

Gallacher, K., Griffin, P. F., Riis, E., Sorel, M. and Paul, D. J. (2022) Si3 N4 Waveguide Polarization Components for Atomic Systems. In: 2022 IEEE Photonics Conference (IPC), Vancouver, BC, Canada, 13-17 Nov 2022, ISBN 9781665434874 (doi: 10.1109/IPC53466.2022.9975656)

There may be differences between this version and the published version. You are advised to consult the published version if you wish to cite from it.

http://eprints.gla.ac.uk/288736/

Deposited on 4 January 2023

 $En lighten-Research\ publications\ by\ members\ of\ the\ University\ of\ Glasgow\ \underline{http://eprints.gla.ac.uk}$

Si₃N₄ Waveguide Polarization Components for Atomic Systems

Kevin Gallacher
James Watt School of Engineering
University of Glasgow
Glasgow, U.K.
kevin.gallacher@glasgow.ac.uk

Erling Riis Department of Physics University of Strathclyde Glasgow, U.K. paul.griffin@strath.ac.uk

Douglas J. Paul James Watt School of Engineering University of Glasgow Glasgow, U.K. Douglas.Paul@glasgow.ac.uk Paul F. Griffin
Department of Physics
University of Strathclyde
Glasgow, U.K.
paul.griffin@strath.ac.uk

Marc Sorel
James Watt School of Engineering
University of Glasgow
Glasgow, U.K.
Marc.Sorel@glasgow.ac.uk

Abstract A silicon nitride waveguide polarization rotator and polarization beam splitter that operate with a polarization extinction ratio close to 30 dB at the rubidium atomic transition of 780 nm wavelength are demonstrated.

I. Introduction

Quantum technologies are benefiting from the size, weight, power, and cost reduction provided by silicon technology [1]. Research has now intensified on even smaller form factors by leveraging photonic integrated circuits (PICs). For atomic devices based on visible and near-infrared transitions such as rubidium (Rb), silicon nitride (Si₃N₄) waveguides provide low loss propagation [2]. FIGURE 1 shows a schematic diagram of an envisaged PIC for saturated absorption spectroscopy on-chip. This is one of the building blocks for stabilizing a laser for atomic cooling. By utilizing a waveguide polarization rotator (PR) and polarization beam-splitter (PBS) this can create the required counter-propagating pump and probe with the advantage the pump can be filtered from returning to the laser, potentially eliminating the requirement of an on-chip optical isolator. PR and PBS waveguide devices have been extensively studied on the silicon-on-insulator platform. There has been recent Si₃N₄ demonstrations at telecommunication wavelengths. In this work, we present for the first time a Si₃N₄ waveguide PR and PBS operating at 780 nm with a polarization extinction ratio ~ 30 dB and corresponding insertion loss < 1 dB. These devices are fabricated on the same chip using a simple self-aligned etch process for integration of the required rib and ridge waveguide structures.

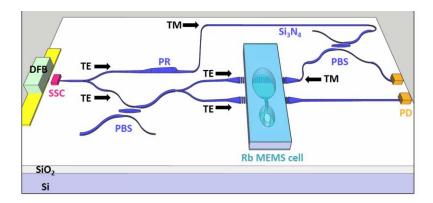


Figure 1. A schematic diagram of a photonic integrated circuit for saturated absorption spectroscopy of rubidium atoms on-chip using Si_3N_4 waveguides. The key components include a Si_3N_4 waveguide polarization rotator (PR) and a polarization beam splitter (PBS), distributed feedback laser (DFB), Rb vapor MEMS cell, and photodetectors (PD).

II. DESIGN AND CHARACTERIZATION

The PR design is based on the mode evolution approach, where adiabatic tapers can efficiently convert between a TM and TE mode (see inset of Fig 2 (a)). This approach has recently demonstrated a PR with record bandwidth and fabrication tolerance [3]. The PBS design consists of a cascaded tapered asymmetric directional coupler (see inset of Fig. 2 (b)). A self-aligned fabrication process was utilized to allow integration of the rib and ridge waveguide structures required for the PR and PBS, respectively. Figure 2 (a) shows the measured PER and IL as a function of the wavelength for the PR. Over the wavelength range where the IL \leq 1 dB (730-840 nm), the PER is \geq 17.5 dB. The PER at 780 nm wavelength is \sim 30 dB. Figure 2 (b) shows the PER for fabricated PBS. The cross port demonstrates a PER \geq 20 dB across the full 140 nm measurement range with it peaking at 30 dB close to 780 nm wavelength. This broadband PER is expected since there is negligible cross-coupling of the TE mode. The main parameter of interest for the cross port is the IL, which is \leq 1 dB between 760 to 810 nm wavelength. The PER for the through port peaks at 27.5 dB at 780 nm wavelength. The PER is \geq 15 dB for a bandwidth of 18 nm [4].

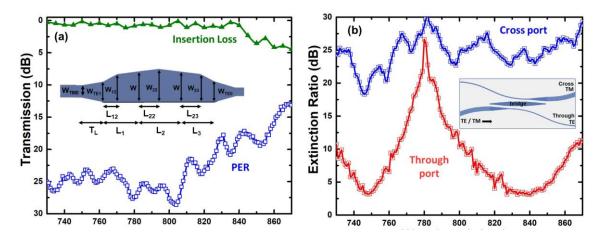


Figure 2. (a) The experimentally measured polarization extinction ratio (PER) and insertion loss for the fabricated Si_3N_4 waveguide polarization rotator as a function of the wavelength. (b) The experimentally measured PER for the cross and through port of the fabricated Si_3N_4 waveguide polarization beam splitter as a function of the wavelength.

III. CONCLUSION

A Si_3N_4 waveguide polarization rotator and polarization beam splitter that operates at the Rb atomic transition of 780 nm is presented. These devices are fabricated together on the same chip using a simple self-aligned process for integration of the required rib and ridge waveguide structures. The polarization rotator based on the mode evolution approach using adiabatic tapers demonstrates a polarization extinction ratio (PER) of ≥ 20 dB over 100 nm bandwidth (730-830 nm wavelengths) with an insertion loss (IL) ≤ 1 dB. The polarization beam splitter is based on a cascaded tapered asymmetric directional coupler design with phase matching engineered between the fundamental and higher-order TM mode, whereas the TE mode is separated by the through port. This approach provides a PER ≥ 20 dB over 50 nm bandwidth for the cross port and a PER ≥ 15 over 18 nm for the through port. These polarization waveguide devices will enable photonic integrated circuits for saturated absorption spectroscopy of atomic vapors on-chip for laser stabilization and atomic cooling.

REFERENCES

- [1] Kitching, J., Chip-scale atomic devices. Applied Physics Reviews, 2018. 5(3).
- [2] Sinclair, M., et al., 1.4 million Q factor Si3N4 micro-ring resonator at 780 nm wavelength for chip-scale atomic systems. Optics Express, 2020. 28(3): p. 4010-4020.
- [3] Gallacher, K., et al., Ultra-broadband mid-infrared Ge-on-Si waveguide polarization rotator. APL Photonics, 2020. 5(2): p. 026102.
- [4] Gallacher, K., et al., Silicon nitride waveguide polarization rotator and polarization beam splitter for chip-scale atomic systems. Apl Photonics, 2022. 7(4).