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In this study a novel method was presented to parameterize the critical current of Yttrium Barium Copper
Oxide (YBCO) tapes based on their width, thickness, magnetothermal operational conditions, and the applied
strain. For this purpose, a fuzzy‐logic‐based model was developed that take tapes structures and their opera-
tional conditions as inputs to calculate their critical current, as output. The results of critical current parame-
terization by fuzzy‐logic‐based model showed that the relative error of the proposed model is less than 3%
comparing to experimentally acquired data. Then, the results of presented model was compared to results of
semi‐analytical fitting‐based models and fully‐analytical fitting based models. The comparisons showed the
better performance in terms of accuracy and error of fuzzy logic model over fitting‐based methods. At last,
the results were also compared with the Artificial Neural Network (ANN)‐based parameterization model and
Adaptive Nero‐Fuzzy Interference System (ANFIS)‐based parameterization model. The proposed method had
6% to 8% higher accuracy and about 47% to 54% lower root mean squared error.
1. Introduction

High Temperature Superconducting (HTS) tapes and wires are
killer technology for future power grids, cryo‐electrified aircraft, ships,
and spacecraft. This is due to their low energy loss, low total owner-
ship cost, high level of compactness, low weight, and many other
advantages [1,2]. For properly operation of power devices consisting
of HTS tapes, critical current (Ic) is one of the most important param-
eters of these tapes. Critical current of HTS tapes depends on many fac-
tors such as magnetic field, operational temperature, applied strain,
tape width, and tape thickness [3] and any change in these factors
would lead to increase/decrease of critical current. Therefore, to avoid
any malfunction of HTS devices, critical current parameterization is an
important task during design stage of superconducting devices, espe-
cially for highly sensitive industries such as aviation and space [4,5].

Conventionally, critical current parameterization is conducted by
performing experimental tests under specific field, temperature, and
strain conditions [6–9]. These tests are usually performed to character-
ize the behavior of HTS tapes under different operational condition
rather than using the tests results for design purposes of HTS devices.
To take the advantage of these tests results, usually semi‐analytical for-
mulations are proposed that consist of some fitting parameters, spe-
cialized for each type of HTS tape or some specific operational
condition [5,10–12]. This means that by using these semi‐analytical
methods for other type of HTS tapes or different working conditions,
the results of critical current parameterization would consist of signif-
icant errors. To avoid this, last recently‐two Artificial Intelligent (AI)‐
based methods were proposed that presented a general model with the
capability of critical current parameterization for each type of Yttrium
Barium Copper Oxide (YBCO) tapes [13,14]. Although these AI‐based
models were successful in presenting a general model for critical cur-
rent parameterization, their accuracy could be still improved.

In this paper, another AI‐based model is used for critical current
parameterization of YBCO tapes based on data that experimentally col-
lected. The novel proposed method operates based on fuzzy logic was
firstly introduced in 1965 [15]. Before getting to analyze the results of
critical current parameterization based on fuzzy logic, some analytical
and semi‐analytical formulations are proposed and by using the
MATLAB fitting library, they are generalized for all types of YBCO
tapes to show the readers the inability of these methods in estimating
the critical current of various YBCO tapes.
2. General analytical Ic parameterization methods

To parameterize the critical current of YBCO tapes, many formula-
tions and fitting equations have been proposed in literature based on
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variations of magnetic field, temperature, and strain. These formula-
tions usually take the advantage of some fitting parameters to cope
the experimental results with analytical simulations. The aforemen-
tioned parameters commonly vary for each tape and operational con-
ditions and thus, for new conditions and tapes new experimental tests
are needed to adapt the fitting parameters. The aim of this section is to
discuss that how these formulation could be generalized for a group of
YBCO tapes. Equation (1) shows the famous temperature dependency
of critical current based on E‐J power law [16].

f 1 Tð Þ ¼ a1
a2 þ T
a2 þ a3

� �a4

ð1Þ

where, ai is coefficient that must be identified through fitting procedure
and T is operational temperature. The aim of such generalization is to
get rid of calculation or measurement of base temperature, critical tem-
perature, critical current at base temperature, and other fitting
parameters.

Another formulation for critical current parameterization is pre-
sented as equation (2) in [5] with respect to changes of field and tem-
perature where B represents magnetic field (applied or self‐field).

f 2 T;Bð Þ ¼ a5 � exp � T
a6

� �
� Ba7 ð2Þ

Equations (3) to (4) also provide formulations for critical current
based on changes of field and strain ɛð Þ, respectively [10,12,16].

f 3 Bð Þ ¼ a8 1� B
a9

� �
� exp � B

a10

� �a11� �
ð3Þ

f 4 ɛð Þ ¼ a12 1� a13 ɛ � a14ð Þ2
� �

ð4Þ

In addition, equations (5) to (7) present an nth order polynomial
and two different type for exponential formulations for critical current
parameterization, based on the changes of temperature, field, and
strain that is generally defined as x in these equations.

Pn xð Þ ¼ c1xn þ c2xn�1 þ � � � þ cn�1x2 þ cnx þ cnþ1 ð5Þ

E1 xð Þ ¼ d1 exp d2xð Þ ð6Þ

E2 xð Þ ¼ k1 exp k2xð Þ þ k3 exp k4xð Þ ð7Þ
where, ci, di, and ki are coefficients that must be identified during fitting
procedure. About all the coefficients that presented in this section,
would be discussed in results and discussion section of the paper.

3. An overview on fuzzy logic for critical current
parameterization

When it comes to decision making by Boolean logic, there are only
two possibilities: true or false. However, this approach may not be the
optimal one for situations where there is uncertainty and insufficient
information. The fuzzy logic has been used to manage these condi-
tions. When making a choice, fuzzy logic assigns a degree of truth
between [0,1] (1 being true and 0 being false), as opposed to Boolean
logic, which assigns a 1 or 0 for true or false. The base of fuzzy logic is
a fuzzy set. The fuzzy set is a set where each element has been given a
degree of membership, which determines the trueness of the element
to be part of that set. Usually, when one states a set, it is assumed that
each element is part of that specific set. The degree of membership
determines the trueness of an element belonging to that set. The like-
lihood that an element belongs to a given set increases with the ele-
ment's degree's closeness to 1. A curve that explains how each
element in the input space is transformed to a membership degree
ranging from 0 to 1 is called membership function. The same can be
shown using equation (8) [17–19]:
2

Afx; μA xð Þjx∈Xg ð8Þ
where, μAðxÞ is the membershipfunctionof x inA.

The fuzzy logic takes in a crisp input and fuzzifies it and then pass it
towards a fuzzy inference system. The Fuzzy Inference System (FIS)
maps fuzzy input sets to fuzzy output sets by combining the rules from
the fuzzy rule base and provides a crisp output after defuzzification.
The flowchart is shown in Fig. 1. There are many inference systems
available, but for critical current parameterization application, Sugeno
inference system is used, as it is computationally very efficient. A
Sugeno inference rule is shown as equation (9) [20].

IfInput1 ¼ xandInput2 ¼ y; thenOutputisz ¼ ax þ by þ c ð9Þ
The AND logical operator in a fuzzy system can be presented as

equation (10) [17]:

XANDY ¼ min X;Yð Þ ð10Þ
The OR logical operator in a fuzzy system can be also presented as

equation (11) [17]:

XORY ¼ max X;Yð Þ ð11Þ
The data must belong to one of the membership functions if it is to

be used in a fuzzy logic model. In this case, the membership functions
are clusters. Each cluster denotes which group the input belongs to,
and the FIS produces an output based on this. In other words, cluster-
ing is nothing more than grouping similar data. The clustering meth-
ods used are Fuzzy C‐means clustering and subtractive clustering
method.

The Subtractive Clustering Method (SCM) is used in current
research where instead of giving each data point a membership
degree, a radius of impact is drawn around it and scored, as shown
in Fig. 2. Each data point is visited, and a cluster is created based on
how far each one is from the selected data point. This distance is con-
sidered when calculating the score. After visiting each point, the best
cluster's center is chosen based on the score points shown in equation
(12) [21].

σi ¼ ∑j¼0
j¼0e

�q ð12Þ
Where q is given by equation (13):

q ¼ jxi � x2
j j

r
2

� �2 ð13Þ

The membership degree in each cluster is calculated by equation
(24):

μij ¼ e �0:5�Zð Þ ð14Þ
Where z is given by equation (15):

Z ¼ xi � cj
� �T∑�1ðxi � ciÞ ð15Þ
Here, cj is the cluster center defined by the matrix ∑ in equation

(16):

∑ ¼
1 � � � 0
..
. . .

. ..
.

0 � � � σN

2
64

3
75 ð16Þ

To this far, the focus of this section was on providing a general
overview on all models based on fuzzy logic. By presenting Fig. 3,
the paper concentrates on implementation of a fuzzy‐logic‐based
model for parameterization of critical current. By beginning from left
hand side, firstly, the experimental inputs data and output data must
be gathered as a matrix, known as critical current data, in MATLAB
software package. Then, one has to fuzzifies all these data which
means decomposing these data into one or more fuzzy sets through
trapezoidal‐shaped membership functions. In other words, fuzzifica-
tion is considered as a step where based on the degree of membership



Fig. 1. Genearl Fuzzy logic flowchart.

Fig. 2. SCM-based clusters for four different type of data.
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functions, each critical current data is included in an appropriate fuzzy
set. This could be conducted in MATLAB by using “genfis” function
and also choosing SCM as the clustering method. Afterwards, a fuzzy
system is generated that still needs interpretations which means con-
verting fuzzy sets and rules into a crisp model that is known as defuzzi-
fication process. By doing so, a model is provided that could
parameterize critical current of any HTS tape under any magnetic
field, temperature, and strain.
Fig. 3. The realization process of using a fuzzy logic mo

3

To evaluate the performance of fuzzy logic model for critical cur-
rent parameterization, same as other methods, four indices were used
that are Root Mean Squared Error (RMSE), Pearscon correlation coef-
ficient (R), Absolute Error (AE), and Relative Error (RE) that are calcu-
lated based on equations (17) to (20).

RMSE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
∑
Ns

i¼1

ti � eið Þ2
Ns

s
ð17Þ

R ¼
∑Ns

i¼1ðti � t
�Þ ei � e

�� �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
∑
Ns

i¼1
ti � t

�� �2

∑
Ns

i¼1
ei � e

�� �2
s ð18Þ

AE ¼ t � ej j ð19Þ

RE ¼ e� t
t

			 			 ð20Þ

where, t is expected value, e is estimated value, t
�
is mean value of

expected data, e
�
is mean value of estimated data, and Ns is number

of data.

4. Results and discussions

4.1. Data variety of tapes

In this section the variety of data is evaluated based on the tape
geometries, field, temperature and strain. The data are experimentally
tested and reported in [6,7,22–24]. Fig. 4 illustrates that how data are
distributed based on the width of HTS tapes and their thickness. As
del for parameterizing critical current of HTS tapes.



Fig. 4. Variety of data used for critical current parameterization based on the
tapes geometry.

Fig. 5. Performance of f1 fitting equation for estimating the critical current of
understudied HTS tapes.
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shown in this figure, about 50% of data are related to HTS tapes with
width in 4 mm to 6 mm range while their thickness is in 100 um to 120
um. 10% of data are related to bigger tapes that have width in 8 mm to
10 mm range while thickness is 100 um to 120 um. About 40% of data
also belong to thicker HTS tapes with a thickness of 140 um to 180 um.

About the magnetic field, temperature, and strain of input data, it
should be mentioned that based on experiments conducted in
[6,7,22–24], magnetic field is in range of self‐field to 19 T while tem-
perature is considered in 4.2 K to 84 K range. 30% of data are related
to 4.2 K temperature, 5% are related to data of 60 K to 70 K range,
60% are for data in 77 K temperature, and the rest is for data in
84 K. At last, strain in distributed equally for all ranges of 0% to
1.05%.
4.2. Performance of semi-analytical methods for critical current
parameterization

In this section, the coefficients of semi‐analytical fitting equations
presented in section two of the paper are calculated and their perfor-
mance is discussed. The coefficients of polynomial and exponential
equations are also calculated, however, to prevent biasing of the paper
toward the fitting equations, they are discussed and shown in Appen-
dix section. Table 1 tabulates the calculated coefficients for presented
fitting equations in section two. The aim was to access a general equa-
tion that could parameterize the critical current of any arbitrary HTS
tape based on temperature, field, and strain, without any need to jus-
tify the fitting parameters for each tape.

Fig. 5 shows the performance of f1 fitting equation to parameterize
the critical current of HTS tapes, based on their operational tempera-
ture. As can be seen, the fitted equation hardly matches with experi-
Table 1
Calculated coefficients of fitting equations of f1 to f4.

Fitting Coefficient

f 1 Tð Þ a1 ¼ 80; a2 ¼ 3:963; a3 ¼ 92:5; a4 ¼ �0:5568;
f 2 T;Bð Þ a5 ¼ 15:235; a6 ¼ 2:932; a7 ¼ 1:355
f 3 Bð Þ a8 ¼ 320:55; a9 ¼ 155:35; a10 ¼ 0:23; a11 ¼ 0:025
f 4 ɛð Þ a12 ¼ 39:4; a13 ¼ �0:01941; a14 ¼ 11:5

4

mental data of various HTS tapes. Here, different critical current
values are shown in a specific temperature that has two main reasons,
one is that these critical current values belong to different HTS tapes
and another reason is that in each temperature different field and
strain values are applied that resulted in critical current changes at
constant temperature. This is a solid proof that fitting could not be
used for critical current parameterization of HTS tapes based on just
one factor, such as temperature.

At the next step, Fig. 6 is presented to show the performance of fit-
ting equations in a two dimensional equation. Equation f2 tends to
parameterize the critical current of HTS taped based on the changes
of temperature and magnetic field. As seen in this figure, presented
formulation performs appropriately for data with high magnetic field
(19 T) and low temperature (4.2 K) while it is unable to cope itself
so that low magnetic field and high temperature (60 K to 84 K) data
are also parameterized appropriately. This is originated in the nature
Fig. 6. Performance of f2 fitting equation for estimating the critical current of
understudied HTS tapes.
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of fitting methods and algorithms that try to present a formulation cap-
able of estimating any data in fitting range. This would help and
improve the performance of fitting algorithms through critical current
parameterization of HTS tapes, if they just related to magnetic field,
temperature, strain or any combination of them. We know that this
is not the case and critical current relates to many other factors such
as tape structure.

Fig. 7 displays the performance of f3 equation in estimating the crit-
ical current of different HTS tapes. This fitting equation has a better
performance than two previously discussed methods. However, it
seems that for magnetic field out of 5 T to 15 T this equation has also
high errors and low accuracy. Fig. 8 shows the performance of f4 fit-
ting equation for estimating the critical current based on the changes
of strain. As can be seen, this formulation has also failed to present
coefficients that cope with critical current of all understudied tapes.
The fitting here is just a simple mean value that reduces by increase
of strain.
Fig. 8. Performance of f4 fitting equation for estimating the critical current of
understudied HTS tapes.
4.3. Critical current parameterization by means of fuzzy logic

Fig. 9 shows the results of critical current parameterization by
means of fuzzy logic model. Although the results are shown based
on the variations of strain, temperature, magnetic field, and tape prop-
erties are considered in model. Four clustering methods based on sub-
tractive clustering approach were used here to parameterize critical
current which have clustering radius of 1, 0.45, 0.3, and 0.1. The col-
orbars on right hand side show the difference between experimentally
gained values and estimated values, known as Absolute Error (AE). As
can be seen in this figure, SCM1 has the highest AE which is about 10
A while this value for SCM0.45, SCM0.3, and SCM0.1, is about 4 A, 4
A, and 3 A, respectively. This means that in worst‐case scenario of
SCM1, the parameterized critical current by fuzzy logic, has a 10
ampere value higher/lower than experimentally tested value. This
means that, the SCM 0.1 has the highest accuracy in critical current
parameterization, not only among the fuzzy logic‐based approaches
but also comparing to fitting methods. Mean Relative Error (MRE) val-
ues are also reported that confirm the high accuracy of SCM0.1
method with an 87% lower MRE than SCM1 approach, 50% lower
MRE than SCM0.45, and 46% lower MRE than SCM0.3 method.
Fig. 7. Performance of f3 fitting equation for estimating the critical current of
understudied HTS tapes.
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The low AE and RE values of critical current parameterization by
means of fuzzy logic method show the high capability of this AI‐
based tool in parameterization of critical current, regardless of the
type and structure of HTS tapes and magnetothermal operational con-
ditions. Therefore, by developing such model, one can parameterize
the critical current of any HTS tape operating in any magnetothermal
conditions. Another important property of fuzzy‐based model is that it
include tapes with 4 mm and more than 10 mm width.

4.4. Comparison of fuzzy logic critical current parameterization and
analytical formulation

In this section, the results of critical current parameterization by
different fitting methods are compared with the results of fuzzy logic
method. Table 2 compares the R and RMSE values of the aforemen-
tioned methods. The best performance among the fuzzy based param-
eterization is related to SCM 0.1 with an 18% to 77% lower RMSE
comparing to other fuzzy approaches. Among the fitting methods,
f4(Ɛ) has the best performance with a 21% to 1260% higher R than
other semi‐analytical fitting methods and also 35% to 62% lower
RMSE. However, this fitting equation parameterize the critical current
just based on the strain value. Now by comparing the SCM0.1 with the
results of fitting equations, it can be concluded that it has 45% to
1880% higher R value and also 90% to 96% lower RMSE. This shows
another superiority of fuzzy logic model over semi‐analytical fitting
methods in parameterization of critical current. In other words, the
fuzzy logic methods have an excellent coordination with experimen-
tally tested data with high R value, low RMSE, AE, and MRE.

The next step is comparing the results of critical current parameter-
ization by fuzzy logic with the results of polynomial fitting methods.
For this purpose, polynomial equations of 1st order to 9th are consid-
ered for each factor including field, temperature, and strain and their R
and RMSE values are reported. As reported in Table 3, by considering
temperature, as independent variable of polynomial, the best perfor-
mance belongs to 4th order equation with R value of 0.81 and RMSE
of 0.114. The SCM0.1 has 22% higher R value and 82% lower RMSE
than 4th polynomial with independent variable of temperature. If
magnetic field is considered as independent variable, the best perfor-
mance of polynomial fittings relates to 9th order with R and RMSE
of 0.79 and 0.120 which are 25% lower than R value of SCM0.1 and
82% higher than RMSE value of SCM0.1 approach. At last, by consid-
ering strain as independent variable, the best performance is shown by
8th order polynomial with R and RMSE value of 0.156 and 0.242,



Fig. 9. Results of critical current parameterization by means of fuzzy logic and with respect to the absolute error of estimated values versus experimental ones.

Table 2
Comparison of accuracy and error of fuzzy-based models and semi-analytical fitting equations for critical current parameterization.

Method SCM1 SCM0.45 SCM0.3 SCM0.1 f 1 Tð Þ f 2 T;Bð Þ f 3 Bð Þ f 4 ɛð Þ

RMSE 0.098 0.030 0.027 0.022 0.626 0.576 0.363 0.235
R 0.85 0.98 0.99 0.99 0.05 0.13 0.56 0.68
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respectively, which are 530% lower than R value of SCM0.1 and 90%
higher than RMSE value of SCM0.1 approach. At last, it should be
mentioned that to avoid biasing the paper toward the fitting methods,
the calculated coefficients are presented in Appendix section.

After comparing polynomial fitting equations with the results of
fuzzy logic, the next step is to evaluate the performance of two expo-
6

nential equations with fuzzy logic. Table 4 shows the RMSE and R val-
ues of critical current parameterization by means of exponential
equations. Significantly, the SCM0.1 and also other fuzzy approaches
have upper hand comparing to exponential equations. SCM0.1 has
24% to 792% higher R value and 81% to 95% lower RMSE value in
comparison to exponential equations.



Table 3
Accuracy and error of critical current parameterization by means of polynomial fitting methods.

Variable Temperature (K) Magnetic Field (T) Strain ɛð Þ
Index RMSE R RMSE R RMSE R

P1 0.151 0.669 0.156 0.646 0.247 0.114
P2 0.121 0.785 0.137 0.725 0.246 0.121
P3 0.115 0.808 0.129 0.758 0.246 0.122
P4 0.114 0.810 0.125 0.773 0.244 0.137
P5 0.115 0.807 0.122 0.781 0.244 0.144
P6 0.115 0.805 0.121 0.785 0.242 0.155
P7 0.116 0.805 0.121 0.787 0.242 0.155
P8 0.127 0.764 0.120 0.789 0.242 0.156
P9 0.119 0.794 0.120 0.790 0.243 0.142

Table 4
Accuracy and error of critical current parameterization by means of polynomial exponential methods.

Variable Temperature (K) Magnetic Field (T) Strain ɛð Þ
Index RMSE R RMSE R RMSE R

E1 0.153 0.658 0.514 0.656 0.247 0.111
E2 0.154 0.656 0.119 0.796 0.245 0.128
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4.5. Comparison of fuzzy logic with ANFIS and ANN methods

Table 5 shows the results of critical current parameterization of
HTS tapes by fuzzy logic method, Adaptive Neuro‐Fuzzy Interfer-
ence System (ANFIS) model [14], and Artificial Neural Network
(ANN) model [13]. SCM0.1 has higher R value comparing to ANFIS
and ANN‐based models with 6% to 8% higher R value. Meanwhile
RMSE value of SCM0.1 is about 47% to 54% lower than RMSE of
ANFIS and ANN model. It should be also noted that except
SCM1, all other SCM methods have a better performance in
parameterization of critical current. Therefore, it should be noted
that fuzzy logic methods, especially SCM0.1 and SCM0.3 has high-
est accuracy among the reported models and techniques in
literature.

5. Conclusions

Critical current parameterization of High Temperature Supercon-
ducting (HTS) tapes plays a vital role in design, condition monitoring,
and protection of HTS power devices implemented in power grids,
electric aircraft, and electric spacecraft. Many methods have been pro-
posed to for parameterization of HTS tapes which can be categorized
into three groups, experimental tests, semi‐analytical models, and Arti-
ficial Intelligent (AI) techniques. Based on third class, this paper pre-
sents a novel method for parameterization of critical current, known
as fuzzy logic model. The most important findings of this paper based
on the proposed method are:

• Low accuracy, adaptability, and reliability of semi‐analytical and
fully‐analytical fitting methods in parameterization of critical
current.

• The absolute error of fuzzy logic models for critical current param-
eterization was between 3 A to 10 A while their mean relative error
were between 1% to 11%.
Table 5
Accuracy comparison of critical current parameterization based on fuzzy logic with

Method SCM1 SCM0.45 SCM0.3

R 0.85 0.98 0.99
RMSE 0.098 0.030 0.027

7

• By comparing the results of critical current parameterization of
HTS tapes and semi‐analytical and fully‐analytical fitting methods,
it can be seen that fuzzy method has about 80% to 90% lower Root
Mean Squared Error (RMSE) and 45% to more than hundreds of
percent higher accuracy.

• By comparing the results of critical current parameterization by fuzzy
logic model and Adaptive Neuro‐Fuzzy Interference System (ANFIS)
model and Artificial Neural Network (ANN) model, reported in liter-
ature, it can be seen that the fuzzy method has also better perfor-
mance comparing to these AI‐based models.

• RMSE value of fuzzy model is about 40% to 50% lower than ANFIS
method.

• RMSE value of fuzzy model is about 45% to 54% lower than ANN
method.
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Appendix A: Coefficients of polynomial fittings and exponential
fittings

To avoid distracting the readers from the main bulk of the results,
the coefficients of polynomial and exponential equations reported in
methods reported in literature.

SCM0.1 ANFIS [14] ANN [13]

0.99 0.92 0.93
0.022 0.047 0.042



Table 6
Polynomial coefficients for critical current parameterization based on temperature.

order c1 c2 c3 c4 c5 c6 c7 c8 c9 c10

P1 −77.36 161.10 - - - - - - - -
P2 −0.047 3.113 143.8 - - - - - - -
P3 −0.0025 0.3191 −10.9 196.5 - - - - - -
P4 0.0001771 −0.04204 3.291 −89.87 478.6 - - - - -
P5 −1.40e + 05 4.126e + 07 −4.57e + 09 2.292e + 11 −4.649e + 12 1.581e + 13 - - - -
P6 −1.506e + 04 3.327e + 06 −1.666e + 08 −1.134e + 10 1.303e + 12 −3.485e + 13 1.243e + 14 - - -
P7 1175 −2.444e + 05 1.161e + 07 4.767e + 08 −2.645e + 10 −1.79e + 12 9.023e + 13 −3.456e + 14 - -
P8 −11.92 2970 2.537e + 05 7.915e + 06 −1.913e + 07 −6.65e + 09 6.99e + 11 −2.592e + 13 9.704e + 13 -
P9 −0.0952 13.69 308.2 9.032e + 04 −1.68e + 06 3.966e + 08 −3.824e + 09 −2.651e + 11 −8.429e + 11 8.38e + 12

Table 7
Polynomial coefficients for critical current parameterization based on magnetic field.

order c1 c2 c3 c4 c5 c6 c7 c8 c9 c10

P1 −2.935 136.9 - - - - - - - -
P2 0.765 −17.6 140.6 - - - - - - -
P3 −0.1653 4.617 −31.21 142.1 - - - - - -
P4 0.04971 −1.658 16.05 −50.46 142.9 - - - - -
P5 −0.01307 0.509 −6.605 34.94 −71.12 143.4 - - - -
P6 0.004075 −0.1765 2.73 −19.18 63.13 −90.62 143.6 - - -
P7 −0.001557 0.07382 −1.311 11.28 −49.95 111.5 −115.1 143.8 - -
P8 0.001219 −0.06067 1.158 −11.04 56.89 158.9 230.5 −158.7 144 -
P9 −0.0006785 0.03561 −0.735 7.851 −47.53 167.2 −336.4 365.9 −194.5 144.1

Table 8
Polynomial coefficients for critical current parameterization based on strain.

order c1 c2 c3 c4 c5 c6 c7 c8 c9 c10

P1 −117.2 163.4 - - - - - - - -
P2 46.16 −158.3 169.1 - - - - - - -
P3 28.1 4.46 −142.5 168 - - - - - -
P4 −414.8 862 −518.5 –33.8 163.8 - - - - -
P5 68.45 −585.7 1011 −571.5 −27 163.5 - - - -
P6 2234 −6669 7012 −2941 363.7 −109.5 164.8 - - -
P7 −1.078e + 04 4.051e + 04 −5.996e + 04 4.38e + 04 −1.601e + 04 2591 −253.5 166.2 - -
P8 4015 −2.707e + 04 6.73e + 04 −8.285e + 04 5.463e + 04 −1.88e + 04 2945 −270.6 166.4 -
P9 4743 −1.76e + 04 1.392e + 04 2.542e + 04 −5.791e + 04 4.589e + 04 −1.707e + 04 2773 −264.1 166.3

Table 9
Coefficient of exponential fitting formula based on temperature, magnetic field, and strain.

Polynomial type E1 E2

Coefficient d1 d2 k1 k2 k3 k4

Temperature 161.4 −0.005967 0 −8.51 161.4 −0.005967
Magnetic field 137.4 −0.02804 106.7 −0.01372 37.71 −14.68
Strain 170.9 −1.052 −14.48 −12.83 178.6 −1.142
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section 4, are shown and discussed here and in Tables 6–9. To find
these coefficients, MATLAB software package is used.
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