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A B S T R A C T

Perturbation(s) in the adhesive’s properties originating from the manufacturing, glue-line application method
and in-service conditions, may lead to poor performance of bonded systems. Herein, the effect of such
uncertainties on the adhesive stresses is analyzed via a probabilistic mechanics framework built on a
continuum-based theoretical model. Firstly, a generic 2D plane stress/strain linear-elastic model for a composite
double-lap joint with a functionally graded adhesive is proposed. The developed model is validated against the
results obtained from an analogous finite element model for the cases of bonded joints with metal/composite
adherends subjected to mechanical and thermal loadings. Subsequently, the proposed analytical model is
reformulated in probabilistic mechanics framework where the elastic modulus of the adhesive is treated as
a spatially varying stochastic field for the cases of homogeneous and graded adhesives. The former case
represents stochastic nature of conventional joints with a homogeneous bondline while the later case showcases
the perturbation in the properties of functionally graded joints. To propagate the uncertainty in the elastic
modulus to shear and peel stresses, we use a non-intrusive polynomial chaos approach. For a standard deviation
in the elastic modulus, the proposed model is utilized to evaluate the spatial distribution of shear and peel
stresses in the adhesive, together with probability and cumulative distribution functions of their peaks. A
systematic parametric study is further carried out to evaluate the effect of varying mean value of the adhesive’s
Young’s moduli, overlap lengths and adhesive thicknesses on the coefficient of variation/standard deviation
in peak stresses due to the presence of a random moduli field. It was observed that the joints with stiffer
adhesives and longer bondlengths show smaller coefficient of variation in peak stresses. The findings from
this study underscore that the predictive capability of the proposed model would be useful for the stochastic
design of adhesively bonded joints.
. Introduction

Adhesively bonded joints enable efficient load-transfer over a larger
rea and are lighter compared to bolted and welded connections.
owever, non-uniform distribution of stresses in the adhesive layer

s observed. Therefore, peak shear and peel stresses in the bondline
ave a significant influence on how such connections are designed.
espite having superior load-transfer characteristics compared with

heir conventional counterparts, they have displayed a wide range of
erformances. These variations could be attributed to the uncertainties
n the geometric and material properties of such systems, arising from
anufacturing and in-service conditions (Stroud et al., 2002; Uddin

t al., 2004; Luo et al., 2011; Kimiaeifar et al., 2012a; Olajide et al.,
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2017). Goland and Reissner (1944), first formulated a theoretical model
to predict the stresses in flat bonded joints. Since then, a plethora
of analytical, numerical and experimental studies investigated the be-
havior of bonded joints considering different geometric and material
properties (Adams and Peppiatt, 1974; Mortensen and Thomsen, 2002;
Kumar and Mittal, 2013). Functional gradation of adhesive properties
has recently been extensively explored to reduce the peak stresses in
the bondline so as to improve the load carrying capacity of the bonded
joints (Kumar and Khan, 2016b; Da Silva and Campilho, 2012; Khan
et al., 2018b). A simple form of adhesive tailoring combines the fa-
vorable characteristics of compliant and brittle adhesives i.e., ductility
and strength properties are simultaneously engineered via a graded
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bondline (da Silva and Lopes, 2009; Kumar and Pandey, 2010; Özer
and Öz, 2017). Usually, a functionally modulus graded adhesive is
implemented in such a way that the bondline has the lowest stiffness
near the overlap ends in order to reduce the peak stresses driving
failure. For instance, a typical bi-adhesive bondline is engineered to
have a single-step change in the modulus of the bondline over the
bondlength. On the other hand, a joint with a functionally graded
bondline employs a multi-step or smooth variation in adhesive modulus
over the bondlength, primarily to optimize the adhesive’s stress profile
so as to reduce the stress peaks (Stein et al., 2016).

Several studies have reported a decrease in stress concentration
in bonded composite joints and patch-repair systems with a function-
ally graded bondline (Kumar and Scanlan, 2013; Kumar and Khan,
2016b; Khan and Kumar, 2016). The experimental evidence showcasing
performance enhancements in terms of strength by the application of
functionally graded bondline can be noted from some of the studies in
which adhesive tailoring was realized by selective placement of glass
beads or nano-silica inclusions (Stapleton et al., 2012), graded curing
via induction heating (Carbas et al., 2014) and functional dispersion of
carbon black with dielectric heating (Carbas et al., 2017). In order to
demonstrate functional gradation of bondlayer’s properties of a single-
lap joint, advanced manufacturing techniques, including 3D printing
were employed (Kumar et al., 2016). This resulted in a greater than
100% increase in the joints’ toughness and load carrying capacity. This
work was extended to explore the effect of bondlayer and adherend
tailoring of bonded systems with varying geometries (Khan and Kumar,
2018; Khan et al., 2018a; Ubaid et al., 2018) and similar observations
on strength and toughness enhancements were noted.

Some of the uncertainties associated with the adhesive phase are
due to poor mixing, laying pattern/filling that could lead to a cluster of
micro-voids due to entrapment of air, volatiles and chemical reactions,
defined as porosity in adhesives (Katnam et al., 2011). The porosity
exists in most of the bondlines to a certain degree (Adams, 2018).
Partial cure can occur due to not following the cure profile, incorrect
mixing of the adhesive, wrong formulation, or insufficient thermal
exposure (Katnam et al., 2011). Partial curing, stresses and thermal
shrinkage could lead to adhesive cracking (Omairey et al., 2021). As a
consequence, adhesively bonded joints show a significant variation in
performance and therefore, a few studies have focused on quantifying
such uncertainties. Yu et al. (2019) studied the variations in the ratio of
bond strength to model predictions and concluded that these variations
are highly dependent on input parameters rather than being completely
random. They obtained bond strength values from an experimental
database gathered from literature while they used the classical solution
of Hart-Smith (1973) as a predictive model. A similar observation
was made by Zhang et al. (2018) while examining the model un-
certainties against the experimental results. Kimiaeifar et al. (2012b)
developed a probabilistic model based on 3D Finite Element Method
(FEM) for adhesively bonded scarf joints which helped to calibrate
partial safety factors with respect to variations in input data. They
extended the model to assess the reliability of such joints (Kimiaeifar
et al., 2013). Bhat et al. (2015) carried out FE analysis on single-lap
joints by considering geometric and material parameters as stochas-
tic variables with a log-normal distribution. They demonstrated how
variations in the adherend thickness and the adhesive stiffness affect
the peak stresses in the adhesive layer. Mathias and Lemaire (2013)
assessed the variability in adhesive shear and peel stresses by treating
the thickness of the adhesive as a spatially varying stochastic field,
employing a probabilistic mechanics based FE framework. Functional
tailoring of adhesive’s properties is a niche technology that has known
manufacturing challenges. However, to the best of authors’ knowledge,
there have only been a few studies that attempted to quantify the effect
of such uncertainties. For instance, in their analyses of bonded anchors
with a degraded bondline, Tipireddy and Kumar (2017) regarded the
2

shear stiffness of the adhesive as a stochastic field. w
The proposed study focuses on modeling aspects of functionally
graded adhesive joints and has two parts. The first component of it
presents a deterministic continuum-based model for predicting adhe-
sive stresses in an adhesively bonded double-lap joint (DLJ) with a
functionally graded bondline. In the second part of the study, the elastic
modulus of the adhesive is regarded as a spatially varying stochastic
field with a homogeneous or graded mean, formulating the problem in
the probabilistic mechanics framework via a non-intrusive polynomial
chaos approach. This allows us to investigate the deviations in the
adhesive stresses with the help of probability and cumulative distribu-
tion functions of stress peaks. For the case study where the stochastic
field has a homogeneous mean, we focus on the variation in adhesive
stresses that stems from manufacturing defects in conventional joints
with ungraded/non-tailored adhesive. In the later case, we quantify
the effect of uncertainties in the adhesive properties of a functionally
graded DLJ on the bondline stresses. A systematic parametric study is
carried out to quantify the deterministic variations and uncertainties
in adhesive stresses for a practical range of geometric and material
parameters, in the presence of a stochastic bondline. Furthermore,
we quantify such uncertainties in terms of standard deviation and
coefficient of variation in peak shear and peel stresses.

2. Deterministic model for adhesive stresses

Fig. 1a depicts an idealization of an adhesively bonded DLJ under
an axial tensile load 𝑃 . The overlap region of the assembly with
ength 𝑙 and layer thickness ℎ𝑖 is shown in Fig. 1b. The top and the

middle adherends experience axial tensile stresses of magnitude 𝜎0 and
𝜌𝜎0, respectively. All the traction and traction-free conditions at the
respective boundaries are indicated in Fig. 1c. Here, the subscript 𝑖 =
1, 2 and 𝑎 refers to the top adherend, middle adherend and the adhesive,
respectively. Note that, at the plane of symmetry, the distortion is zero.
Therefore, the shear stress in the middle adherend at this plane vanishes
i.e., 𝜎(2)𝑥𝑦 (𝑥, 0) = 0. However, the normal component of the traction exists
i.e., 𝜎(2)𝑦𝑦 (𝑥, 0) ≠ 0. In DLJs, although the adherends are subjected to axial
oads, the eccentric load-path leads to high transverse deformation,
esulting in bending stresses. Theoretical formulations to incorporate
he bending stresses in bonded joints were developed by several groups,
ee for example (Stein et al., 2016; Khan et al., 2018b; Kumar and Khan,
016b). One of the simplifying assumptions we make here is to neglect
he effect of bending due to the balanced nature of DLJs. Therefore, the
xial stresses in each of the members is independent of the transverse
oordinate 𝑦, i.e., 𝜎(1)𝑥𝑥 = 𝜎(1)𝑥𝑥 (𝑥), 𝜎

(2)
𝑥𝑥 = 𝜎(2)𝑥𝑥 (𝑥) and 𝜎(𝑎)𝑥𝑥 = 𝜎(𝑎)𝑥𝑥 (𝑥) = 𝜎𝑎.

enceforth, for brevity, the axial stresses in the top adherend, middle
dherend and the adhesive are denoted by 𝜎1, 𝜎2 and 𝜎𝑎, respectively.
rom elasto-statics, neglecting body forces, the governing differential
quations of equilibrium for generalized plane strain/stress problem, is
iven by

𝜕𝜎(𝑖)𝑥𝑥
𝜕𝑥

+
𝜕𝜎(𝑖)𝑥𝑦
𝜕𝑦

= 0 (1)

𝜕𝜎(𝑖)𝑥𝑦
𝜕𝑥

+
𝜕𝜎(𝑖)𝑦𝑦
𝜕𝑦

= 0 (2)

Since, the axial/longitudinal stress in any member is independent
of 𝑦−coordinate, the shear and peel stresses in member ′𝑖′ can be
expressed as:

𝜎(𝑖)𝑥𝑦 = ∫𝑦
𝑑
𝑑𝑥

(

𝜎𝑖
)

𝑑𝑦 = 𝑓 (𝑖)
1 (𝑥) + 𝑦 𝜎′𝑖 (3)

𝜎(𝑖)𝑦𝑦 = ∫𝑦
𝑑
𝑑𝑥

(

𝜎(𝑖)𝑥𝑦
)

𝑑𝑦 = 𝑓 (𝑖)
2 (𝑥) + 𝑑

𝑑𝑥

(

𝑓 (𝑖)
1 (𝑥)

)

𝑦 +
𝑦2

2
𝜎′′𝑖 (4)

here, 𝑓 (𝑖)
1 (𝑥) and 𝑓 (𝑖)

2 (𝑥) are unknown functions needed to satisfy the
quilibrium equations and 𝜎′ denotes derivative of the function 𝜎(𝑥)
ith respect to axial coordinate−𝑥. The exact forms of 𝑓 (𝑖)(𝑥) and 𝑓 (𝑖)(𝑥)
1 2
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Fig. 1. (a) Idealization of a DLJ subjected to an axial tensile load 𝑃 . (b) A sandwich multi-layer model, taken directly from the DLJ. (c) Free-body diagram of the sandwich model
with traction boundary conditions. Note that the adhesive is treated as an isotropic bondline, while the adherends are regarded as homogeneous orthotropic composites.
are obtained by satisfying the traction-free and traction-continuity
conditions at the lateral surfaces. From Eqs. (3) and (4), we note that
the shear and peel stresses in each of the members are functions of axial
stresses and their derivatives. The global axial force equilibrium of the
assembly shown in Fig. 1b yields the following relationship between
the axial stresses 𝜎1, 𝜎2 and 𝜎𝑎:

𝜎1𝜌 + 𝜎𝑎𝑟 + 𝜎2 = 𝜌𝜎0 (5)

where,

𝜌 =
ℎ1
ℎ2

; 𝑟 =
ℎ𝑎
ℎ2

(6)

Using the above equation, we write the axial stress in the middle
adherend 𝜎2 in terms of axial stresses in the top adherend 𝜎1 and
the adhesive 𝜎𝑎, leading to a reduction in number of fundamental
unknowns to two i.e., 𝜎1 and 𝜎𝑎. The shear and peel stresses in the top
adherend are obtained by satisfying traction-free conditions at 𝑦 = 𝑑
i.e., by substituting 𝜎(1)𝑥𝑦 (𝑥, 𝑑) = 𝜎(1)𝑦𝑦 (𝑥, 𝑑) = 0 into Eqs. (3) and (4):

𝜎(1)𝑥𝑦 = (𝑑 − 𝑦)
𝑑𝜎1
𝑑𝑥

(7)

𝜎(1)𝑦𝑦 = (𝑑 − 𝑦)2
𝑑2𝜎1
𝑑𝑥2

(8)

The shear and peel stresses in the adhesive bondlayer are derived
by satisfying the traction continuity at the interface 𝑦 = 𝑐 between the
top adherend and the adhesive. Note that the continuity conditions of
stresses at 𝑦 = 𝑐, are 𝜎(1)𝑥𝑦 (𝑥, 𝑐) = 𝜎(𝑎)𝑥𝑦 (𝑥, 𝑐) and 𝜎(1)𝑦𝑦 (𝑥, 𝑐) = 𝜎(𝑎)𝑦𝑦 (𝑥, 𝑐).
Substitution of these conditions in Eqs. (3), (4), (7) and (8), yields the
following expressions for the shear and peel stresses in the adhesive:

𝜎(𝑎)𝑥𝑦 = (𝑐 − 𝑦)
𝑑𝜎𝑎
𝑑𝑥

+ ℎ1
𝑑𝜎1
𝑑𝑥

(9)

𝜎(𝑎)𝑦𝑦 = 1
2

(

(𝑐 − 𝑦)2
𝑑2𝜎𝑎
𝑑𝑥2

+
[

ℎ21 + 2ℎ1(𝑐 − 𝑦)
] 𝑑2𝜎1
𝑑𝑥2

)

(10)

The axial/longitudinal stress in the middle adherend in terms of
primary unknowns is obtained from Eq. (5) and is written as:

𝜎2 = 𝜌 (𝜎0 − 𝜎1) − 𝑟 𝜎𝑎 (11)

Akin to the previous step, the shear and peel stresses in the middle
adherend are derived using the continuity conditions of stresses at
3

the interface 𝑦 = 𝑏, by imposing 𝜎(𝑎)𝑥𝑦 (𝑥, 𝑏) = 𝜎(2)𝑥𝑦 (𝑥, 𝑏) and 𝜎(𝑎)𝑦𝑦 (𝑥, 𝑏) =
𝜎(2)𝑦𝑦 (𝑥, 𝑏). Substituting these conditions in Eqs. (3) and (4) while satis-
fying Eqs. (9) and (10) at the interface 𝑦 = 𝑏, we obtain expressions for
the shear and peel stresses in the middle adherend as:

𝜎(2)𝑥𝑦 = 𝑦
[

𝜌
𝑑𝜎1
𝑑𝑥

+ 𝑟
𝑑𝜎𝑎
𝑑𝑥

]

(12)

𝜎(2)𝑦𝑦 =
𝑦
2

[

(

(𝑘 + ℎ22𝜌) − 𝑦
2𝜌
) 𝑑2𝜎1
𝑑𝑥2

+
(

(ℎ2𝑎 + 𝑟ℎ
2
2) − 𝑦

2𝑟
) 𝑑2𝜎𝑎
𝑑𝑥2

]

(13)

where,

𝑘 = ℎ21 − 2ℎ1ℎ2 + 2𝑐ℎ1; 𝑐 = ℎ + ℎ𝑎; (14)

Note that the stresses in each of the members are in terms of the
primary unknown stress functions 𝜎1 and 𝜎𝑎. Therefore, the elastic
strains in each member 𝑖 could be expressed in terms of 𝜎1 and
𝜎𝑎 employing a generalized plane-stress/strain linear thermo-elastic
orthotropic constitutive relations expressed as:

𝜀(𝑖)𝑥𝑥 = 𝑆(𝑖)
11𝜎

(𝑖)
𝑥𝑥 + 𝑆

(𝑖)
12𝜎

(𝑖)
𝑦𝑦 + 𝜀

(𝑖)
𝑡𝑥 (15)

𝜀(𝑖)𝑦𝑦 = 𝑆(𝑖)
12𝜎

(𝑖)
𝑥𝑥 + 𝑆

(𝑖)
22𝜎

(𝑖)
𝑦𝑦 + 𝜀

(𝑖)
𝑡𝑦 (16)

𝜀(𝑖)𝑥𝑦 = 𝑆(𝑖)
66𝜎

(𝑖)
𝑥𝑦 (17)

where, 𝜀(𝑖)𝑡𝑥 and 𝜀(𝑖)𝑡𝑦 are thermal strains in the 𝑥 and 𝑦 directions, respec-
tively. The components of the compliance matrix 𝑆(𝑖)

𝑚𝑛 are presented in
Table 1 for the plane-strain/stress formulations. Note that these com-
ponents are dependent on the spatial coordinates for the functionally
graded bondline. Using the stresses and the strains expressed before,
the complementary strain energy density for each of the member ′𝑖′

can be expressed as:

𝑈 (𝑖)
𝑑 = 1

2
𝜎(𝑖)𝑚𝑛𝜖

(𝑖)
𝑚𝑛 = 1

2

[

𝑆(𝑖)
11

(

𝜎(𝑖)𝑥𝑥
)2 + 𝑆(𝑖)

22

(

𝜎(𝑖)𝑦𝑦
)2

+2𝑆(𝑖)
12𝜎

𝑖
𝑥𝑥𝜎

(𝑖)
𝑦𝑦 + 2𝑆(𝑖)

66

(

𝜎(𝑖)𝑥𝑦
)2

+ 𝜎(𝑖)𝑥𝑥𝜖
(𝑖)
𝑡𝑥 + 𝜎(𝑖)𝑦𝑦𝜖

(𝑖)
𝑡𝑦

]

(18)

Integrating the complementary energy density over the volume, the
total complementary energy is obtained as:

𝑈 =
∑

𝑖 ∫𝑙 ∫𝑦
𝑈 (𝑖)
𝑑 𝑑𝑥 𝑑𝑦

=
𝑏
𝑈 (1)𝑑𝑥 𝑑𝑦 +

𝑑
𝑈 (2)𝑑𝑥 𝑑𝑦 +

𝑐
𝑈 (𝑎)𝑑𝑥 𝑑𝑦 (19)
∫𝑙 ∫0 𝑑 ∫𝑙 ∫𝑐 𝑑 ∫𝑙 ∫𝑏 𝑑
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Table 1
Constitutive relation for the members based on plane-stress/plane-strain formulation with Orthotropic/Isotropic materials. Note that the
adherends can be Orthotropic/Isotropic but the adhesive is always Isotropic with/without gradation.

Case 𝑆(𝑖)
11 𝑆 (𝑖)

22 𝑆 (𝑖)
12 𝑆(𝑖)

66 𝜖(𝑖)𝑡𝑥 𝜖(𝑖)𝑡𝑦

Plane-strain
Orthotropic

1
𝐸(𝑖)
𝑥

(

1 − 𝜈(𝑖)𝑧𝑥𝜈
(𝑖)
𝑥𝑧

) 1
𝐸(𝑖)
𝑦

(

1 − 𝜈(𝑖)𝑧𝑦𝜈
(𝑖)
𝑦𝑧

)

1
𝐸(𝑖)
𝑥

(

𝜈(𝑖)𝑥𝑦 − 𝜈
(𝑖)
𝑧𝑦𝜈

(𝑖)
𝑥𝑧

)

1
2𝐺(𝑖)

𝑥𝑦

(

𝜈(𝑖)𝑧𝑥𝛼
(𝑖)
𝑧 + 𝛼(𝑖)𝑥

)

𝛥𝑇 (𝑖)
(

𝜈(𝑖)𝑧𝑦𝛼
(𝑖)
𝑧 + 𝛼(𝑖)𝑦

)

𝛥𝑇 (𝑖)

Plane-stress
Orthotropic

1
𝐸(𝑖)
𝑥

1
𝐸(𝑖)
𝑦

− 𝜈(𝑖)𝑥𝑦
𝐸(𝑖)
𝑥

1
2𝐺(𝑖)

𝑥𝑦
𝛼(𝑖)𝑥 𝛥𝑇

(𝑖) 𝛼(𝑖)𝑦 𝛥𝑇
(𝑖)

Plane-strain
Isotropic

1−(𝜈(𝑖) )2

𝐸(𝑖)
1−(𝜈(𝑖) )2

𝐸(𝑖) − 𝜈(𝑖)+(𝜈(𝑖) )2

𝐸(𝑖)
1

2𝐺(𝑖) (1 + 𝜈(𝑖))𝛼(𝑖)𝛥𝑇 (𝑖) (1 + 𝜈(𝑖))𝛼(𝑖)𝛥𝑇 (𝑖)

Plane-stress
Isotropic

1
𝐸(𝑖)

1
𝐸(𝑖) − 𝜈(𝑖)

𝐸(𝑖)
1

2𝐺(𝑖) 𝛼(𝑖)𝛥𝑇 (𝑖) 𝛼(𝑖)𝛥𝑇 (𝑖)
w
p
e

𝐴

r
w
i

𝐶

a
1
p
d

𝐻

w
G
t
e
f

w
b
c

𝐸

w
𝜓
a

H

Substitution of stresses given by Eqs. (7) to (13) into the total comple-
mentary strain energy, yields

𝑈 = 𝜙1 𝜎
2
1 + 𝜙2 𝜎

2
𝑎 + 𝜙3

(

𝜎′1
)2 + 𝜙4

(

𝜎′𝑎
)2 + 𝜙5

(

𝜎′′1
)2 + 𝜙6

(

𝜎′′𝑎
)2

+𝜙7 𝜎
′
1𝜎

′
𝑎 + 𝜙8 𝜎1𝜎

′′
1 + 𝜙9 𝜎𝑎𝜎

′′
𝑎 + 𝜙10 𝜎

′′
1 𝜎

′′
𝑎 + 𝜙11 𝜎1

+𝜙12 𝜎𝑎 + 𝜙13 𝜎
′′
1 + 𝜙14 𝜎

′′
𝑎 + 𝜙15 (20)

here, 𝜙1, 𝜙2,… , 𝜙15 are obtained by substitution of stress fields in
q. (15) and (18). Minimization of the complementary strain energy
unctional in conjunction with calculus of variation renders the follow-
ng coupled ordinary differential equations (ODEs):

𝛼𝛽

⎛

⎜

⎜

⎝

𝑑4𝜎1
𝑑𝑥4

𝑑4𝜎𝑎
𝑑𝑥4

⎞

⎟

⎟

⎠

+ 𝐵𝛼𝛽
⎛

⎜

⎜

⎝

𝑑3𝜎1
𝑑𝑥3

𝑑3𝜎𝑎
𝑑𝑥3

⎞

⎟

⎟

⎠

+ 𝐶𝛼𝛽
⎛

⎜

⎜

⎝

𝑑2𝜎1
𝑑𝑥2

𝑑2𝜎𝑎
𝑑𝑥2

⎞

⎟

⎟

⎠

+𝐷𝛼𝛽

⎛

⎜

⎜

⎝

𝑑𝜎1
𝑑𝑥
𝑑𝜎𝑎
𝑑𝑥

⎞

⎟

⎟

⎠

+ 𝐹𝛼𝛽

(

𝜎1
𝜎𝑎

)

−𝐽𝛼 (21)

here, 𝛼 and 𝛽 range over 1–2, 𝐴𝛼𝛽 , 𝐵𝛼𝛽 , 𝐶𝛼𝛽 , 𝐷𝛼𝛽 , 𝐹𝛼𝛽 and 𝐽𝛼
epend on the configuration of the DLJ and loading, and are given
n Appendix.

The traction and traction-free conditions at the left and the right
oundaries are utilized to obtain the boundary conditions in order to
olve the above governing ODEs. These conditions are prescribed as

1(0) = 𝜎0; 𝜎1(𝑙) = 0; 𝜎′1(0) = 0; 𝜎′1(𝑙) = 0 (22)

𝑎(0) = 0; 𝜎𝑎(𝑙) = 0; 𝜎′𝑎(0) = 0; 𝜎′𝑎(𝑙) = 0 (23)

he solution of two governing ODEs along with the boundary condi-
ions given above gives the fundamental unknowns 𝜎1 and 𝜎𝑎. These
xial stresses are then used to predict the shear and peel stresses in the
LJs with deterministic moduli profiles.

. Stochastic framework for adhesive stresses

The deterministic analytical model for an adhesively bonded DLJ
escribed in the previous section is modified in a stochastic frame-
ork to account for the uncertainty in the material properties and
btain a stochastic model. Elastic modulus of the adhesive layer has
significant effect on the performance of a bonded assembly (Kim

t al., 1989) as it influences the distribution of adhesive stresses (Khan
t al., 2018a,b). Therefore, the elastic modulus of the adhesive is
odeled as a spatially varying random field. Let 𝐸(𝑎)(𝑥, 𝜔) be the elastic
odulus of the bondline, modeled to vary spatially over 𝑥-coordinate

nd 𝜔 ∈ 𝛺 is an outcome of a random experiment, where (𝛺, ,) is
complete probability space with sample space, 𝛺, 𝜎-algebra  and

robability measure  (Ghanem and Spanos, 1991; Lévy and Loève,
965; Babuška and Chatzipantelidis, 2002). Random elastic modulus
nduces uncertainty in the stress components (𝜎(𝑖)𝑝𝑞 (𝑥, 𝑦, 𝜔)), the strain
omponents (𝜀(𝑖)𝑝𝑞(𝑥, 𝑦, 𝜔)). Here, the compliance matrix (𝑆𝑚𝑛(𝑥, 𝜔)) =
function of random elastic modulus, is independent of transverse

irection, as we are grading only along bondlength. Also, note that the
rimary unknowns in this case are the spatially varying stochastic fields
1(𝑥, 𝜔) and 𝜎𝑎(𝑥, 𝜔). Repeating the procedure employed in the previous
4

ection i.e., constructing strain–energy functional and minimizing it
ith respect to the primary unknowns using Euler–Lagrange variational
rinciple, following set of coupled governing stochastic differential
quations (SDEs) are obtained:

𝛼𝛽

⎛

⎜

⎜

⎝

𝑑4𝜎1(𝑥,𝜔)
𝑑𝑥4

𝑑4𝜎𝑎(𝑥,𝜔)
𝑑𝑥4

⎞

⎟

⎟

⎠

+ 𝐵𝛼𝛽
⎛

⎜

⎜

⎝

𝑑3𝜎1(𝑥,𝜔)
𝑑𝑥3

𝑑3𝜎𝑎(𝑥,𝜔)
𝑑𝑥3

⎞

⎟

⎟

⎠

+ 𝐶𝛼𝛽
⎛

⎜

⎜

⎝

𝑑2𝜎1(𝑥,𝜔)
𝑑𝑥2

𝑑2𝜎𝑎(𝑥,𝜔)
𝑑𝑥2

⎞

⎟

⎟

⎠

+𝐷𝛼𝛽

⎛

⎜

⎜

⎝

𝑑𝜎1(𝑥,𝜔)
𝑑𝑥

𝑑𝜎𝑎(𝑥,𝜔)
𝑑𝑥

⎞

⎟

⎟

⎠

+𝐹𝛼𝛽

(

𝜎1(𝑥, 𝜔)
𝜎𝑎(𝑥, 𝜔)

)

= −𝐽𝛼 . (24)

Here, the elastic modulus of the adhesive layer is modeled as a
andom field with log-normal distribution, i.e., 𝐸(𝑥, 𝜔) = exp[𝐻(𝑥, 𝜔)],
here, 𝐻(𝑥, 𝜔) is Gaussian random field with mean 𝐻𝑚(𝑥) and follow-

ng CoVariance function,

𝐻 (𝑥1, 𝑥2) = 𝜎2𝐻 exp

(

−
|𝑥1 − 𝑥2|

𝑙2𝑥

)

, (25)

where, 𝜎𝐻 is the standard deviation and 𝑙𝑥 is the correlation length of
the random field 𝐻(𝑥, 𝜔).

For numerical implementation, Gaussian random field, 𝐻 (𝑥, 𝜔) is
pproximated using a truncated Karhunen–Loève (KL) (Lévy and Loève,
965; Ghanem and Spanos, 1991; Tipireddy and Ghanem, 2014) ex-
ansion to convert infinite dimensional random field into a finite
imensional one, as follows,

(𝑥, 𝜔) ≈ 𝐻 (𝑥, 𝝃) = 𝐻𝑚 (𝑥) +
𝑑
∑

𝑖=1
𝐻𝑖 (𝑧)

√

𝜆𝑖 𝝃𝒊(𝝎) (26)

here, 𝝃 = (𝜉1,… , 𝜉𝑑 )𝑇 , and 𝜉𝑖 ∼ 𝑁(0, 1) are uncorrelated standard
aussian random variables and hence are also independent. 𝐻𝑚 is

he mean of the random field 𝐻 (𝑥, 𝜔), and {𝐻𝑖 (𝑥)} and {𝜆𝑖} are
igenfunctions and eigenvalues of 𝐶𝐻

(

𝑥1, 𝑥2
)

obtained by solving the
ollowing integral eigenvalue problem:

∫

𝑙

0
𝐶𝐻

(

𝑥1, 𝑥2
)

𝐻𝑖
(

𝑥2
)

𝑑𝑥2 = 𝜆𝑖𝐻𝑖
(

𝑥1
)

. (27)

The eigenvalues {𝜆𝑖} are positive and non-increasing (see Tipireddy and
Kumar, 2017) and hence the KL expansion in (26) can be truncated
after 𝑑+1 terms, and the eigenfunctions {𝐻𝑖 (𝑥)} are orthonormal, i.e.,

∫

𝑙

0
𝐻𝑖 (𝑥)𝐻𝑗 (𝑥) 𝑑𝑧 = 𝛿𝑖𝑗 , (28)

here, 𝛿𝑖𝑗 is the Kronecker delta. Now, the elastic modulus of the
ondline 𝐸 (𝑥, 𝜔) can be approximated with a truncated polynomial
haos expansion as follows,

(𝑎) (𝑥, 𝜔) ≈ 𝐸(𝑎) (𝑥, 𝝃) = 𝐸𝑚 (𝑥) +
𝑝
∑

𝑖=1
𝐸𝑖 (𝑥)𝜓𝑖 (𝝃) , (29)

here, 𝐸𝑚 is the mean, 𝐸𝑖 are polynomial chaos coefficients and
𝑖 (𝝃) are multi-variate Hermite polynomials in 𝝃=

[

𝜉1,… , 𝜉𝑑
]𝑇 , that

re orthonormal with respect to the probability density of 𝝃, i.e.,

∫𝛺
𝜓𝑖 (𝝃)𝜓𝑗 (𝝃) 𝑑𝝃 = 𝛿𝑖𝑗 . (30)

ere, 𝑝+1 = (𝑀+𝑑)!
𝑀!𝑑! is the number of terms in the expansion, where 𝑀

is the degree of polynomial chaos expansion and 𝑑 is the dimension.
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The fundamental unknown axial stresses 𝜎1(𝑥, 𝜔) and 𝜎𝑎(𝑥, 𝜔), can be
xpanded using a truncated polynomial chaos as follows:

1 (𝑥, 𝜔) ≈ 𝜎1 (𝑥, 𝝃) = 𝜎1𝑚 (𝑥) +
𝑝
∑

𝑖=1
𝜎1𝑖 (𝑥)𝜓𝑖 (𝝃) , (31)

𝜎𝑎 (𝑥, 𝜔) ≈ 𝜎𝑎 (𝑥, 𝝃) = 𝜎𝑎𝑚 (𝑥) +
𝑝
∑

𝑖=1
𝜎𝑎𝑖 (𝑥)𝜓𝑖 (𝝃) , (32)

here, 𝜎1𝑚, 𝜎𝑎𝑚 are the mean values, 𝜎1𝑖 and 𝜎𝑎𝑖 are the polynomial
haos coefficients of the stresses 𝜎1(𝑥, 𝜔) and 𝜎𝑎(𝑥, 𝜔), respectively.
oupled SDE (24) can be rewritten in terms of 𝝃 as:

𝛼𝛽

⎛

⎜

⎜

⎝

𝑑4𝜎1(𝑥,𝝃)
𝑑𝑥4

𝑑4𝜎𝑎(𝑥,𝝃)
𝑑𝑥4

⎞

⎟

⎟

⎠

+ 𝐵𝛼𝛽
⎛

⎜

⎜

⎝

𝑑3𝜎1(𝑥,𝝃)
𝑑𝑥3

𝑑3𝜎𝑎(𝑥,𝝃)
𝑑𝑥3

⎞

⎟

⎟

⎠

+ 𝐶𝛼𝛽
⎛

⎜

⎜

⎝

𝑑2𝜎1(𝑥,𝝃)
𝑑𝑥2

𝑑2𝜎𝑎(𝑥,𝝃)
𝑑𝑥2

⎞

⎟

⎟

⎠

+𝐷𝛼𝛽

⎛

⎜

⎜

⎝

𝑑𝜎1(𝑥,𝝃)
𝑑𝑥

𝑑𝜎𝑎(𝑥,𝝃)
𝑑𝑥

⎞

⎟

⎟

⎠

+ 𝐹𝛼𝛽

(

𝜎1(𝑥, 𝝃)
𝜎𝑎(𝑥, 𝝃)

)

= −𝐽𝛼 . (33)

In order to solve the above governing SDEs, a non-intrusive stochas-
tic collocation approach (Xiu and Karniadakis, 2002; Babuška et al.,
2007) is adopted, in which, Eq. (33) are solved at a few realizations
of the random variables called quadrature points with respect to their
probability measure. Let 𝝃(𝑞) be the quadrature points of the underlying
random variables, 𝝃, then following deterministic equations are solved,

𝐴𝛼𝛽
⎛

⎜

⎜

⎝

𝑑4𝜎1(𝑥,𝝃(𝑞))
𝑑𝑥4

𝑑4𝜎𝑎(𝑥,𝝃(𝑞))
𝑑𝑥4

⎞

⎟

⎟

⎠

+ 𝐵𝛼𝛽
⎛

⎜

⎜

⎝

𝑑3𝜎1(𝑥,𝝃(𝑞))
𝑑𝑥3

𝑑3𝜎𝑎(𝑥,𝝃(𝑞))
𝑑𝑥3

⎞

⎟

⎟

⎠

+ 𝐶𝛼𝛽
⎛

⎜

⎜

⎝

𝑑2𝜎1(𝑥,𝝃(𝑞))
𝑑𝑥2

𝑑2𝜎𝑎(𝑥,𝝃(𝑞))
𝑑𝑥2

⎞

⎟

⎟

⎠

𝐷𝛼𝛽

⎛

⎜

⎜

⎝

𝑑𝜎1(𝑥,𝝃(𝑞))
𝑑𝑥

𝑑𝜎𝑎(𝑥,𝝃(𝑞))
𝑑𝑥

⎞

⎟

⎟

⎠

+ 𝐹𝛼𝛽

(

𝜎1(𝑥, 𝝃(𝑞))
𝜎𝑎(𝑥, 𝝃(𝑞))

)

= −𝐽𝛼 . (34)

for 𝑞 = 1,… , 𝑛𝑞 , where 𝑛𝑞 is the total number of quadrature points
required. Polynomial chaos coefficients 𝑤𝑖(𝑧) of the random field 𝑤(𝑧, 𝝃)
are obtained by projecting 𝑤(𝑧, 𝝃) on to the polynomial 𝜓𝑖(𝝃) as

𝑤𝑖(𝑧) = E
[

𝑤(𝑧, 𝝃)𝜓𝑖(𝝃)
]

= ∫𝛺
𝑤(𝑧, 𝝃)𝜓𝑖(𝝃)𝑑𝝃

≈
𝑛𝑞
∑

𝑞=1
𝑤(𝑧, 𝝃(𝑞))𝜓𝑖(𝝃(𝑞))𝜇(𝑞), (35)

where, 𝝃(𝑞) = [𝜉(𝑞)1 ,… , 𝜉(𝑞)𝑑 ]𝑇 is the quadrature point and 𝜇(𝑞) is the
corresponding weight.

4. Finite element (FE) validation for adhesive stresses in DLJs with
deterministic modulus profile

4.1. Finite element modeling

Finite element analyses (FEA) were performed on double-lap
bonded assemblies with geometric and material properties similar to
those of the analytical model, using Abaqus FEA version 6.14. Utilizing
the symmetry of a DLJ, one-half portion was modeled by placing rollers
(applying lateral restraint) along the length at the mid-height of the
middle adherend as depicted in Fig. 2. A tensile stress, representing an
axial force, was applied on the top adherend at the left-end, while a
longitudinal restraint was provided at the right-end of the middle ad-
herend. The geometry was modeled as a sandwich with small overhangs
and is symmetric with respect to 𝑥-axis. Note that the geometry, loading
and boundary conditions are similar to those of analytical model (see
Fig. 1). A refined mesh containing four noded bilinear plane-strain
quadrilateral elements (CPE4R) of size 0.025 mm × 0.025 mm were
used for both the adherends and the adhesive. An initial temperature
of 0 ◦C was applied uniformly over the entire geometry. For thermal
analysis, during the loading step, the temperature field of the assembly

◦

5

was changed uniformly to −113 C, in order to evaluate the thermal p
tresses induced in the system. The adherends were allowed to be
rthotropic-/isotropic-continuum while the bondline was treated as a
unctionally graded isotropic-continuum. Although the adhesive was
reated as a functionally graded material, the Poisson’s ratio was kept
onstant over the bondlength akin to Kumar (2009). User defined
ubroutine called UMAT (written in FORTRAN) was developed to
mplement material models for graded bondlines.

The predictions from the proposed analytical model with plane-
train constitutive model were validated against the results obtained
rom analogous FE models for the configurations of the DLJ given in
able 2. From Table 2, note the lowest value of the elastic modulus
f graded bondline, 𝐸0 = 0.28 GPa and the highest value, 𝐸𝑚 = 3.92

GPa. The minimum and maximum values of modulus were chosen
considering a range of epoxy adhesives available commercially. Such
a large variation in the bondline stiffness is examined here to see its
effect on the stress-state. Also, we extended such analysis to analyze
deviations in adhesive stresses in the functionally modulus graded
bondline.

4.2. Metal-to-metal joints under mechanical loading

In the first numerical example, theoretical and FE analyses were
carried out on a DLJ comprising titanium adherends and a non-tailored
bondline (Epoxy adhesive) with geometric properties 𝑙 = 50 mm,
ℎ1 = ℎ2 = 2 mm, and ℎ𝑎 = 0.2 mm. These properties were used
as baseline joint configuration of the DLJ unless specified otherwise.
Fig. 3 shows the shear and peel stresses along the overlap length at
the mid-surface of the adhesive, obtained both from analytical model
and FEA. It can be seen that the stresses predicted by the proposed
deterministic model and the FEA are in good agreement with each
other. Note that a discrepancy is observed in the peel stress predicted
by the analytical model closer to the left-end of the joint in comparison
to FE results which could be attributed to the simplifying assumption of
neglecting bending stresses. However, the peak values of peel stresses
obtained from the model match well with those obtained from FEA.
Note that for the baseline case with non-tailored epoxy adhesive with
titanium adherends, the bondlength (𝑙 = 50 mm) can be regarded as
a critical shear-transfer-length 𝑙𝑐𝑟. 𝑙𝑐𝑟 is the minimum length beyond
which the shear and peel stress peaks saturate (as a function of overlap
length) and can be defined as the minimum length required to enable
a complete load transfer in shear. It could be identified by a region of
zero shear stress in the mid-overlap region of the bondline (Kumar and
Khan, 2016a).

From Fig. 3, it can be observed that the peak shear and peel stresses
occur at the free edges. These observations are frequently reported in
the stress analysis of bonded joints (see for instance Khan et al., 2018b;
Kumar, 2009; Khan et al., 2022). As discussed in the preceding sections,
adhesive tailoring is employed to reduce these stress concentrations. A
two-sided parabolic gradation of the modulus profile of the bondline
with a maximum value (𝐸𝑚) at the mid-bondlength and a minimum
value (𝐸0) at the ends of the overlap is adopted here such that:

𝐸(𝑎)(𝑥) = 4(𝐸𝑚 − 𝐸0)
(𝑥
𝑙

)(

1 −
(𝑥
𝑙

))

+ 𝐸0 (36)

ig. 3 shows the comparison of shear and peel stresses along the overlap
ength obtained for the joint with non-tailored adhesive with those
f the graded/tailored one both from the analytical model and FE
imulation. For the parameters considered here, a reduction of about
00% in the peak shear stress and about 110% in the peak peel stress
s observed both from FEA and analytical model. A significant decrease
n the shear and peel stresses is attributed to huge variation in the
ondline stiffness, from 𝐸𝑚 = 3.92 GPa to 𝐸0 = 0.28 GPa. From
igs. 3, it should be noted that for the cases of both graded and non-
ailored bondlines with titanium adherends, for the parameters chosen
ere, the bondlength 𝑙 = 50 mm can be regarded as the critical shear-
ransfer-length. The following sub-sections discuss the validation of the

roposed deterministic models.
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Fig. 2. Finite Element Model: Schematic representation of the FE model with appropriate loading and boundary conditions.
Fig. 3. Analytical vs FEA: (a) normalized shear stress distribution and (b) normalized peel stress distribution along the overlap length at the mid-surface of the adhesive for DLJs
comprising titanium adherends with non-tailored (epoxy adhesive) and graded bondlines.
Table 2
Material properties of adherends and adhesive (Da Silva and Adams, 2007): The geometric properties for baseline case are
𝑙 = 50 mm, ℎ1 = ℎ2 = 2 mm, and ℎ𝑎 = 0.2 mm. The DLJ comprises titanium adherends and epoxy adhesive. Note that 𝑖 = 1, 2
refers to top and middle adherend, respectively and NA (not applicable) refers to a dependent constant. The graded epoxy
adhesive with assumed modulus profiles is considered for exploration.

Modulus of elasticity
(GPa)

Shear modulus
(GPa)

Poisson’s ratio Coefficient of
thermal expansion
( 10−6 ◦C−1)

Titanium adherend 𝐸(𝑖) = 106.3 NA 𝜈(𝑖) = 0.34 𝛼(𝑖) = 8.5

BMI 2 × 2 twill weave
Composite adherend

𝐸(𝑖)
𝑥 = 𝐸(𝑖)

𝑧 = 59.54,
𝐸(𝑖)
𝑦 = 10

𝐺(𝑖)
𝑥𝑦 = 𝐺(𝑖)

𝑦𝑧
= 𝐺(𝑖)

𝑥𝑧 = 7
𝜈(𝑖)𝑥𝑦 = 0.3
𝜈(𝑖)𝑦𝑧 = 0.05
𝜈(𝑖)𝑥𝑧 = 0.05

𝛼(𝑖)𝑥 = 𝛼(𝑖)𝑧 = 4.2
𝛼(𝑖)𝑦 = 34.4

Epoxy adhesive
Non-tailored

𝐸(𝑎) = 3.45 NA 𝜈(𝑎) = 0.36 𝛼(𝑎) = 58

Epoxy adhesive
Graded

𝐸𝑐 = 3.45, 𝐸0 = 0.28
See Eq. (36)

NA 𝜈(𝑎) = 0.36
(assumed)

𝛼(𝑎) = 58
(assumed)
6
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Fig. 4. Analytical vs FEA: Shear and peel stress distribution at the midsurface of a non-tailored epoxy adhesive for a composite-to-titanium DLJ.
Fig. 5. Analytical vs FEA: Peel stress distribution at the midsurface of a non-tailored
epoxy adhesive with titanium adherends subjected to pure thermal loading. The
temperature is uniformly changed from 0◦ to −113 ◦C.

4.3. Metal-to-composite joints subjected to mechanical loading

The predictions of the proposed deterministic model are further
validated against FE results, for the case of titanium adherend in the
middle bonded to composite top and bottom adherends (BMI 2 × 2 twill
weave, see Table 2 for properties) using an Epoxy adhesive subjected to
an axial tensile load. Fig. 4a and 4b presents the shear and peel stress
distributions, respectively, predicted by the proposed model. It can be
noted that the predicted distribution and peaks of the shear and the
peel stresses are in good agreement with the FE solution.

4.4. Metal-to-metal joints subjected to thermal loading

The deterministic DLJ model is further validated for the case of
joint subjected to pure thermal loading. For this example, the DLJ
assembly comprised Titanium adherends and an Epoxy adhesive. The
temperature of the system was uniformly changed from 0 to −113 ◦C.
Fig . 5 shows the peel stresses at the mid-surface of the adhesive along
the overlap length, evaluated both from the proposed model and the
FEA. The proposed model accurately captures the stress peaks as evi-
denced by the FE results. Higher accuracy of the proposed model could
be attributed to negligible bending deformations. This observation is
in-line with the simplifying assumption employed in formulating the
governing equations.
7

5. Results and discussion

The solution for stresses in the DLJ based on the stochastic model
is discussed in this section, and the effect of uncertainties in the
modulus profiles of homogeneous and tailored adhesives on the stresses
is analyzed. For the simulations, we used non-intrusive stochastic collo-
cation method with sparse grid level four. Furthermore, the shear and
peel stresses were expanded using a polynomial chaos expansion with
dimension eight and order three.

5.1. Stochastic bondline with homogeneous mean (SBHM), 𝐸(𝑎)(𝜔)

As discussed before, in order to predict the variability in the adhe-
sive shear and peel stresses for conventional DLJs with homogeneous
adhesive, analyses were carried out by treating the adhesive as a
stochastic bondline with a homogenous/constant mean (SBHM) elastic
modulus, 𝐸(𝑎) with a coefficient of variation (CoV) 𝛿 and a correlation
length 𝑙∕4 (similar stochastic variables were adopted by Tipireddy and
Kumar, 2017). The modulus profile of SBHM, its respective deviations
and a few realizations, for the parameters considered here are presented
in Fig. 6a and 6b. The CoV of the Young’s modulus of Epoxy adhesives
is in the order of 0.1 to 0.15 (Sanei and Fertig, 2016; Yurdakul et al.,
2020). Higher values of CoV could be expected when the adhesives
are exposed to thermal cycles, higher temperatures, and hydrothermal
cycles (Qin et al., 2022). Therefore, we made a judicious choice to study
the CoV of the adhesive modulus up to 0.2. The geometric and material
properties adopted for this example are presented in Table 2. The effect
of varying 𝛿 on the adhesive shear stress distribution is plotted in
Fig. 7a for values of 𝛿 ranging from 0.05 to 0.2. Here, the solid line
represents the mean of the normalized shear stresses as a function of the
overlap length. The stochastic variations in the shear stress distribution
is represented as lower and upper bounds using dashed lines. Fig. 7b
and 7c shows the Probability Density Function (PDF) and Cumulative
Distribution Function (CDF), respectively, of the normalized peak shear
stress in the adhesive as a function of CoV, 𝛿 of the elastic modulus of
the adhesive. Note that the PDFs are used here to compute the standard
deviations and CoVs of the peak adhesive stresses. It can be clearly seen
from Fig. 7a and 7b, that with the changes in CoV, 𝛿 of the elastic mod-
ulus of the adhesive, the mean of the shear stress distribution remains
unchanged, while the standard deviation of the shear stresses increases
with the increase in 𝛿 which is expected. The standard deviation of
the normalized peak shear stress increases from 0.0023 to 0.0102 as 𝛿
increases from 0.05 to 0.2. Concomitantly, the CoV of the peak shear
stress increases from 0.0154 to 0.0607 as the 𝛿 changes from 0.05 to
0.2. The distribution of peel stress and its variability as a function of
CoV, 𝛿 of the elastic modulus of adhesive along with PDFs and CDFs of
peek peel stresses presented in Fig. 8, shows a similar behavior to that
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Fig. 6. (a) Spatial distribution of mean values of elastic modulus of homogeneous adhesive and its stochastic variations, (b) A few realizations of elastic modulus of homogeneous
adhesive, (c) Spatial distribution of mean values of elastic modulus of tailored adhesive and its stochastic variations, and (d) A few realizations of elastic modulus of tailored
adhesive; for 𝛿 = 0.2, correlation length = 𝑙

4
.

of the variability in shear stresses. In Fig. 8a, the solid line represents
the mean of the normalized peel stresses as a function of the overlap
length while the stochastic variation of the peel stresses are represented
by dashed lines. The standard deviation of the normalized peak peel
stress increases from 0.0028 to 0.0093 as 𝛿 varies from 0.05 to 0.2.
Consequently, the CoV of the peak peel stress increases from 0.0133
to 0.0509 as 𝛿 changes from 0.05 to 0.2. Note that, for a DLJ with
the parameters considered here, the relative standard deviations and
the CoVs of peak shear and peel stresses, arising due to a CoV, 𝛿 in
the elastic modulus of the adhesive, treated as SBHM, are similar in
magnitude.

In the following discussion, variability in the shear and peel stresses
as a function of geometric and material properties of a DLJ is dis-
cussed. Keeping all the other parameters constant, adhesive stresses
are analyzed for a DLJ with SBHM having mean 𝐸(𝑎) = 3450 MPa and
CoV, 𝛿 = 0.2. As discussed in the preceding section, the critical shear-
transfer-length is 50 mm for the parameters chosen here and therefore
DLJs with bondlengths 𝑙 = {50, 75, 100} mm are analyzed. The PDFs of
peak adhesive stresses along the mid-surface of the adhesive, near the
free edges are evaluated as a function of 𝑙 and are plotted in Figs. 9a and
9b. From Fig. 9a, a decrease followed by saturation in the mean value of
the shear stress peaks is observed as the bondlength is increased from
50 to 100 mm. A reduction in standard deviation of the normalized
8

peak shear stress from about 0.009 to 0.006 is noted as the bondlength
is increased from 50 to 100 mm. Concomitantly, a reduction in CoV of
the normalized peak shear stress from about 0.0607 to 0.0395 is noted
as the bondlength is increased from 50 to 100 mm. It is further observed
from Fig. 9b that the mean value of the peak peel stress decreases and
saturates as the bondlength is increased from 50 to 100 mm. However,
the standard deviation of the peak peel stress remains almost the same
(0.0102 to 0.0123) as the bondlength is increased from 50 to 100 mm.
Previous studies (Khan et al., 2018b; Kumar and Khan, 2016a) have
reported that the peak stress decreases and saturates as the bondlength
increases. Note that the standard deviation of the peak shear stress
decreases to a constant value as a bondlength 𝑙 increases above the
critical or full stress-transfer-length while the standard deviation of
the peak peel stress remains the same as the bondlength is increased
above the critical shear-transfer-length (𝑙𝑐𝑟). The CoV of the peak peel
stress also remains similar, ranging between 0.051 and 0.062 as the
bondlength is increased from 50 to 100 mm.

An important parameter in the design of an adhesively bonded joint
is its adhesive thickness as discrepancy in the performance of joints
from experimental and theoretical studies, with respect to adhesive
thickness is often reported (da Silva et al., 2006). da Silva et al. (2006)
demonstrated through experimental evaluation that bonded assemblies
with thin adhesives are tougher while the theoretical or numerical
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Fig. 7. DLJs with SBHM: (a) Spatial distribution of mean values of shear stresses and their stochastic variations at the mid-surface of the adhesive with titanium adherends
subjected to mechanical loading for different choices of CoV 𝛿 of the elastic modulus of the adhesive. (b) PDFs, and (c) CDFs; of the normalized peak shear stresses in the adhesive.
Fig. 8. DLJs with SBHM: (a) Spatial distribution of mean values of peel stresses and their stochastic variations at the mid-surface of the adhesive with titanium adherends subjected
to mechanical loading for different choices of CoV 𝛿 of the elastic modulus of the adhesive. (b) PDFs, and (c) CDFs; of the normalized peak peel stresses in the adhesive.
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techniques (see for instance Kumar, 2009) predicts that the joints with
relatively thick adhesives are stronger. This discrepancy is ascribed
to the size effect of thin adhesives which is not usually captured by
models. The effect of varying the adhesive thickness on the deviation
in the adhesive stresses of a DLJ with SBHM having a CoV, 𝛿 = 0.2
s examined by parameterically varying adhesive thicknesses ℎ𝑎 in the
ange {0.1, 0.2, 0.3, 0.5} mm while maintaining all the other parameters
rom Table 2, the same. Fig. 10a shows the PDFs of shear stress peak
or different choices of adhesive thickness ℎ𝑎 for non-tailored adhesive
ith titanium adherends. It can be observed that the mean of the peak

hear stress is reduced with the increase in adhesive thickness ℎ𝑎. The
tandard deviation of the normalized peak shear stresses could be con-
idered as a constant value (by observing the PDFs) as they are ranging
ithin 0.0087 and 0.0094 with the increase in the adhesive thickness

rom 0.1 to 0.5 mm. However, the CoV of the peak shear stress increases
9

rom 0.054 to 0.0776 as the adhesive thickness increases from 0.1 to
.5 mm. From Fig. 10b, the mean of peak peel stress decreases with
he increase in adhesive thickness as reported elsewhere (Khan et al.,
018b; Kumar and Khan, 2016a). The standard deviations computed
rom PDFs in Fig. 10b are {0.0087, 0.0103, 0.0105, 0.0102} for ℎ𝑎 =
{0.1, 0.2, 0.3, 0.5} mm, respectively, indicating that it increases with the
adhesive thickness up to certain value and then saturates with a further
increase in thickness. The CoV of the peak peel stress increases from
about 0.0348 to 0.0731 as the adhesive thickness is increased from 0.1
to 0.5 mm.

The adhesive stresses in DLJ are further analyzed by treating the
adhesive modulus as a stochastic field 𝐸(𝑎)(𝜔) with constant means =
{1000, 2000, 3450} MPa and CoV 𝛿 = 0.2 while maintaining all the other
parameters (given in Table 2), the same. As the bondline stiffness is
increased or decreased, the critical shear-transfer-length will decrease
or increase, accordingly (Khan et al., 2018b). Hence, it is important

to look at the complete distribution of the shear and peel stresses in
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Fig. 9. DLJs with SBHM: (a) PDFs of normalized peak shear stress and (b) PDFs of normalized peak peel stress at the mid-surface of the adhesive with titanium adherends
subjected to mechanical loading for different choices of overlap length 𝑙.
order to identify the critical shear-transfer-length. The shear stresses
along the mid-surface of the adhesive, for different choices of adhesive
modulus, are plotted in Fig. 11a. The following observations could be
made

• The mean of peak shear stresses and their gradients increase with
an increase in adhesive stiffness which is in agreement with the
observations made by the previous studies on bonded joints (see
for instance Kumar and Khan, 2016a).

• For the mean adhesive moduli 𝐸(𝑎) = {1000, 2000} MPa, the left-
end of the joint (𝜁 = 0), where the top adherend continues, shows
a smaller standard deviation of the normalized peak shear stress
relative to the right-end of the joint.

• For an increased mean of the adhesive modulus 𝐸(𝑎) = 3450 MPa,
the standard deviations of the normalized peak shear stress are
the same at both the edges of the joint.

The PDFs and CDFs of the normalized peak shear stress at the right-
edge, of the DLJ, presented in Fig. 11b and 11c, shows that the standard
deviation of the peak shear stress decreases with an increase in adhesive
stiffness for the parameters chosen here. The standard deviation of
the normalized peak shear stress decreases from 0.0115 to 0.0093 as
the mean adhesive modulus is increased from 1000 to 3450 MPa.
As a result, the CoV of the peak shear stress decreases from about
0.1127 to 0.0607 as the adhesive modulus is increased from 1000 to
3450 MPa. Fig. 12a, shows the distribution of adhesive peel stresses
for different choices of mean value of the adhesive modulus 𝐸(𝑎) =
{1000, 2000, 3450} MPa. It shows similar behavior as that of the shear
stress distribution. Fig. 12b and 12c provides the PDFs and CDFs of the
normalized peak peel stresses for different choices of adhesive modulus.
It can be noted from PDFs in Fig. 12b that the standard deviation of the
normalized peak peel stress reduces from 0.0163 to 0.0102 as the mean
adhesive modulus is increased from 1000 to 3500 MPa. Concomitantly,
CoV of the peak peel stress decreases from 0.1179 to 0.0509 as the
mean adhesive modulus is increased from 1000 MPa to 3450 MPa.
Therefore, it can be concluded that the variation in adhesive peak
stresses reduces as the bondline stiffness increases.

5.2. Stochastic bondline with tailored mean, 𝐸(𝑎)(𝑥, 𝜔)

In the validation section, we have demonstrated the effectiveness of
a graded bondline in reducing the stress concentrations near the free
10
edges of a DLJ as reported exhaustively in the extant works for various
bonded assemblies (Kumar and Adams, 2017; Stein et al., 2017). As
discussed before, realizing desired stiffness of a graded bondline exactly
is challenging as the gradation is primarily controlled through curing.
In practice, achieving a functionally graded profile is envisaged to
have relatively higher uncertainty than a homogeneous bondline due
to considerations such as flow of adhesives, the curing kinetics etc.
Henceforth, the adhesive is considered as a spatially varying stochastic
field with a parabolic distribution of mean stiffness given by Eq. (36)
with a CoV, 𝛿 and a correlation length of 𝑙∕4 (similar stochastic vari-
ables were adopted by Tipireddy and Kumar, 2017). This bondline
is henceforth referred to as stochastic bondline with tailored mean
(SBTM). The modulus profile of SBTM, its respective deviations and
a few realizations, for the parameters considered here are plotted in
Fig. 6c and 6d. The PDF of the peak shear and peel stresses as a function
of CoV, 𝛿 of the elastic modulus of the adhesive for the DLJ with
SBTM plotted in Fig. 13a and 13b, showcases similar trend to that of
non-tailored bondline. Fig. 13a, shows that the standard deviation of
the normalized peak shear stress increases from 0.0016 to 0.0065 as
𝛿 varies from 0.05 to 0.2. Consequently, the CoV of the peak shear
stress increases from 0.0186 to 0.0745 as 𝛿 changes from 0.05 to 0.2.
Similarly, from Fig. 13b, the standard deviation of the normalized peak
peel stress increases from 0.0018 to 0.0072 as the 𝛿 increases from 0.05
to 0.2. The CoV of the peak peel stress increases from 0.0288 to 0.1148
as the 𝛿 changes from 0.05 to 0.2.

To study the effect of bondlength on the peak adhesive stresses and
their respective variations for a DLJ with SBTM, maintaining all other
parameters constant and 𝛿 = 0.2, analyses were carried out by varying
overlap lengths 𝑙 = {50, 75, 100} mm. Fig. 14a shows PDFs of the peak
shear stress as a function of 𝑙. It can be clearly seen that the mean and
standard deviation of the peak shear stress decrease with the increase
in overlap length 𝑙. In contrast to the SBHM, the standard deviation
in peak shear stress does not saturate with the increase in bondlength
up to 100 mm. The standard deviation of the normalized peak shear
stress decreases from 0.0065 to 0.0056 as the overlap length increases
from 50 to 100 mm. The CoV of the peak shear stresses remains almost
the same, ranging from 0.0745 to 0.077 as bondlength increases from
50 to 100 mm. Fig. 14b shows the PDF of the normalized peak peel
stress for the joints with SBTM having a parabolic mean and a CoV
𝛿 = 0.2, as a function of overlap length 𝑙 = {50, 75, 100} mm. It can
be observed that the standard deviation of the normalized peak peel
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Fig. 10. DLJs with SBHM: (a) PDFs of normalized peak shear stress and (b) PDFs of normalized peak peel stress; at the mid-surface of the adhesives with titanium adherends
subjected to mechanical loading for different choices of adhesive thickness ℎ𝑎.

Fig. 11. DLJs with SBHM: (a) Spatial distribution of mean values of shear stresses and their stochastic variations at the mid-surface of the adhesives with titanium adherends
subjected to mechanical loading for different choices of mean value of the adhesive modulus 𝐸(𝑎). (b) PDFs and (c) CDFs; of the normalized peak shear stress in the adhesive.

Fig. 12. DLJs with SBHM: (a) Spatial distribution of mean values of peel stresses and their stochastic variations at the mid-surface of the adhesive with titanium adherends
subjected to mechanical loading for different choices of mean value of the adhesive modulus 𝐸(𝑎). (b) PDFs and (c) CDFs; of normalized peak peel stress in the adhesive.
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Fig. 13. DLJs with SBTM: (a) PDFs of the normalized peak shear stress and (b) PDFs of the normalized peak peel stress at the mid-surface of the adhesive with titanium adherends
subjected to mechanical loading for different choices of coefficient of variation 𝛿 in the elastic modulus of the adhesive.
Fig. 14. DLJs with SBTM: (a) PDFs of the normalized peak shear stress and (b) PDFs of normalized peak peel stress at the mid-surface of the adhesive with titanium adherends
subjected to mechanical loading for different choices of an overlap length 𝑙.
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tress decreases and nearly saturates with an increase in overlap length
while the mean values of the normalized peak peel stresses remain

he same. The standard deviation of the normalized peak peel stress
ecreases from 0.0071 to 0.0060 as the bondlength increases from 50
o 100 mm. It can also be noted from Fig. 14b and 14c that the standard
eviation of the normalized peak peel stress saturates for bondlengths
arger than shear-transfer-length for the DLJs with SBTM. The CoV of
he peak peel stress marginally decreases from 0.1138 to 0.0976 as the
ondlength is increased from 50 to 100 mm.

The effect of bondline thickness on the adhesive stresses for the
oint with SBTM was evaluated by varying the adhesive thickness in
he range ℎ𝑎 = {0.1, 0.2, 0.3, 0.5} mm, while all the other parameters
ere kept the same. For this case, the PDF of normalized peak shear

tress in the adhesive presented in Fig. 15a, shows that the mean value
f peak shear stress decreases with increase in adhesive thickness. It
12

an further be noted that the standard deviation of the normalized peak 0
hear stress decreases with increase in adhesive thickness. The standard
eviation computed from Fig. 15a of the normalized peak shear stress
ecreases from 0.0078 to 0.0056 as the bondline thickness is increased
rom 0.1 to 0.5 mm. However, the CoV of the peak shear stress increases
arginally from 0.0714 to 0.0804 as the bondline thickness increases

rom 0.1 to 0.5 mm. Fig. 15b shows the PDF of the normalized peak
eel stress as a function of adhesive thickness, for the DLJ with SBTM
nd it shows similar behavior as that of PDF of the normalized peak
hear stress as a function of adhesive thickness. The mean value of the
eak peel stress decreases as a function of bondline thickness ℎ𝑎 and the
tandard deviation of the normalized peak peel stress decreases from
.0099 to 0.0049 as the bondline thickness is increased from 0.1 to
.5 mm. However, the CoV of the normalized peak peel stress increases
rom 0.1030 to 0.1277 as the bondline thickness increases from 0.1 to

.5 mm.



Mechanics of Materials 177 (2023) 104553M.A. Khan et al.
Fig. 15. DLJs with SBTM: (a) PDFs of normalized peak shear stress and (b) PDFs of normalized peak peel stress at the mid-surface of the adhesive with titanium adherends
subjected to mechanical loading for different choices of adhesive thickness ℎ𝑎.
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6. Conclusions

A generic plane-stress/plane-strain model is proposed for predict-
ing the stresses in adhesively bonded double-lap joints (DLJs) with
a functionally graded bondline. The model is then reformulated in
probabilistic mechanics framework where the modulus of adhesive is
regarded as a spatially varying random field both with homogeneous
and tailored mean. The validation of the proposed stress-based formu-
lation in deterministic framework for the DLJ with homogeneous and
functionally graded bondlines is carried out against the results obtained
from an analogous Finite Element (FE) model for a range of joints
consisting of metallic and composite adherends, under mechanical and
thermal loadings. The predictions of the proposed model are in good
agreement with the FE results. The uncertainty quantification was
carried out for two cases viz 1. stochastic bondline with homogenous
mean (SBHM) and 2. stochastic bondline with tailored/graded mean
(SBTM) representing uncertainties in conventional and functionally
graded double-lap bonded assemblies, respectively. The analyses were
carried out to determine the mean of adhesive shear and peel stress
distribution and the PDFs of respective peak stresses as a function of
coefficient of variation (CoV) of the elastic modulus of the adhesive,
bondlength, adhesive thickness and adhesive stiffness, in the presence
of a stochastic bondline. From these results, the following observations
were made:

• The CoVs of the peak shear stress are about 0.0607 and 0.0745,
respectively, for joints with SBHM and SBTM, due to a CoV of
0.2 in the elastic modulus of the adhesive. Therefore, a similar
variation in shear stress in the graded and non-tailored bondlines
is noted.

• The CoVs of the peak peel stress are about 0.0509 and 0.1148,
respectively, for joints with SBHM and SBTM, respectively, due
to a coefficient of variation of 0.2 of the elastic modulus of the
adhesive. Therefore, higher variations in peel stresses are reported
for DLJs with graded adhesives.

• The standard deviations and the CoVs of the normalized peak
shear stress decrease with the increase in bondlength while the
standard deviations and the CoVs of the normalized peak peel
stress, remain almost the same for joints with SBHM.

• The CoVs of normalized peak shear and peel stresses are almost
constant with respect to changes in bondlength above the critical
shear transfer length for joints with SBTM.

• The standard deviation of the shear and peel stresses remains
more or less constant with the change in thickness for the joints
with SBHM/SBTM.

• The standard deviations and the CoVs of the adhesive peak
stresses decrease significantly with the increase in adhesive stiff-
13

ness.
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Appendix. Coefficients of the governing ODE

𝐴𝛼𝛽 =
[

2𝜙5 𝜙10
𝜙10 2𝜙6

]

; 𝐵𝛼𝛽 =
[

4𝜙′
5 2𝜙′

10
2𝜙′

10 4𝜙′
6

]

𝛼𝛽 =
[

2𝜙8 − 2𝜙3 + 2𝜙′′
5 −𝜙7 + 𝜙′′

10
−𝜙7 + 𝜙′′

10 𝜙9 − 2𝜙4 + 2𝜙′′
6

]

𝛼𝛽 =
[

−2𝜙′
3 + 2𝜙′

8 −𝜙′
7

−𝜙′
7 −2𝜙′

4 + 2𝜙′
9

]

; 𝐹𝛼𝛽 =
[

2𝜙1 + 𝜙′′
8 0

0 2𝜙2 + 𝜙′′
9

]

𝛼 =
(

𝜙11 + 𝜙′′
13

𝜙12 + 𝜙′′
14

)
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