linear quadratic regulator (LQR) weights such that the asso-
ciated discrete-time algebraic Riccati equations admit a common
optimal stabilising solution. Solving such a problem is key to
designing LQR controllers to stabilise discrete-time switched
linear systems under arbitrary switching, or stabilise polytopic
systems (e.g., Takagi-Sugeno fuzzy systems and linear parameter
varying systems) in the entire operating region. To ensure
problem tractability and reduce the searching space, this paper
proposes an efficient framework of finding only the state weights
based on the given input weights. Under this framework, linear
matrix inequality conditions are derived to conveniently check
feasibility of the problem. An iterative algorithm with quadratic
convergence and low computational complexity is developed to
solve the problem. Efficacy of the proposed method is illustrated
through numerical simulations of systems with various sizes.

Index Terms—Inexact Kleinman-Newton method, linear ma-
trix inequality, linear quadratic regulator, Riccati equation.

I. INTRODUCTION

Many dynamical systems can be described by a family of
linear time-invariant (LTI) subsystems with a logical rule that
governs the switching between the subsystems. The critical
examples are switched linear systems [1] and polytopic sys-
tems [2] such as Takagi-Sugeno (T-S) fuzzy systems and linear
parameter varying (LPV) systems. Switched linear systems
are useful for modelling physical systems that have discrete
parameter changes [3], e.g., networked systems, systems inte-
grating logic and power systems, or systems that have sudden
failures in sensors or actuators [4]. Polytopic systems use a
convex combination of the subsystems to cover the entire
operating region of nonlinear systems [5], [6], e.g., wind
turbines, spacecrafts, vibroacoustic systems and automotive
systems. Stabilisation of switched linear systems under arbi-
trary switching, or polytopic systems in the entire operating
region, has attracted great practical and theoretical interests.

Stabilisation of switched linear systems or polytopic sys-
tems can be realised respectively via switching control or gain-
scheduled control, both of which are based on the common
Lyapunov function (CLF) method. It is thus of fundamental
importance to check the existence of the CLF and provide an
efficient way to find it. Many works have studied the existence
of CLF for special linear systems [7], [8] or linear copositive

Jianglin Lan was supported by a Leverhulme Trust Early Career Fellowship
under Award ECF-2021-517. Dezong Zhao was supported by the Engineering
and Physical Sciences Research Council of UK under the EPSRC-UKRI
Innovation Fellowship scheme (EP/S001956/1).

J. Lan and D. Zhao are with the James Watt School of Engineering,
University of Glasgow, Glasgow G12 8QQ, UK (emails: {Jianglin.Lan,
Dezong.Zhao}@glasgow.ac.uk).

CLF for switched positive linear systems [9], but it remains
an open question for more general systems. Existing methods
for finding the CLF include randomised gradient iteration
[10] and particle swarm optimisation [11], but they are only
for Schur stable LTI systems. There is also an increasing
interest in learning a CLF from system data [12]. Based on
the CLF method, linear matrix inequality (LMI) technique has
been widely adopted to synthesise switched or gain-scheduled
controllers to ensure system stability [2], [5], [6], [13], [14],
and robustness/fault-tolerance [4]. The most popular CLFs are
quadratic functions which are known to be conservative. The
conservativeness can be reduced by using parameter-dependent
Lyapunov function [13] or switched Lyapunov function [15]–
[17]. Some works have also studied the SOS-convex CLF [18]
and neural network CLF [19]. However, control performance
optimality is not considered in these CLF-based designs. Some
works have leveraged the Riccati inequality (RI) method to
find a CLF and obtain a linear quadratic regulator (LQR)
controller with suboptimal performance [20]–[23].

This paper considers LQR design for discrete-time switched
linear systems or polytopic systems such that the overall
system stabilisation and optimal cost for each subsystem
are both met. Each subsystem optimises its own cost using
the LQR gain solved from a discrete-time algebraic Riccati
equation (DARE) [24]. Different from the RI method which
solves the inequality variants of DAREs [20]–[22], the present
work seeks to solve the DAREs directly. If a common solution
to the DAREs of all subsystems exists, the control perfor-
mance of each subsystem is optimised and the overall system
stabilisation is guaranteed under arbitrary switching or in the
entire operating region. This motivates the present research of
finding the common optimal stabilising (COS) solution to a
set of DAREs. To the best of the authors’ knowledge, such
a problem has not been studied in the literature. This work
contains the problem of finding the CLF as a special case
and the results will be useful for designing model predictive
control for piecewise linear systems [25] and observers for
switched linear systems [26].

As for the CLF method, it is of fundamental importance to
check the existence of the COS solution to a set of DAREs.
It is known that a DARE has a unique optimal solution upon
satisfaction of the stabilisability and detectability conditions
[24]. Several efficient methods have been developed to solve
DARE, including numerical methods such as the Schur-type
method [27] and Newton-type methods [28]–[30], and optimi-
sation methods such as LMI [31] and distributed optimisation
[32]. If the common solution to a set of DAREs is known
to exist, then it can be determined by simply solving any

2

of the DAREs. However, it remains as an open question of
choosing the LQR weights such that the set of DAREs admit a
COS solution. This paper aims to develop an efficient strategy
to address it and the main contributions are summarised as
follows:

1) An efficient framework is proposed for determining
the LQR weights to ensure the DAREs admit a COS
solution, where only the state weights are to be found
while the input weights are prescribed.

2) A quadratically convergent iterative algorithm is devel-
oped for finding the COS solution to the DAREs and
the associated LQR weights.

3) LMI conditions are provided for examining feasibility of
the iterative algorithm and generating an initial feasible
solution to start the iteration.

4) The proposed algorithm is useful for synthesising LQR
controllers to stabilise switched linear systems under
arbitrary switching, and stabilise T-S fuzzy or LPV
systems in the entire operating region.

In the rest of this paper, Section II describes the problem,
Section III presents the proposed strategy, Section IV shows
the numerical results, and Section V draws the conclusion.

II. PROBLEM DESCRIPTION

Consider a class of discrete-time systems described by

x(t+ 1) = Aδ(t)x(t) +Bδ(t)u(t) (1)

where x ∈ Rn and u ∈ Rm are the vectors of state and control
inputs, respectively. δ(t) is the signal that governs the switches
between the N subsystems with constant system matrices Ai ∈
Rn×n and Bi ∈ Rn×m, i ∈ [1, N]. It is assumed that all
subsystems are stabilisable and x(t) is measurable. This class
of systems can represent switched linear systems or polytopic
systems such as T-S fuzzy or LPV systems.

Switched linear systems. In this case, δ(t) = {δi(t)}Ni=1

is a time-dependent switching sequence indicating which
subsystem is active at time step t. This paper focuses on
designing a switched LQR controller u(t) = −Kδ(t)x(t)
to ensure stability of system (1) under arbitrary switching.
The gain Ki ∈ Rm×n for each subsystem i, i ∈ [1, N],
is designed to minimise the infinite-horizon cost function
Ji =

∑∞
t=0[x(t)

⊤Q̄ix(t) + u(t)⊤Riu(t)], where the weights
Q̄i ∈ Rn×n and Ri ∈ Rm×m are symmetric positive
semi-definite (s.p.s.d.) and symmetric positive definite (s.p.d.)
matrices, respectively. The design problem is as follows:

Problem 2.1: For the switched linear system (1), design the
switched LQR controller u(t) = −Kδ(t)x(t) with the gains

Ki = (Ri +B⊤
i PBi)

−1B⊤
i PAi, i ∈ [1, N] (2)

where the s.p.s.d. matrix P is the COS solution to the DAREs:

A⊤
i PAi − P + Q̄i −A⊤

i PBi(Ri +B⊤
i PBi)

−1B⊤
i PAi = 0,

i ∈ [1, N] (3)

with the s.p.s.d. matrix Q̄i and s.p.d. matrix Ri.
Polytopic systems. In this case, system (1) represents

a T-S fuzzy system or a LPV system, where δ(t) =

[δ1(t), . . . , δN (t)] is the vector of coefficients satisfying 0 ≤
δi(t) ≤ 1, i ∈ [1, N], and

∑N
i=1 δi(t) = 1. A convex combi-

nation of all the subsystems with Aδ(t) =
∑N

i=1 δi(t)Ai and
Bδ(t) =

∑N
i=1 δi(t)Bi is used to capture the system dynamics

across the operating space. This paper considers designing a
gain-scheduled LQR controller u(t) = −

∑N
i=1 δi(t)Kix(t)

to stabilise the overall system (1) whilst minimising the cost
functions Ji, i ∈ [1, N]. The design problem is as follows:

Problem 2.2: For the polytopic system (1), design a gain-
scheduled LQR controller u(t) = −

∑N
i=1 δi(t)Kix(t) with

the gains {Ki}Ni=1 in the form of (2), where P is the COS
solution to (3) and also satisfies

(Ai−BiKj)
⊤P (Ai−BiKj) < P, ∀i ̸= j, i, j ∈ [1, N]. (4)

Problem 2.2 includes an extra condition (4) to ensure that the
gain-scheduled LQR controller stabilises the system not only
at each operating point (or vertex) but also at anywhere in the
entire operating region [2], [5], [6], [13], [14].

For both Problems 2.1 and 2.2, the common solution P
is said to be stabilising if for any i ∈ [1, N], the obtained
LQR gain Ki makes Ai − BiKi Schur stable. The solu-
tion is also optimal if for any i ∈ [1, N], the controller
u(t) = −Kix(t) minimises the cost function Ji. The quadratic
function V (t) = x(t)⊤Px(t) is a CLF for all the subsystems
of (1). The existence of P guarantees asymptotic stability of
the switched linear systems or the polytopic systems if P also
satisfies (4). Therefore, solving the DAREs in (3) is key to the
LQR controller designs in both Problems 2.1 and 2.2.

It is well-known that the solution to the i-th DARE in (3) is
unique when the pair (Ai, Bi) is stabilisable and (Ai,

√
Q̄i)

is detectable. Hence, if the COS solution to the DAREs in
(3) is known to exist for the given sets of weights {Q̄i}Ni=1

and {Ri}Ni=1, then it can be directly solved from any of
the DAREs. The main challenge is how to find the weights
such that a common solution exists, especially for large-scale
systems. To tackle the challenge, this paper is dedicated to
developing a strategy to solve Problem 2.3.

Problem 2.3: Find the sets of LQR weights {Q̄i}Ni=1 and
{Ri}Ni=1 such that the DAREs in (3) admit a COS solution P .

A strategy is derived in Section III for solving Problem 2.3,
and subsequently Problems 2.1 and 2.2, to obtain the LQR
gains {Ki}Ni=1. For the sake of conciseness and clarity, the
strategy will be illustrated based on switched linear systems,
while its adaptation to polytopic systems (i.e., T-S fuzzy or
LPV systems) will be discussed in Remarks 3.2, 3.3 and 3.4.

III. MAIN RESULTS

In this section, the following operators are defined for any
s.p.s.d. matrices X,Qi ∈ Rn×n and s.p.d. matrix Ri ∈ Rm×m:

Ki(X) := (Ri +B⊤
i XBi)

−1B⊤
i XAi,

Ai(X) := Ai −BiKi(X),

Gi(X) := Bi(Ri +B⊤
i XBi)

−1B⊤
i ,

Fi(X) := A⊤
i XAi −X +Qi −A⊤

i XGi(X)XAi,

Li(X) := Ai(X)⊤XAi(X)−X +Ki(X)⊤RiKi(X) +Qi.

(5)

It can be verified that Fi(X) = Li(X).

3

A. Solvability of Problem 2.3 and its Checking Condition

In Problem 2.3, two sets of weights {Q̄i}Ni=1 and {Ri}Ni=1

need to be found. They can be found naively via a heuristic
procedure: (i) Select the candidate weights {Q̄i}Ni=1 and
{Ri}Ni=1; (ii) Solve the N DAREs for a solution set {Pi}Ni=1;
(iii) If P1 = · · · = PN , a common solution is found,
otherwise starting over from (i). This heuristics may work for
special systems such as small-scale systems or systems whose
matrices {Ai}Ni=1 and {Bi}Ni=1 have special structures (e.g.,
diagonal, upper or lower triangular structures). However, the
heuristics has no convergence guarantee, making it computa-
tionally expensive and even intractable for large-scale systems.
If fixing one of the two weights sets to find the other set, then
the searching space (i.e., computational complexity) can be
greatly reduced. This inspires the proposal of Theorem 3.1.

Theorem 3.1: Choosing the s.p.s.d. matrix Qi making
(Ai,
√
Qi) detectable and s.p.d. matrix Ri, i ∈ [1, N]. If the

s.p.s.d. matrix P is the common stabilising (CS) solution to

Fi(P) = Υi, i ∈ [1, N] (6)

with the symmetric matrix Υi ≤ αQi and α ∈ [0, 1), then
P is the COS solution to the DAREs in (3) and the obtained
weights are {Q̄i}Ni=1 and {Ri}Ni=1, where Q̄i = Qi −Υi. For
any i ∈ [1, N], if choosing Ri = φiQi, the obtained weights
satisfy Ri ≥ (φi/(1−α))Q̄i. Hence, the control performance
is tunable via choosing α and φi.

Proof: It follows from (5) that (6) is equivalent to

A⊤
i XAi −X + Q̄i −A⊤

i XGi(X)XAi = 0, i ∈ [1, N] (7)

where Q̄i = Qi − Υi. Since Υi ≤ αQi and α ∈ [0, 1), it is
true that Q̄i = α∗

iQi with 0 < α∗
i ≤ 1 − α ≤ 1, i ∈ [1, N].

Since Qi is s.p.s.d. and (Ai,
√
Qi) is detectable, the obtained

matrix Q̄i is s.p.s.d. and (Ai,
√
Q̄i) is detectable. Therefore,

(7) has the same form as (3) with the known sets of weights
{Q̄i}Ni=1 and {Ri}Ni=1. By choosing Ri = φiQi, then it can
be derived that Ri = (φi/α

∗)Q̄i ≥ (φi/(1− α))Q̄i.
Theorem 3.1 shows that Problem 2.3 is solved by finding

the CS solution P to (6) for the given weights {Qi}Ni=1 and
{Ri}Ni=1. This lays the theoretic foundation for the solving
strategy proposed in Section III-B. As a prerequisite, it is nec-
essary to check the solvability of Problem 2.3, i.e., examining
whether there is a CS solution P to (6) for the given {Qi}Ni=1

and {Ri}Ni=1. The checking condition is given as the LMIs in
Corollary 3.1. Solving the LMIs will also produce an initial
feasible CS solution to start the proposed iterative algorithm.

Corollary 3.1: Choosing the s.p.s.d. matrix Qi making
(Ai,
√
Qi) detectable and s.p.d. matrix Ri, i ∈ [1, N]. Problem

2.3 is solvable if there is a s.p.d. matrix Z and matrices Yi,
i ∈ [1, N], satisfying

−Z ⋆ ⋆ ⋆
AiZ −BiYi −Z ⋆ ⋆√

QiZ 0 −I ⋆√
RiYi 0 0 −I

 ≤ 0, i ∈ [1, N] (8)

where ⋆ indicates symmetry. The CS solution is P = Z−1.
Proof: By using Schur complement [31], the LMIs in

(8) are equivalently reformulated as the Riccati inequalities

Li(P) ≤ 0, i ∈ [1, N], by setting P = Z−1 and Ki =
YiZ

−1 = (Ri + B⊤
i PBi)

−1B⊤
i PAi. The obtained matrices

Ai − BiKi, i ∈ [1, N], are Schur stable. As defined in (5),
Fi(P) = Li(P). Hence, the equations in (6) always hold with
the s.p.s.d. matrices Υi satisfying Υi < αQi, i ∈ [1, N], where
α ∈ [0, 1). Therefore, P is the CS solution to the equations in
(6) and Problem 2.3 is solvable for the given sets of weights
{Qi}Ni=1 and {Ri}Ni=1.

Remark 3.1: Corollary 3.1 shows that Problem 2.3 could be
solved using the Riccati inequality (RI) method [23], which
aims to find a CS solution P to satisfy the LMIs in (8) and
minimise the upper bound of the LQR cost x(0)⊤Px(0). This
is formulated as the optimisation problem:

min trace(V) (9)

subject to: (8),
[
Z I
I V

]
≥ 0, Z = Z⊤ > 0, V > 0.

Solving (9) gives the CS solution P = Z−1. Then Problem 2.3
is solved with {Q̄i}Ni=1 and {Ri}Ni=1, where Q̄i = Qi−Fi(P).

The computational complexity of solving the optimisation
problem (9) can be characterised by [33]: ORI = RRIS3RI,
where RRI = (3N + 6)n + Nm is the LMI row size and
SRI = 1.5n2 + (0.5 + Nm)n is the total number of scalar
decision variables. As a function of n7 and N4, ORI grows
dramatically with the subsystem dimension n and number of
subsystems N . This issue is computationally critical so that
solving (9) with standard interior point methods may be very
difficult or even intractable. Therefore, this paper will develop
a more efficient strategy for solving Problem 2.3.

Remark 3.2: In terms of T-S fuzzy or LPV systems, the
matrix Yi in the LMI (8) in Corollary 3.1 is replaced by Yj .
Then the LMI needs to be solved for all i, j ∈ [1, N]. The
same treatment applies to the RI method in Remark 3.1.

B. Outline of the Proposed Iterative Strategy

It is well-known from the LQR theory [24] that the optimal
LQR cost for each subsystem in (1) is x(0)⊤Px(0). It is thus
desirable to find a CS solution P that is as small as possible to
minimise the LQR cost. This motivates the presented iterative
strategy for solving Problem 2.3 based on the results in
Theorem 3.1. The key idea is to iteratively solve the DAREs:

Fi(P) = 0, i ∈ [1, N] (10)

with the given weights {Qi}Ni=1 and {Ri}Ni=1, up to a pre-
scribed accuracy. When the iteration is terminated, the DAREs
in (10) are solved with a minimum P and the residuals Υi,
i.e., Fi(P) = Υi, i ∈ [1, N]. Problem 2.3 can then be solved
by using the results in Theorem 3.1 directly.

The iterative strategy is developed based on the inexact
Kleinman-Newton method [30]. The first Fréchet derivative
of Fi(P) at P is defined as

F
′

i |P (S) = Ai(P)⊤SAi(P)− S, ∀S ∈ Rn×n. (11)

By leveraging (11), the following Newton system is defined:

F
′

i |Pi,k
(Pi,k+1 − Pi,k) + Fi(Pi,k) = 0 (12)

where Pi,k and Pi,k+1 are the iterates at steps k and k + 1.

4

Algorithm 1 The squared Smith method

1: P̄i,0 ← Ki(Pk)
⊤RiKi(Pk) +Qi.

2: R0
i ← Ai(Pk)

⊤P̄i,0Ai(Pk).
3: for µ = 1, 2, . . . do
4: P̄i,µ ← (Ai(Pk)

⊤)2
µ−1

P̄i,µ−1Ai(Pk)
2µ−1

+ P̄i,µ−1.
5: Rµ

i ← Ai(Pk)
⊤Pi,µAi(Pk)− Pi,µ + P̄i,0.

6: If ∥Rµ
i −R

µ−1
i ∥ ≤ ηin∥Rµ−1

i ∥, then stop.
7: end for

Define Sk := {Pi,k}Ni=1 as the set of iterates at step k for all
the DAREs in (10) and Pk as the common solution satisfying
Pk ∈ Sk. To ensure all the DAREs generate the next iterate
from the current common iterate, replacing Pi,k in (12) by Pk.
Then (12) is rewritten as the Stein equation

Pi,k+1 −Ai(Pk)
⊤Pi,k+1Ai(Pk) = Ki(Pk)

⊤RiKi(Pk) +Qi.
(13)

The Stein equation (13) is solved using the squared Smith
method [34] described in Algorithm 1. It is shown in [34]
that P̄i,µ approaches its exact value very rapidly as µ goes to
∞. Hence, given a tolerance ηin, Algorithm 1 will terminate
at a finite µ∗ and return the iterate Pi,k+1 = P̄i,µ∗ with the
residual Ri,k+1 = Ai(Pk)

⊤Pi,µ∗Ai(Pk)− Pi,µ∗ + P̄i,0.
Based on the above analysis, the proposed iterative strategy

is outlined in Algorithm 2. The common iterate Pk+1 needs
to satisfy the conditions (17a) - (17c). It will be shown in
Section III-C that these conditions are necessary to establish
the existence and convergence of the CS solution sequence
{Pk}∞k=1. Algorithm 2 omits the details of choosing the iterate
Pk+1 and setting the stopping criteria, which can simplify
the analysis but will not affect the existence and convergence
proofs in Section III-C. A practically implementable algorithm
with all the necessary details will be provided in Section III-D.

Remark 3.3: In terms of T-S fuzzy or LPV systems,
when constructing the common solution set Sc

k+1 (see Line
6, Algorithm 2), the following condition is added to (17):
Ai,s(P

c
j,k+1)

⊤P c
j,k+1Ai,s(P

c
j,k+1) < P c

j,k+1, ∀i ̸= s, i, s ∈
[1, N], where Ai,s(P

c
j,k+1) = Ai −BiKs(P

c
j,k+1).

C. Properties of the Proposed Strategy

This section analyses the properties of Algorithm 2, in-
cluding the existence and convergence of the common iterate
sequence {Pk}∞k=1. To facilitate the analysis, rewriting the
Stein equation (13) solved in Algorithm 1 as the Stein equation

Pi,k+1 −Ai(Pk)
⊤Pi,k+1Ai(Pk)

= Ki(Pk)
⊤RiKi(Pk) +Qi −Ri,k+1. (14)

This Stein equation is used in [30] for a single DARE. Based
on Lemma 2.3 in [30], it can be proved that the following two
equations hold under the Stein equation (14):

Pk+1 −Ai(Pk+1)
⊤Pk+1Ai(Pk+1)

=Wi,k+1 +Ki(Pk+1)
⊤RiKi(Pk+1) +Qi −Ri,k+1, (15)

(Pk+1 − Pi,k+2)−Ai(Pk+1)
⊤(Pk+1 − Pi,k+2)Ai(Pk+1)

=Wi,k+1 −Ri,k+1 +Ri,k+2, (16)

Algorithm 2 Outline of the proposed strategy

1: Input: System matrices {Ai}Ni=1 and {Bi}Ni=1. The sets
of s.p.s.d. matrices {Qi}Ni=1 and s.p.d. matrices {Ri}Ni=1

such that (Ai,
√
Qi), i ∈ [1, N], are detectable and the

LMIs in (8) are feasible. A scalar α ∈ [0, 1) and small
positive constants ηin and ηout.

2: Initialise: Solve Z from (8) and set P0 ← Z−1.
3: for k = 0, 1, . . . do
4: Construct the sets Sk+1 := {Pi,k+1}Ni=1 and Rk+1 :=

{Ri,k+1}Ni=1 by running Algorithm 1 for all i ∈ [1, N].
5: Construct the common solution set Sc

k+1 :=
{P c

j,k+1}ℓj=1, where P c
j,k+1 ∈ Sk+1 and satisfies

Kj(Pk)
⊤RjKj(Pk) +Qj −Rj,k+1 ≥ 0 (17a)

Wi,k+1 + αQi −Ri,k+1 ≥ 0, ∀i ∈ [1, N] (17b)
Rj,k+1 ≤Wj,k+1 (17c)

with Wi,k+1 = Ai(Pk)
⊤∆Pi,kGi(P c

i,k+1)∆Pi,kAi(Pk)
and ∆Pi,k = P c

i,k+1 − Pk.
6: Set the common iterate Pk+1 as any element of Sc

k+1.
7: If ∥Pk+1 − Pk∥ ≤ ηout∥Pk∥, then stop.
8: end for
9: Output: Common solution Pk+1.

with Wi,k+1 = Ai(Pk)
⊤∆PkGi(Pk+1)∆PkAi(Pk) =

∆K⊤
i,k(Ri + B⊤

i Pk+1Bi)∆Ki,k, where ∆Pk = Pk+1 − Pk

and ∆Ki,k = Ki(Pk+1)−Ki(Pk).
Existence of the CS solution Pk+1 in Algorithm 2 is shown

in Lemma 3.1.
Lemma 3.1: Given the sets of s.p.s.d. matrices {Qi}Ni=1

and s.p.d. matrices {Ri}Ni=1. Let Pk be a s.p.s.d. matrix such
that the matrices Ai(Pk), i ∈ [1, N], are Schur stable. Then
Algorithm 2 has the properties:

(i) The iterate Pk+1 is well-defined and s.p.s.d..
(ii) The matrices Ai(Pk+1), i ∈ [1, N], are Schur stable.

Proof: Note that Pk+1 ∈ Sc
k+1 ⊆ Sk+1. Without loss

of generality, assuming that Pk+1 = Pj,k+1, where 1 ≤
j ≤ ℓ ≤ N , which is a solution to the Stein equation (14).
Since Aj(Pk) is Schur stable, Pj,k+1 can be represented as
[35]: Pj,k+1 =

∑∞
r=0(Aj(Pk)

⊤)rZj,kAj(Pk)
r with Zj,k =

Kj(Pk)
⊤RjKj(Pk)+Qj−Rj,k+1. Under (17a), Zj,k is s.p.s.d.

and so is Pj,k+1. Hence, Pk+1 is well-defined and s.p.s.d..
The property (ii) is proved by contradiction. Assuming that
Ai(Pk+1), ∀i ∈ [1, N], is not Schur stable, then the relation
Ai(Pk+1)x = λx holds with |λ| ≥ 1 and x ̸= 0. Hence, the
left-hand side of (15) satisfies

x⊤[Pk+1 −Ai(Pk+1)
⊤Pk+1Ai(Pk+1)]x

=(1− |λ|2)x⊤Pk+1x ≤ 0. (18)

Denote the right-hand side of (15) as Ŵi,k = Wi,k+1 +
Ki(Pk+1)

⊤RiKi(Pk+1) + Qi − Ri,k+1. Since Pk+1 ∈
Sc
k+1, (17b) is satisfied and the term Wi,k+1 + αQi −
Ri,k+1 is s.p.s.d.. Hence, Ŵi,k ≥ 0 because both Qi and
Ki(Pk+1)

⊤RiKi(Pk+1) are s.p.s.d.. Subsequently, it is true
that for x ̸= 0, x⊤Ŵi,kx ≥ 0. It follows from (15) and
(18) that Ŵi,k = 0. This implies that the terms Wi,k+1 +

5

αQi − Ri,k+1 and (1 − α)Qi + Ki(Pk+1)
⊤RiKi(Pk+1) are

both zero. However, since Qi is s.p.s.d. and Ri is s.p.d.,
(1 − α)Qi + Ki(Pk+1)

⊤RiKi(Pk+1) ̸= 0. This leads to a
contradiction and thus the matrices Ai(Pk+1), ∀i ∈ [1, N],
are Schur stable.

By using Lemma 3.1, Theorem 3.2 summarises the proper-
ties of Algorithm 2.

Theorem 3.2: Given the sets of s.p.s.d. matrices {Qi}Ni=1

and s.p.d. matrices {Ri}Ni=1. If P0 is a s.p.s.d. matrix stabil-
ising Ai(P0), i ∈ [1, N], then Algorithm 2 has the properties:

(i) The common solution sequence {Pk}∞k=1 is well-defined
and s.p.s.d.. The matrices Ai(Pk), i ∈ [1, N], are Schur
stable for any k ≥ 1.

(ii) The sequence {Pk}∞k=1 is nonincreasing and bounded
below by the zero matrix. Moreover, it has quadratic
convergence, i.e., there is a positive scalar δ such that

∥Pk+2 − P∞∥ ≤ δ∥Pk+1 − P∞∥2, k ∈ Z. (19)

Proof: Since P0 is solved from (8), it is a s.p.s.d. matrix
stabilising Ai(P0), i ∈ [1, N]. Therefore, following Lemma
3.1, the properties in (i) can be proved simply by induction.

To prove the first part in (ii), without loss of generality, let
the common iterate obtained at iteration k + 1 be Pk+2 =
Pj,k+2, where 1 ≤ j ≤ ℓ ≤ N . Since Aj(Pk+1) is Schur
stable, the equation (16) has the exact solution [35]:

Pk+1 − Pk+2 =

∞∑
r=0

(Aj(Pk+1)
⊤)rẐj,k+1(Aj(Pk+1))

r (20)

where Ẑj,k+1 = Wj,k+1 −Rj,k+1 +Rj,k+2. Under the con-
dition (17c), one has Rj,k+1 ≤ Wj,k+1 and thus Ẑj,k+1 ≥ 0.
Applying this to (20) gives 0 ≤ Pk+2 ≤ Pk+1. By induction,
it is true that 0 ≤ Pk+2 ≤ Pk+1,∀k ≥ 1, and the limit
limk→∞ Pk = P∞ exists. Hence, the sequence {Pk}∞k=1 is
nonincreasing and bounded below by the zero matrix.

To prove the second part in (ii), let the common iterate
obtained at iteration k be Pk+1 = Pl,k+1, where 1 ≤ l ≤ ℓ ≤
N . The following equation is derived from (20):

Pk+2 − Pk+1 =

∞∑
r=0

(Al(Pk+1)
⊤)rZ̃l,k+1(Al(Pk+1))

r (21)

where Z̃l,k+1 = Rl,k+1 −Rl,k+2 −Wl,k+1.
It follows from (15) and (16) that Wl,k+1 satisfies

Wl,k+1 = ∆K⊤
l,k(Rl +B⊤

l Pk+1Bl)∆Kl,k

= Al(Pk)
⊤∆PkGl(Pk+1)∆PkAl(Pk),

where ∆Kl,k =Kl(Pk+1) − Kl(Pk) and ∆Pk = Pk+1 − Pk.
Since Rl +B⊤

l Pk+1Bl > 0, it is true that Wl,k+1 ≥ 0. Also,
it will be shown in Lemma 3.2 that Rl,k+2 ≥ 0. Hence,
Z̃l,k+1 ≤ Rl,k+1. Therefore, under the condition (17c) with
Pj,k = Pk and Pj,k+1 = Pk+1, the following relations hold:

∥Z̃l,k∥ ≤ ∥Rl,k+1∥ ≤ ∥Wl,k+1∥ ≤ ϵk∥Pk+1 − Pk∥2 (22)

with a positive finite scalar ϵk = ∥Al(Pk)∥2∥Gl(Pk+1)∥.
Applying (22) to (21) yields

∥Pk+2 − Pk+1∥ ≤ βk+1∥Pk+1 − Pk∥2, k ≥ 1 (23)

with βk+1 =
∑∞

r=0 ϵk∥Al(Pk+1)
r∥2.

Define a positive scalar β := maxk≥1{βk+1}. By using
(23), the following inequality holds for all s ≥ 1:

∥Pk+1+s − Pk+s∥ ≤ βs−1∥Pk+2 − Pk+1∥2s−2. (24)

If ∥Pk+2 − Pk+1∥ = 0, then by using (24), the equation
∥Pk+1+s − Pk+s∥ = 0 holds for all s ≥ 1.

Since {Pk}∞k=1 is nonincreasing, one has Pk+s−Pk+s+1 ≥
0, ∀k, s ≥ 1. Based on (23) and (24), for all k∗ ≥ k + 2,

∥Pk+1 − Pk∗∥2 ≥
k∗−k−1∑

s=1

∥Pk+1+s − Pk+s∥2

= δ1∥Pk+2 − Pk+1∥2 (25)

with a scalar δ1 =
∑k∗−k−1

s=1
∥Pk+1+s−Pk+s∥2

∥Pk+2−Pk+1∥2 satisfying 1 ≤
δ1 ≤

∑k∗−k−1
s=1 β2s−2∥Pk+2 − Pk+1∥4s−6 <∞.

Similarly, by applying (23) and (24), for all k∗ ≥ k + 3,

∥Pk+2 − Pk∗∥ ≤
k∗−k−2∑

s=1

∥Pk+2+s − Pk+1+s∥

≤ δ2∥Pk+2 − Pk+1∥2 (26)

with a scalar δ2 =
∑k∗−k−2

s=1
∥Pk+2+s−Pk+1+s∥
∥Pk+2−Pk+1∥2 satisfying β ≤

δ2 ≤
∑k∗−k−2

s=1 βs∥Pk+2 − Pk+1∥2s−2 <∞.
The above proof for establishing (25) and (26) requires
∥Pk+2 − Pk+1∥ ≠ 0. When ∥Pk+2 − Pk+1∥ = 0, Pk∗ =
Pk+2 = Pk+1, ∀k∗ ≥ k + 2. Hence, (25) and (26) automati-
cally hold. This means that (25) and (26) always hold.

Combining (25) and (26) gives

∥Pk+2 − Pk∗∥ ≤ δ∥Pk+1 − Pk∗∥2, ∀k∗ ≥ k + 3 (27)

with δ = δ2/δ1 > 0. Passing (27) to the limit yields (19).
Based on the results in Theorem 3.2, it is shown below

that the proposed iterative strategy solves Problem 2.3: By
using (15) and the operators Fi(X) and Li(X) defined in (5),
it can be derived that Fi(Pk+1) = Υi, i ∈ [1, N], where
Υi = Ri,k+1−Wi,k+1. Under the condition (17c), Υi ≤ 0. It
is indicated by (14) that Ri,k+1 is a symmetric matrix. Also,
Wi,k+1 is a s.p.s.d. matrix as defined in Algorithm 2. Hence,
Υi is symmetric. Moreover, the iterate Pk+1 obtained from
Algorithm 2 satisfies (17b), indicating that Υi ≤ αQi, i ∈
[1, N], where α ∈ [0, 1). Therefore, Problem 2.3 is solved and
the sequence {Pk}∞k=1 generated by Algorithm 2 converges
quadratically to the COS solution P∞.

D. Implementation Details of the Proposed Strategy
In Algorithm 2, the conditions (17a) - (17c) are necessary

for establishing the properties claimed in Section III-C. The
conditions (17b) and (17c) need to be verified at each iteration.
The condition (17a) automatically holds by using Algorithm
1 to solve the Stein equation (13), as shown in Lemma 3.2.

Lemma 3.2: Using Algorithm 1 to solve the Stein equation
(13) ensures 0 ≤ Ri,k+1 ≤ Ki(Pk)

⊤RiKi(Pk) +Qi.
Proof: Denote Si,k = Ki(Pk)

⊤RiKi(Pk) + Qi. Since
Ai(Pk) is Schur stable, the exact solution to (13) is given as

P ∗
i,k+1 =

∞∑
r=0

(Ai(Pk)
⊤)rSi,k(Ai(Pk))

r. (28)

6

Let {P̄i,µ}∞µ=0 be the sequence generated iteratively by

P̄i,µ = P̄i,µ−1 + (Ai(Pk)
⊤)2

µ

P̄i,µ−1(Ai(Pk))
2µ (29)

with P̄i,0 = Si,k. At step µ, the residual is given by

Ri,µ = Ai(Pk)
⊤P̄i,µAi(Pk)− P̄i,µ + Si,k. (30)

Applying Si,k = P ∗
i,k+1−Ai(Pk)

⊤P ∗
i,k+1Ai(Pk) to (30) gives

Ri,µ = (P ∗
i,k+1 − P̄i,µ)−Ai(Pk)

⊤(P ∗
i,k+1 − P̄i,µ)Ai(Pk).

(31)
By using (29), P̄i,µ =

∑2µ−1
r=0 (Ai(Pk)

⊤)rSi,k(Ai(Pk))
r.

Subtracting it from (28) gives

P ∗
i,k+1 − P̄i,µ =

∞∑
r=2µ

(Ai(Pk)
⊤)rSi,k(Ai(Pk))

r. (32)

Substituting (32) into (31) yields

Ri,µ =

∞∑
r=2µ

(Ai(Pk)
⊤)rS̄i,k(Ai(Pk))

r (33)

where S̄i,k = Si,k − Ai(Pk)
⊤Si,kAi(Pk). Since Si,k ≥

0 and Ai(Pk) is Schur stable, it is true that Si,k =∑∞
r=0(Ai(Pk)

⊤)rS̄i,k(Ai(Pk))
r ≥ 0 and thus S̄i,k ≥ 0.

Then it can be derived from (33) that Ri,µ ≥ 0 and
Ri,µ − Ri,µ+1 =

∑2µ+1−1
r=2µ (Ai(Pk)

⊤)rS̄i,k(Ai(Pk))
r ≥ 0.

Hence, by induction, the following relations hold:

Ri,∞ ≤ · · · ≤ Ri,µ+1 ≤ Ri,µ ≤ · · · ≤ Ri,0. (34)

Since Pi,0 = Si,k and Ai(Pk) is Schur stable, it follows from
(30) that Ri,0 = Ai(Pk)

⊤Si,kAi(Pk) ≤ Si,k. Applying this
to (34) yields Ri,µ ≤ Si,k, ∀µ ≥ 0.

The implementation of the proposed strategy is detailed
in Algorithm 4, which consists of an inner iteration loop
(Lines 4 - 6) and an outer iteration loop (Lines 3 - 15). The
inner iteration solves the Stein equation (13) for each subsys-
tem and constructs the common solution set {P c

ℓ,k+1} using
the function FindP(Ai, Bi, Qi, Ri, Pk, α, ηin) in Algorithm 3.
This function is a detailed implementation of Lines 4&5 in
Algorithm 2. For each subsystem, the search of a common
solution is stopped either when a feasible common solution
is found (see Lines 5&6, Algorithm 3) or when the relative
change of the residual is within the given tolerance ηin (see
Lines 7&8, Algorithm 3). The outer iteration constructs the CS
solution sequence {Pk+1}, which is stopped when the relative
change of the iterate is within the given tolerance ηout (see
Lines 12&14, Algorithm 4). At iteration k, if the set {P c

ℓ,k+1}
is not empty, the obtained common iterate Pk+1 is set as the
element of {P c

ℓ,k} that gives the smallest sum of residuals
Rc

ℓ (see Line 8, Algorithm 4). This ensures that the obtained
common iterate solves the DAREs of all subsystems more
accurately. If {P c

ℓ,k+1} is empty, then setting Pk+1 = Pk (see
Line 10, Algorithm 4). Algorithm 4 can be terminated at any
iteration k and it still gives a CS solution.

Remark 3.4: In terms of T-S fuzzy or LPV systems, when
using Algorithm 3 to search for the common solution P c

i,k+1,
the checking conditions in Line 7 need to include an extra
condition: Ai,s(P̄i,µ)

⊤P̄i,µAi,s(P̄i,µ) < P̄i,µ, ∀i ̸= s, i, s ∈
[1, N], where Ai,s(P̄i,µ) = Ai −BiKs(P̄i,µ).

Algorithm 3 [P c
i,k+1,Rc

i] = FindP(Ai, Bi, Qi, Ri, Pk, α, ηin)

1: Ai(Pk)← Ai −BiKi(Pk), P̄i,0 ← Ki(Pk)
⊤RiKi(Pk) +

Qi, R0
i ← Ai(Pi,0)

⊤P̄i,0Ai(Pi,0).
2: for µ = 1, 2, . . . do
3: P̄i,µ ← (Ai(Pk)

⊤)2
µ−1

P̄i,µ−1Ai(Pk)
2µ−1

+ P̄i,µ−1.
4: Construct {Rµ

j }Nj=1, {Wµ
j }Nj=1 and {W̄j}Nj=1 using

Rµ
j ← Aj(Pk)

⊤P̄i,µAj(Pk)− P̄i,µ + Sj,k,

Wµ
j ← Aj(Pk)

⊤(P̄i,µ−Pk)Gj(Pk)(P̄i,µ−Pk)Aj(Pk),
W̄j ←Wµ

j + αQj −Rµ
j ,

where Sj,k = Kj(Pk)
⊤RjKj(Pk) +Qj .

5: if ({W̄j}Nj=1 ≥ 0)AND(Rµ
i ≤Wµ

i) then
6: P c

i,k+1 ← P̄i,µ, Rc
i ←

∑N
j=1 ∥R

µ
j ∥, stop.

7: else if ∥Rµ
i −R

µ−1
i ∥ ≤ ηin∥Rµ−1

i ∥ then
8: P c

i,k+1 ← [], Rc
i ←∞, stop. ([] is an empty matrix)

9: end if
10: end for

Algorithm 4 Implementation of the proposed strategy

1: Input: {Ai}Ni=1, {Bi}Ni=1, {Qi}Ni=1, {Ri}Ni=1, α, ηin, ηout.
2: Initialise: Solve Z from (8) and set P0 ← Z−1.
3: for k = 0, 1, . . . do
4: for i = 1, 2, · · · , N do
5: [P c

i,k+1,Rc
i]← FindP(Ai, Bi, Qi, Ri, Pk, α, ηin).

6: end for
7: if {P c

i,k+1}Ni=1 is not empty then
8: Pk+1 ← P c

i∗,k+1, where i∗ = arg min
i∈[1,N]

(Rc
i).

9: else
10: Pk+1 ← Pk.
11: end if
12: if ∥Pk+1 − Pk∥ ≤ ηout∥Pk∥ then
13: P ∗ ← Pk+1, Ki ← Ki(Pk+1), i ∈ [1, N], stop.
14: end if
15: end for
16: Output: Common solution P ∗, controller gains {Ki}Ni=1.

IV. NUMERICAL EXAMPLES

The simulations are carried out in MATLAB R2020a on a
Windows machine with Intel i5-7200U CPU and 8GB RAM.
The LMIs are solved using the toolbox YALMIP [36] and the
solver MOSEK that adopts the interior point method [37].

Simulation 1: Large-scale mass-spring-damper systems.
Consider a mass-spring-damper system consisting of M iden-
tical masses that are connected through identical springs [38]:

ẋ0=Aself(k̄)x0+Ainter(x1 + xM−1),

ẋj=Aself(k̄)xj+Ainter(xj−1 + xj+1) +Bcuj , j ∈ [1,M − 2],

ẋM−1=Aself(k̄)xM−1+Ainter(x0 + xM−2) +BcuM−1,

where xi = [αi, α̇i]
⊤, i ∈ [0,M − 1], Bc = [0, 1/m̄]⊤,

Aself(k̄) =
[
0, 1;−(2k1 + k̄)/m̄,−2k2/m̄

]
and Ainter =

[0, 0; k1/m̄, k2/m̄]. αi and α̇i are the displacement and veloc-
ity of mass i, respectively. k1 and k̄ are the fixed and variable
spring constants, respectively. k2 is the damper coefficient. m̄
is the mass of each block. ui, i ∈ [1,M − 1], are the external
force. The values of k1, k2, m̄ and initial state are from [38].

7

0 1 2 3 4

Outer Iteration k

10
-15

10
-10

10
-5

10
0

10
5 M=21

M=31

M=41

Fig. 1: Convergence of iterates for systems with M masses.

0 5 10 15 20 25

Time (s)

0

0.5

1

1.5

2

2.5

3

3.5

4

20 25

0

5

10
10

-3

Fig. 2: Closed-loop state response of the 21 masses system
using different methods.

The spring constant k̄ is assumed to be capable of auto-
matically switching between the values of k̄1 = 1 N/m and
k̄2 = 3.8 N/m. This scenario could happen in certain mecha-
tronic systems that encounter both low-frequency and high-
frequency motions in one control task [15]. For simplicity, k̄
of all subsystems are assumed to be k̄1 in the first t0 seconds.
After that, k̄ of one subsystem switches from k̄1 to k̄2 at the
start of each second. Hence, the mass-spring-damper system
has M + 1 subsystems. By defining x = [x⊤

0 , · · · , x⊤
M−1]

⊤

and u = [u1, · · · , uM−1]
⊤ and considering the sampling

time ts = 0.01 s, the mass-spring-damper system can be
reformulated as (1) with N = M+1, n = 2M and m = M−1.

Simulations are performed for the mass-spring-damper sys-
tem with M = 21, 31, 41. For each M , the proposed method
designs a switched LQR controller u(t) = Kδ(t)x(t) whose
gains {Ki}Ni=1 are computed from Algorithm 4 using α =
0.95, ηin = ηout = 2.2204e-16, Qi = In and Ri = σ×Im, i ∈
[1, N], with σ =1.0e-6, 1.0e-10, 1.0e-13 for M = 21, 31, 41,
respectively. Fig. 1 shows that in each case the sequence
{Pk} converges to the associated COS solution P ∗ within 4
iterations. The total computation time of the M = 21, 31, 41
cases are 38.4 s, 187 s and 708.1 s, respectively.

For comparison, the gains {Ki}Ni=1 are also computed using
the CLF method [14] and the RI method in Remark 3.1. The
CLF method involves solving LMIs similar to (8) but with
Qi = 0 and Ri = 0, and “≤” being replaced by “<”. The RI
method involves solving the LMI problem (9) using the same
Qi and Ri as the proposed method. The case when M = 21

0 1 2 3 4

10
-10

10
0

N5n10m3s

N10n15m5s

N10n15m5

N10n20m5

N5n25m10

1 2 3 4

Outer Iteration k

20

40

60

80

T
o
ta

l
In

n
e
r

It
e
ra

ti
o
n
s

(a)

(b)

Fig. 3: Convergence of iterates and numbers of iterations.

N5n10m3s N10n15m5s N10n15m5 N10n20m5 N5n25m10

Simulation System

0

0.5

1

1.5

2

2.5

3

C
o
m

p
u
ta

ti
o
n
 T

im
e
 (

s
)

RI method

Proposed method

Fig. 4: Computation time of the RI and proposed methods.

is taken as an example to compare the performance of the
three methods. The computation time of the CLF, RI and
proposed methods are 15.5 s, 90.4 s and 38.4 s, respectively.
To simulate the closed-loop control system, all the subsystems
are assumed to have k̄ = k̄1 for t ≤ 4 s. During t ∈ (4, 25] s,
one subsystem switches from k̄1 to k̄2 at the start of each
second, by following a randomly generated subsystems order:
10, 7, 19, 13, 8, 14, 2, 12, 9, 3, 4, 17, 11, 16, 0, 20, 5, 6, 15, 18, 1.
Fig. 2 shows that the proposed method stabilises the closed-
loop state x much faster than the CLF and RI methods.

Simulation 2: Randomly generated systems. Efficacy of
the proposed strategy is further demonstrated by using five
different discrete-time switched linear systems, whose matrix
pairs (Ai, Bi) are randomly generated from the MATLAB
function drss. The five systems are referred to as N5n10m3s,
N10n15m5s, N10n15m5, N10n20m5, and N5n25m10 respec-
tively, where the integers next to N , n and m indicate their
corresponding values, and the last character “s” indicates that
all the subsystems are Schur stable. For example, N5n10m3s
consists of 5 Schur stable subsystems each having 10 state
variables and 3 control inputs. The simulations use the α, ηin
and ηout in Case 1, and random s.p.d. matrices Qi and Ri.

As shown in Fig. 3(a), the sequence {Pk} converges
quadratically to the associated COS solution P ∗ in each case.
Fig. 3(b) shows the total inner iterations of all subsystems in
each outer iteration. For all the five cases, the inner iterations
needed to find the common solution increase with the outer
iterations. This is mainly because limk→∞ Wi,k+1 → 0, which
makes the conditions (17b) and (17c) increasingly difficult to
satisfy. As shown in (34), increasing the inner iterations µ is

8

sufficient for obtaining a smaller residual Ri,k+1 to satisfy
(17b) and (17c). Compared to the two cases with N = 5
(N5n10m3s and N5n25m10), the three cases with N = 10
(N10n15m5s, N10n15m5 and N10n20m5) need much more
total inner iterations. Also, when N is fixed, increases in the
state dimension n and input dimension m lead to an increased
number of inner iterations. Moreover, comparing the cases
N10n15m5s and N10n15m5 reveals that fewer inner iterations
are needed when the subsystems are all Schur stable.

The computational complexity of the proposed and RI
methods are compared in Fig. 4. The proposed method needs
considerably less computation time than the RI method for
all five randomly generated systems. Since the CLF method is
used to obtain the initial common solution P0 for the proposed
method, its computation time is always less than the proposed
method and is thus not reported here. Simulation results
also showed that the obtained common solutions P ∗ (from
the proposed method) and PRI (from the RI method) satisfy
P ∗ < PRI for all five systems. These results demonstrate the
promising advantages of the proposed method in obtaining a
more optimal common solution with less computational cost.

V. CONCLUSION

An iterative strategy is proposed for finding the LQR
weights such that the associated set of DAREs admit a com-
mon optimal stabilising solution. LMI conditions are derived
for checking feasibility of the strategy and generating an
initial feasible solution for the iteration. The iterative algorithm
has quadratic rate of convergence and low computational
complexity. The design efficacy has been illustrated through
numerical simulations of systems with various sizes. The strat-
egy is applied to determine switched LQR for switched linear
systems under arbitrary switching and gain-scheduled LQR
for T-S fuzzy or LPV systems in the entire operating region.
Future research will investigate the possibility of extending the
proposed strategy to include state and control input constraints.

REFERENCES

[1] H. Lin and P. J. Antsaklis, “Stability and stabilizability of switched
linear systems: a survey of recent results,” IEEE Trans. Autom. Control,
vol. 54, no. 2, pp. 308–322, 2009.

[2] F.-R. López-Estrada, D. Rotondo, and G. Valencia-Palomo, “A review
of convex approaches for control, observation and safety of linear
parameter varying and Takagi-Sugeno systems,” PRO., vol. 7, no. 11,
p. 814, 2019.

[3] D. Liberzon, Switching in systems and control. Springer, 2003.
[4] J. Lan and R. J. Patton, Robust Integration of Model-Based Fault

Estimation and Fault-Tolerant Control. Springer, 2020.
[5] J. Mohammadpour and C. W. Scherer, Control of linear parameter

varying systems with applications. Springer, 2012.
[6] P. Li et al., “Polytopic LPV approaches for intelligent automotive

systems: State of the art and future challenges,” Mech. Syst. Signal
Process., vol. 161, p. 107931, 2021.

[7] K. S. Narendra and J. Balakrishnan, “A common Lyapunov function for
stable LTI systems with commuting A-matrices,” IEEE Trans. Autom.
Control, vol. 39, no. 12, pp. 2469–2471, 1994.

[8] Z. Sun and S. S. Ge, Switched linear systems: control and design.
Springer, 2005.

[9] O. Mason and R. Shorten, “On linear copositive Lyapunov functions and
the stability of switched positive linear systems,” IEEE Trans. Autom.
Control, vol. 52, no. 7, pp. 1346–1349, 2007.

[10] D. Liberzon and R. Tempo, “Common Lyapunov functions and gradient
algorithms,” IEEE Trans. Autom. Control, vol. 49, no. 6, pp. 990–994,
2004.

[11] R. H. Ordóñez-Hurtado and M. A. Duarte-Mermoud, “Finding common
quadratic Lyapunov functions for switched linear systems using particle
swarm optimisation,” Int. J. Control, vol. 85, no. 1, pp. 12–25, 2012.

[12] S. Chen et al., “Learning Lyapunov functions for hybrid systems,” arXiv
preprint arXiv:2012.12015, 2020.

[13] K. Tanaka and H. O. Wang, Fuzzy control systems design and analysis:
a linear matrix inequality approach. John Wiley & Sons, 2004.

[14] V. Montagner, V. Leite, R. Oliveira, and P. Peres, “State feedback control
of switched linear systems: An LMI approach,” J. Comput. Appl. Math.,
vol. 194, no. 2, pp. 192–206, 2006.

[15] L. Zhang, Y. Zhu, P. Shi, and Q. Lu, Time-dependent switched discrete-
time linear systems: Control and filtering. Springer, 2016.

[16] W. Zhang, A. Abate, J. Hu, and M. P. Vitus, “Exponential stabilization
of discrete-time switched linear systems,” Automatica, vol. 45, no. 11,
pp. 2526–2536, 2009.

[17] M. Fiacchini and S. Tarbouriech, “Control co-design for discrete-time
switched linear systems,” Automatica, vol. 82, pp. 181–186, 2017.

[18] A. A. Ahmadi and R. M. Jungers, “Switched stability of nonlinear
systems via SOS-convex Lyapunov functions and semidefinite program-
ming,” in Proc. IEEE Conf. Decis. Control. IEEE, 2013, pp. 727–732.

[19] H. Dai, B. Landry, M. Pavone, and R. Tedrake, “Counter-example guided
synthesis of neural network Lyapunov functions for piecewise linear
systems,” in Proc. IEEE Conf. Decis. Control. IEEE, 2020, pp. 1274–
1281.

[20] M. V. Kothare, V. Balakrishnan, and M. Morari, “Robust constrained
model predictive control using linear matrix inequalities,” Automatica,
vol. 32, no. 10, pp. 1361–1379, 1996.

[21] R. Guicherd, A. R. Mills, P. A. Trodden, and V. Kadirkamanathan,
“Simultaneous and sequential control design for discrete-time switched
linear systems using semi-definite programming,” IEEE Control Syst.
Lett., vol. 5, no. 4, pp. 1393–1398, 2020.

[22] W. Zhang, J. Hu, and A. Abate, “Infinite-horizon switched LQR
problems in discrete time: A suboptimal algorithm with performance
analysis,” IEEE Trans. Autom. Control, vol. 57, no. 7, pp. 1815–1821,
2011.

[23] E. Alcalá, V. Puig, and J. Quevedo, “TS-MPC for autonomous vehicles
including a TS-MHE-UIO estimator,” IEEE Trans. Veh. Technol., vol. 68,
no. 7, pp. 6403–6413, 2019.

[24] B. D. Anderson and J. B. Moore, Optimal control: linear quadratic
methods. Courier Corporation, 2007.

[25] M. Lazar, W. Heemels, S. Weiland, and A. Bemporad, “Stabilization
conditions for model predictive control of constrained PWA systems,”
in Proc. IEEE Conf. Decis. Control, vol. 5. IEEE, 2004, pp. 4595–4600.

[26] S. Chaib et al., “Observer design for linear switched systems: A common
Lyapunov function approach,” in Proc. IEEE Int. Conf. Control Appl.
IEEE, 2006, pp. 361–366.

[27] W. F. Arnold and A. J. Laub, “Generalized eigenproblem algorithms and
software for algebraic Riccati equations,” Proc. IEEE, vol. 72, no. 12,
pp. 1746–1754, 1984.

[28] G. Hewer, “An iterative technique for the computation of the steady state
gains for the discrete optimal regulator,” IEEE Trans. Autom. Control,
vol. 16, no. 4, pp. 382–384, 1971.

[29] P. Benner and H. Faßbender, “On the numerical solution of large-scale
sparse discrete-time Riccati equations,” Adv. Comput. Math., vol. 35, pp.
119–147, 2011.

[30] A. Bouhamidi and K. Jbilou, “On the convergence of inexact Newton
methods for discrete-time algebraic Riccati equations,” Linear Algebra
Appl., vol. 439, no. 7, pp. 2057–2069, 2013.

[31] S. Boyd, L. El Ghaoui, E. Feron, and V. Balakrishnan, Linear matrix
inequalities in system and control theory. SIAM, 1994, vol. 15.

[32] X. Zeng, J. Chen, and Y. Hong, “Distributed optimization design for
computation of algebraic Riccati inequalities,” IEEE Trans. Cybern.,
vol. 52, no. 3, pp. 1924–1935, 2020.

[33] J. Lan and R. J. Patton, “Integrated design of fault-tolerant control for
nonlinear systems based on fault estimation and T–S fuzzy modeling,”
IEEE Trans. Fuzzy Syst., vol. 25, no. 5, pp. 1141–1154, 2016.

[34] R. Smith, “Matrix equation XA+BX=C,” SIAM J Appl Math., vol. 16,
no. 1, pp. 198–201, 1968.

[35] P. Lancaster and L. Rodman, Algebraic Riccati equations. Clarendon
Press, 1995.

[36] J. Löfberg, “YALMIP: A toolbox for modeling and optimization in
MATLAB,” in Proc. CACSD, vol. 3, 2004.

[37] Mosek ApS, “The MOSEK optimization software.” [Online]. Available:
https://www.mosek.com

[38] Y. Cheng and V. Ugrinovskii, “Gain-scheduled leader-follower tracking
control for interconnected parameter varying systems,” Int. J. Robust
Nonlin., vol. 26, no. 3, pp. 461–488, 2016.

	Enlighten Accepted coversheet (CC-BY 4.0) (1)
	288767
	288767

