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Abstract: The application of Quantum Computing (QC) to fluid dynamics simulation has developed
into a dynamic research topic in recent years. With many flow problems of scientific and engineering
interest requiring large computational resources, the potential of QC to speed-up simulations and
facilitate more detailed modeling forms the main motivation for this growing research interest.
Despite notable progress, many important challenges to creating quantum algorithms for fluid
modeling remain. The key challenge of non-linearity of the governing equations in fluid modeling is
investigated here in the context of lattice-based modeling of fluids. Quantum circuits for the D1Q3
(one-dimensional, three discrete velocities) Lattice Boltzmann model are detailed along with design
trade-offs involving circuit width and depth. Then, the design is extended to a one-dimensional
lattice model for the non-linear Burgers equation. To facilitate the evaluation of non-linear terms,
the presented quantum circuits employ quantum computational basis encoding. The second part
of this work introduces a novel, modular quantum-circuit implementation for non-linear terms in
multi-dimensional lattice models. In particular, the evaluation of kinetic energy in two-dimensional
models is detailed as the first step toward quantum circuits for the collision term of two- and three-
dimensional Lattice Boltzmann methods. The quantum circuit analysis shows that with O(100)
fault-tolerant qubits, meaningful proof-of-concept experiments could be performed in the near future.

Keywords: quantum computing; quantum circuits; lattice-based fluid modeling

1. Introduction

The application of Quantum Computing (QC) [1] to fluid dynamics simulation repre-
sents a relatively new but growing area of research [2–11]. In general, Computational Fluid
Dynamics (CFD) covers a wide range of applications of scientific as well as engineering
interest. In terms of required computational resources, many applications push the limits
of the current high-performance computers. Examples of demanding applications include
turbulent flows, combustion, aero-acoustics as well as multi-phase flows. The potential
for QC to create a significant speed-up relative to classical approaches forms the main
motivation for the recent research interest. Despite notable progress, many important
challenges to creating quantum algorithms for fluid modeling remain [4–6,9,10,12]. The
non-linearity of the governing equation of fluid dynamics combined with the inherent
linearity of quantum mechanics forms one major challenge. Further important challenges
relate to efficiently initializing the quantum register of the quantum computer for the
considered problem, as well as obtaining classical output at the end of the computation
in the quantum computer. The current and near-feature quantum computers, typically
referred to as Noisy Intermediate-Scale Quantum (NISQ)-era quantum computers [13], are
characterized by a relatively small number of qubits, limited connectivity and a limited
amount of quantum error correction. On these machines, the quantum state in the qubit
register will stay in a coherent state for only a limited duration, and therefore, current
applications on quantum hardware typically involve hybrid classical-quantum approaches
with quantum circuits of limited depth (to reduce required coherence time) and a close cou-
pling and frequent exchange of data between quantum and classical part of the simulation.
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Thus far, the overhead associated with repeated quantum measurement and quantum-state
re-initialization has played an important part in preventing quantum speed-up for fluid
dynamics simulations. Recently the available number of qubits on available hardware has
grown to O(100). These qubits are still ‘noisy’, but with the predicted further growth to
O(104) or O(105) physical qubits, the creation of O(100) ‘functional qubits’ (as termed by
IBM, i.e., with a degree of fault tolerance enabling much deeper quantum circuits than on
NISQ-era machines) within the next 5–10 years appears realistic.

It is this context that motivated the current work. The development of quantum
algorithms for effective three-dimensional flow simulations based on the Lattice Boltzmann
method (LBM) with limited exchange of information between the quantum and classical
domains in a hybrid quantum/classical approach forms the main aim. The aspect of
minimizing the quantum-classical information exchange is driven by the expectation that
even for next-generation quantum hardware, the cost of frequent re-initialization and
quantum measurement will remain a bottleneck in achieving computational efficiency.
Recently, Budinski [11] presented an interesting quantum algorithm for two-dimensional
flow simulation based on the LBM. However, its formulation uses a tight coupling of the
quantum and classical domains of the simulations introducing significant overhead for each
time step performed. In a previous work, Budinski [14] showed a quantum implementation
for lattice-based modeling of the linear advection-diffusion equation, where due to the
linearity of the problem, some of the expensive re-initialization steps needed for the non-
linear LBM could be avoided. An interesting approach to incorporating non-linearity
in quantum algorithms based on Carleman linearization of the LBM was presented by
Itani and Succi [10]. However, since this approach is based on linearization, it appears
that this approach is mainly suited to weakly non-linear low Reynolds number flows.
The current approach differs from these existing works in a number of key aspects. The
approach followed here uses encoding of data in the quantum computational basis along
with a quantum floating-point format previously introduced by the author [7,12]. Non-
linear terms are then evaluated using arithmetic for the quantum floating-point format.
This avoids restriction to weakly non-linear low-Reynolds numbers flows. Further, based
on the used data encoding and floating-point format, the current work aims to perform
multiple time steps in a fluid dynamics simulation on the quantum processor, in contrast
to approaches where measurement and re-initialization take place at the end of each
step. For the chosen approach, it is expected that with a greatly reduced number of bits
representing the mantissa as compared to IEEE-754 single precision [15], e.g., 4–8 qubits
are suggested here, the required number of qubits in the derived circuits is O(100). This
is before ’transpilation’ (as termed by IBM) into quantum circuits expressed in terms of
native gates on the considered quantum hardware. This clearly creates a requirement for
fault tolerance and coherency well beyond the current NISQ-type hardware. However,
considering current predictions, quantum hardware capable of executing the derived
circuits can be expected this decade.

The main contributions of the present work can be summarized as follows:

• Detailed analysis of quantum-circuit design for the evaluation of non-linear equilib-
rium distribution function for the D1Q3 Lattice Boltzmann model as well as for the
one-dimensional lattice model for the Burgers equation. The modular design for both
applications facilitates large-scale re-use of the different components of the circuits;

• A complexity analysis for the one-dimensional models is presented, highlighting the
dependency of quantum-circuit width on the number of mantissa qubits in floating-
point representation;

• Detailed description of the design process for quantum circuit implementations of
non-linear terms in two- and three-dimensional lattice models, including a complexity
analysis showing the dependency on the number of mantissa qubits used;

• Demonstration of how a modified shift-and-add-based multiplier can be used to create
efficient, modular circuits for kinetic energy evaluation in two-dimensional models;
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• Detailed quantum-circuit description for the proposed modular kinetic energy evalua-
tion circuits based on quantum floating-point arithmetic;

For a previously developed quantum-circuit implementation of the D1Q3 lattice model
with fewer qubits but larger circuit depth, the analysis and verification using quantum
computing simulation techniques were addressed recently by the author and co-workers in
Moawad et al. [12]. The systematic evaluation of the quantum circuits presented in this
work forms part of ongoing work by the author and co-workers.

The present work is structured as follows. First, non-linear lattice models used in fluid
dynamics are reviewed in Section 2. This section also considers the non-linear convection
terms in the Navier–Stokes equations to provide context. Key concepts and principles of QC
relevant to this work are reviewed briefly in Section 3. Quantum circuits for the evaluation
of the non-linear distribution functions of the D1Q3 Lattice Boltzmann model are detailed in
Section 4. For a lattice model for the one-dimensional Burgers equation, similar circuits are
presented in Section 5. The extension of quantum-circuit design to two- and three-dimensional
lattice models are described in Section 6. For two-dimensional kinetic energy evaluation,
an efficient, modular quantum circuit is described in detail in Sections 7 and 8. Section 9
summarizes a step-by-step methodology for the evaluation of algorithms. Finally, Section 10
presents the conclusions and directions for future research work.

2. non-linear Lattice modeling of Fluid Dynamics

To highlight the challenges in creating quantum algorithms for fluid dynamics associ-
ated with non-linearity of the governing equations, it is convenient to limit the discussion
to the incompressible flows of a Newtonian fluid in two-dimensional space. Then, the
momentum conservation equations in the Navier–Stokes equations can be written in vector
forms as,

∂

∂t

(
U
V

)
+

∂

∂x

(
U2 + P/ρ

UV

)
+

∂

∂y

(
UV

V2 + P/ρ

)
= ν

[
∂2

∂x2

(
U
V

)
+

∂2

∂y2

(
U
V

)]
(1)

where U and V are two Cartesian components of the velocity vector, and with P, ρ and ν
representing the pressure, fluid density and kinematic viscosity, respectively. In terms of de-
riving effective quantum algorithms to numerically simulate flows governed by the Navier–
Stokes equations, the non-linear convective terms on the left-hand side of Equation (1) form
a key challenge. Mass conservation is enforced by the continuity equation

∂U
∂x

+
∂V
∂y

= 0 (2)

that completes the Navier–Stokes equations for incompressible, iso-thermal flow. The
spatial discretization of Equations (1) and (2) using finite-difference, finite-volume or finite-
element approaches has been a topic of CFD research for many years. In the present
work, an alternative approach to modeling fluid dynamics based on the Lattice Boltzmann
Method (LBM) was selected for a number of reasons:

• In the LBM, the non-linear convection terms shown in Equation (1) do not appear in
this form. Instead, the convection-related part of the LBM approach becomes linear.
However, the inherent non-linearity of modeling fluid dynamics manifests itself as
non-linear terms in the collision step, as detailed later;

• Gradient calculations of U, V and P are not used in the LBM. In case quantum-
measurement-related noise is present in the hybrid classical-quantum algorithms,
then using the LBM avoids increasing this noise level by computing gradients of this
noise data;

• The LBM models convection by ’streaming’ components of a particle distribution on a
regular lattice, as defined later in this section. This proves to be easier to implement than
the numerical flux evaluation used in a direct discretization of Equations (1) and (2).
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2.1. LBM for Iso-Thermal Two-Dimensional Flows

The Lattice Boltzmann equation defines the governing equation for Lattice Boltzmann
modeling. This equation can be derived from a discrete-velocity discretization of the
Bhatnagar–Gross–Krook (BGK) equation, such that the discretized particle distribution
function is governed by the following equation:

∂ fa

∂t
+ ea · ∇ fa = −

1
τ

(
fa − f eq

a

)
; a ∈ [0, nDV − 1] (3)

where nDV denotes the number of discrete velocities in the model. Furthermore, fa(x, t) =
f (x, ea, t) is the non-equilibrium distribution for discrete velocity ea and f eq

a is the corre-
sponding equilibrium distribution function. In the collision term on the right-hand side, τ
represents the relaxation time. For iso-thermal LBM models, based on the two-dimensional
D2Q9 model, or the three-dimensional D3Q15, D3Q19 and D3Q27 models, the equilibrium
distribution function can be written as,

f eq
a = ρwa

[
1 +

3
c2 ea ·V +

9
2c4

(
ea ·V

)2 − 3
2c2 V ·V

]
(4)

where wa and ea denote the weighting factor and discrete velocity for direction a, respec-
tively. The lattice speed c is defined as c = δx/δt. Then, in a single time step, discrete
values of the distribution function move to the nearest neighbor lattice point (defined by
the direction of the discrete velocity that is considered). This movement is typically referred
to as ’streaming’. For the D2Q9 model with NDV = 9, the following discrete velocities are
used,

e0/c = (0, 0)T

e1/c = (1, 0)T ; e2/c = (0, 1)T ; e3/c = (−1, 0)T ; e4/c = (0,−1)T (5)

e5/c = (1, 1)T ; e6/c = (−1, 1)T ; e7/c = (−1,−1)T ; e8/c = (1,−1)T

where the weighting factors wa (a ∈ [0, 8]) for the D2Q9 model are defined as,

w0 = 4/9 ; w1−4 = 1/9 ; w5−8 = 1/36 (6)

Based on the ’streaming’ from one lattice point to a nearest neighbor lattice point, the
evolution of fa can be written as,

fa
(
xi + eaδt, t + δt

)
− fa

(
xi, t
)
= − δt

τ

[
fa
(
xi, t
)
− f eq

a
(
xi, t
)]

(7)

Fluid density and velocity components are related to the discretized distribution functions
fa and f eq

a as follows,

ρ =
nDV−1

∑
a=0

fa =
nDV−1

∑
a=0

f eq
a ; ρV =

nDV−1

∑
a=0

ea fa =
nDV−1

∑
a=0

ea f eq
a (8)

Lattice Boltzmann methods employ a stream-collide approach to update fa from time t to
t + δt in two steps:

• The ‘collision step’ creates an intermediate update of fa to f int
a based on the colli-

sion term:
f int
a
(
xi, t
)
= fa

(
xi, t
)
− δt

τ

[
fa
(
xi, t
)
− f eq

a
(
xi, t
)]

(9)

• The convection on the left-hand side of Equation (7), is represented by the ‘streaming
step’, such that based on intermediate update f int

a the final update is computed as,

fa
(
xi + eaδt, t + δt

)
= f int

a
(
xi, t
)

(10)
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As a first step toward creating quantum algorithms for D2Q9 and D3Q27, reduced models
are considered first. Two non-linear lattice models for one-dimensional flow problems are
described in the next sections.

2.2. Modified D1Q3 Model for One-Dimensional Flow

In recent work by the author [12], the D1Q3 model for one-dimensional iso-thermal
flow was re-formulated in terms of a D2Q4 model to facilitate quantum-circuit implemen-
tation. To summarize, in the original D1Q3 model, the direction vectors ei, i ∈ [0, 2], density
ρ and velocity u (by construction, as a function of f2 and f0 for this model) are defined as,

ei =


−1 for i = 0

0 for i = 1
+1 for i = 2

; ρ =
2

∑
0

fi ; u = f2 − f0 (11)

with the collision terms defined as,

− dt
τ


 f0

f1
f2

−


1
2

[
1
3 − u + u2

]
2
3 − u2

1
2

[
1
3 + u + u2

]

 (12)

For quantum-circuit implementation, an even number of discrete-velocity directions was
preferred. This was achieved by replacing the original f1 distribution function with two
identical distribution function components, f1 and f2, in the modified model (with corre-
sponding duplicate discrete velocity). The corresponding equilibrium distribution functions
become,

~f eq =



1
2

[
1
3 − u + u2

]
1
2

[
2
3 − u2

]
1
2

[
2
3 − u2

]
1
2

[
1
3 + u + u2

]

 ⇒ ~f eq(u = 0) =


1
6
1
3
1
3
1
6

 (13)

To further facilitate quantum-circuit implementation, a re-scaled distribution function ~g
was defined relative to the ‘rest’ state (here, ‘rest’ means u = 0) defined in Equation (13),
such that the constant factors 1/3 and 1/6 are removed,

~g = ~f −


1
6
1
3
1
3
1
6

 ; ~geq = ~f eq −


1
6
1
3
1
3
1
6

 =


− u

2 + u2

2
− u2

2
− u2

2
u
2 + u2

2

 (14)

The density and velocity follow from distribution function components as,

ρ = 1 +
3

∑
0

gi ; u = g3 − g0 (15)

2.3. Non-Linear Lattice Model for One-Dimensional Burgers Equation

The Burgers equation has been widely used as a model equation in the development
of CFD methods. It is a single partial differential equation (in contrast to a system for
the Navier–Stokes) representing non-linear dynamics and viscous effects representative
of fluid dynamics. Interestingly, the strongly non-linear Burgers equation can be solved
using the Cole-Hopf transform as a linear heat equation. The current work considers the
discretization of the Burgers equation as a step toward methods for the Navier–Stokes
equations for which this type of transform cannot be performed, and therefore, the original,
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non-linear form of the Burgers equation is maintained here. The quasi-1D Burgers equation
can be written as,

∂u
∂t

+ u
∂u
∂x

= µ
(∂2u

∂x2 +
∂2u
∂y2

)
(16)

where µ represents the viscosity of the considered medium. In the literature, a range of
Lattice Boltzmann models can be found for the Burgers equation. Here, the D2Q4 model,
as described by Velivelli and Bryden [16], is used, recast in a notation consistent with that
for the modified D1Q3 model used here. Then, this D2Q4 model can be summarized as,

e0/c = (1, 0)T ; e1/c = (0, 1)T ; e2/c = (0,−1)T ; e3/c = (−1, 0)T

u/c = f0 − f3 = f eq
0 − f eq

3 (17)

with equilibrium distribution function defined as,

f eq
0 =

1
4

[u
c
+

u2

c2

]
; f eq

1 =
u
4c

(18)

f eq
2 =

u
4c

; f eq
3 =

1
4

[
− u

c
+

u2

c2

]
This highlights that with relatively small changes, i.e., mainly the difference in the ‘rest-state’
equilibrium state, the quantum algorithm developed here for the D1Q3 model (specifically,
in a modified D1Q4 form to ease implementation as a quantum circuit) can be modified
into that for the D2Q4 model for the quasi-1D Burgers equation.

3. Quantum Computing Principles

Key concepts and principles are briefly reviewed here. A more detailed introduction is
beyond the scope of the present work. Quantum algorithms are represented in the present
work as quantum circuits. In the quantum-circuit diagrams used here, the qubits in the
quantum register are represented in a vertical arrangement, where the solid horizontal
lines represent the time progression. Traversing the quantum circuit from left to right, the
quantum state of the qubit registers gets modified by a series of unitary gate operations
acting on one or more qubits. For a quantum circuit, its width is defined by the number
of qubits, while the horizontal extent, directly related to the number of successive gate
operations, represents the circuit depth. The circuit depth that can be executed on a quan-
tum computer is limited by the time the quantum register can stay in a coherent quantum
state. The combination of limited feasible circuit depth and width, along with the limited
connectivity of qubits in current and near-future quantum computers, formed the basis of
the concept of quantum volume [17] to specify quantum hardware capability. For machines
with limited quantum volume, a hybrid quantum-classical computing approach termed
the Variational Quantum approach [18,19] has been widely used. Shallow, parameterized
quantum circuits are used that are tightly coupled in terms of data exchange with classical
hardware. The problem considered is typically an optimization problem where the classical
computer is tasked with performing a parameter optimization problem in each of a number
of iterations. These approaches have their origin in quantum chemistry, but a wider range
of practically relevant problems can be tackled with optimization-type approaches [20].
Figure 1 shows an example of the Variational Quantum approach, where the required
solution is constructed from a layered network. As shown, multiple layers are used (four
in the illustration), each taking multiple qubits as input (six in the example shown). Using
depth five in the example, the quantum circuits defined by U(λ) involve 13 two-qubit gates.
Each of these gates has a parameter λi ∈ [1, 13] associated with it. A classical computer
creates optimized parameters λi employing an iterative approach that takes the measured
state of the ancilla qubit as input. A further key part of the approach is the problem-specific
Quantum Non-linear Processing Unit (QNPU), shown on the right-hand side of Figure 1.

In the context of the present work, it is particularly interesting that Lubasch et al. [20]
published an example of the QNPU for the non-linear Burgers equation. It is important to
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σz

6

6

6

6

|0〉 H H

|0〉 U1(~λ)

QNPU

|0〉 U2(~λ)

|0〉 U3(~λ)

|0〉 U4(~λ)

U(~λ)

|0〉
λ1 λ6 λ11

|0〉
λ4 λ9

|0〉
λ2 λ7 λ12

|0〉
λ5 λ10

|0〉
λ3 λ8 λ13

|0〉

Figure 1. Illustration of the Variational Quantum Computing (VQC) approach, shown here for four
layers, each with 6 input qubits and depth 5 for the operators U(~λ) with 13 variational parameters
defining two-qubit gates. The Quantum Non-linear Processing Unit (QNPU) is designed to efficiently
create non-linear products using problem-specific quantum circuits. The figure is adapted from
Lubasch et al. (2020).

emphasize at this point the contrasting approach used in the present investigation, where
quantum circuits with larger circuit depth are developed based on the assumption that
more fault-tolerant quantum computers will be available in the near future.

3.1. Data Encoding in Quantum Algorithms

The majority of existing quantum algorithms were designed such that data are en-
coded in the amplitudes defining the quantum state of the qubit register. This is commonly
referred to as amplitude-based encoding or encoding within the amplitudes of the quantum
state. An important feature of this encoding technique is that it facilitates the quantum
algorithm to benefit from quantum parallelism. Using n qubits, 2n degrees of freedom are
created, with the potential of an exponential saving in terms of memory when comparing
the number of qubits and classical bits. Quantum parallelism also enables the simultaneous
manipulation of 2n amplitudes, defining the quantum state by performing a single unitary
operator on an n-qubit coherent quantum register. An alternative data-encoding approach
is usually referred to as quantum computational basis encoding or encoding within the
computational basis of the quantum state. In this approach, the n coherent qubits in the
register are used to represent data using a fixed-point representation. A quantum algorithm
using this encoding as a first step initializes the quantum state by applying an oracle that
transforms the qubit register from the initial zero-state to the fixed-point representation of
the required input state, such that in contrast to amplitude-based encoding, only a single of
the 2n possible states has non-zero amplitude. Successive gate operations then effectively
change which of the quantum states has the non-zero amplitude. Using this type of encod-
ing, it is less clear than in amplitude-based encoding how quantum algorithms can take
advantage of quantum parallelism. However, crucially, it facilitates non-linear operations in
terms of arithmetic operations, as previously demonstrated in existing quantum algorithms
for arithmetic operations. Encoding within the computational basis has not been widely
used in applications related to scientific computing. A notable example is the quantum
algorithm for computing the Fourier transform in the computational basis (termed QFTC)
by Zhou et al. [21]. Research work covering efficient transformations between the two
representation types has, so far, been very limited, e.g., the conversion from amplitude-
encoding to computational basis encoding was investigated by Miterai et al. [22], while
the reverse transformation was investigated by SaiToh [23]. From previous and ongoing
work, it is clear that important and meaningful quantum algorithms using computational-
basis encoding can be obtained despite quantum parallelism not being exploited directly
as in an algorithm using amplitude-based encoding. However, when algorithms using
quantum-basis encoding are used as part of a larger application it is expected that quantum
speed-up can still be achieved, particularly if further improvements to the algorithms for
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conversion between the two different encoding techniques can be made. The availability of
efficient, updatable quantum memory further supports the potential of algorithms using
computational-basis encoding.

3.2. Quantum Floating-Point Format

In previous work by the author [7,12], a floating point representation was proposed
with reduced precision relative to the IEEE-754 single precision format. The motivation for
this representation is the wide range of numbers that can be represented by the quantum-
circuit implementations considered in an equivalent fixed-point representation. In the
literature, few works deal with quantum circuits for floating-point arithmetic; e.g., Häner
and co-workers [24] considered complexity for circuits with IEEE-754 type precision. In the
context of quantum annealing, the floating-point division was considered by Rogers and
Singleton [25]. The quantum floating-point format used here is explained and demonstrated
in Appendix A. A key aspect is the use of an asymmetric bias. This enables the range of
numbers that can accurately and reliably be presented to be tailored to the considered
problem. For the D1Q3 model, variables represented in floating point format will be small
(e.g., velocity components scaled by lattice speed need to be small due to the requirement
that the flow speed is much smaller than the speed of sound), leading to a choice of a bias
of eight for 3-qubit exponents (in contrast to three as symmetric bias). For the lattice model
for the Burgers equation, the low-Mach number restriction is less strict than for the D1Q3
model. To illustrate the dependency of quantum circuits on the employed exponent bias,
the floating-point representation used in the Burgers model has an exponent bias of five.

In the current work, computational basis encoding was selected along the quantum
floating-point format to facilitate the evaluation of non-linear terms as quantum floating-
point arithmetic.

3.3. Ripple-Carry Adders and Reduction-by-Specialization

The quantum circuits developed in this work include quantum full adder and quantum
modulo adders. The modular structure of the ripple-carry quantum adder, as originally
introduced by Cuccaro [26], forms the main motivation for using this type of quantum
adder. A characteristic of the Cuccaro-type quantum adder is the use of majority (MAJ)
and un-majority (UMA) operations acting on three qubits. The ’original’ quantum circuit,
as shown in Figure 2, illustrates the Cuccaro full adder for the addition of two 2-qubit
strings. Specifically, |a1|a0〉 represents the input that, upon completion, is in the original
state, while |r2|r1|r0〉 represents the 3-qubit output string, such that |r2〉 = |0〉 before
addition and |r1|r0〉 holds the second 2-qubit input. The left half of the quantum circuits
details the two MAJ sub-circuits. The right half similarly shows the two UMA blocks. The
CNOT in the center is indicative of the considered full adder. Specifically, removing qubit
|r2〉 and this CNOT operation will transform the circuit into a modulo 2-qubit adder.

The remaining part of Figure 2 shows how the quantum circuit implementation of the
2-qubit full adder can be specialized for the specific cases of input |a1|a0〉 = |10〉. Figure 2
shows the step-by-step reduction in the quantum circuit. A complicating factor is that in
the Cuccaro-type adders, the qubit input string that is left unchanged at the completion
of the addition can have its qubits temporarily change state. This is clear from the ‘Step
1’ circuit, where two Toffoli gates act with |a1〉 as a target. In ‘Step 2’, the NOT gates
surrounding the two Toffoli gates are accounted for by changing the conditionals in the
Toffoli gates. Then, the actions of qubit |a1〉 can be removed, as shown in ‘Step 3’ in Figure 2.
Finally, the specific choice of |a0〉 = |0〉 is accounted for by first eliminating the CNOTs
with |a0〉 as the control qubit. The fact that |c〉 = |0〉 will then be maintained in the circuit
enables further removal of gate operations. This results in the final state, shown as ‘Step
4’ in Figure 2. This type of reduction of quantum circuits for specific input qubit states is
employed in the present investigation for two purposes. First, in the proposed quantum
floating-point arithmetic, specialized adders are often used to apply increments to expo-
nents, as discussed later. The second type of application is in circuit transformations used
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to facilitate the evaluation of the quantum circuits using quantum computing simulators
on classical computers by reducing the width of the quantum circuit.

Original Step 1

. . . . . .

. . . . . .

. . . . . .

. . . . . .

. . . . . .

. . . . . .

|r2〉

|a1〉 = |1〉

|r1〉

|a0〉 = |0〉

|r0〉

|c〉 = |0〉

Step 2 Step 3 Step 4

. . . . . . . . .

. . . . . . . . .

. . . . . . . . .

. . . . . . . . .

. . . . . . . . .

. . . . . . . . .

|r2〉

|a1〉 = |1〉

|r1〉

|a0〉 = |0〉

|r0〉

|c〉 = |0〉

Figure 2. Step-by-step specialization of the 2-qubit full adder. The example shown adds |a1|a0〉 = |10〉
into 3-qubit register |r2|r1|r0〉.

4. Quantum-Circuit Implementation of Modified D1Q3 LBM

In previous work by the author [12], the quantum-circuit implementation of the modi-
fied D1Q3 model was analyzed in detail. In that work, a design aimed at minimizing the
quantum-circuit width was used, while the main focus of that work was the evaluation and
simulation of the circuit using a quantum computing simulator with machine acceleration.
In contrast, the design for the modified D1Q3 considered here employs a small number
of additional qubits but benefits from a significantly reduced circuit depth. This design
trade-off can be summarized as follows:

• The design considered previously [12] (‘Design 1’) converts the output of the squaring
of the u-velocity mantissa (temporarily) in quantum floating-point format, using
NM − 1 + NE qubits (with ‘hidden-qubit’ approach);

• In the current design (‘Design2’), the output of the squaring of the u-velocity mantissa
defined by 2NM qubits is maintained for use in successive steps of the quantum circuit;

• Design 1 requires the squaring and un-computation of squaring to be performed twice,
in contrast to Design 2, that only involves a single squaring operation of the u-velocity
mantissa. The 2NM qubits defining the squaring are returned to their initial state by a
single un-computation of the squaring operation.

A detailed complexity analysis in terms of qubits required shows that although the
difference between NM − 1 + NE (for Design 1) and 2NM (for Design 2) is needed to
store the result of the squared u-velocity, mantissa appears to grow as NM − NE, and
therefore, favors Design 1 for small NE and increasing NM. However, Design 1 also needs a
sufficient workspace to perform u-velocity squaring, such that for NM = 4 and NE = 3, the
difference is reduced to a single-qubit advantage for Design 1. The significant reduction in
gate operations needed for un-computation for Design 2 motivates the use of this design
approach here. The approach used in Design 2 is also employed for the non-linear lattice
model for the one-dimensional Burgers equation in the next section.
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In the quantum-circuit implementation, the following qubits are used for NM = 4 and
NE = 3:

|dv1|dv0〉 : two qubits defining the index of discrete velocity

|eu2|eu1|eu0〉 : NE-qbit representation of the exponent of u

|su〉 : sign bit for u-velocity—here a positive value is assumed

|mu2|mu1|mu0〉 : (NM − 1)-qbit representation of mantissa of u

|eg2|eg1|eg0〉 : NE-qbit representation of the exponent of geq

|sg〉 : sign bit for the considered component of geq

|mg2|mg1|mg0〉 : (NM − 1)-qbit representation of the mantissa of geq

|cut〉 : qubit-defining truncation to 0 if in state |1〉

Furthermore, additional qubits (‘workspace’ ) are required to perform calculation:

|r7|r8| . . . |r1|r0〉 : 2NM qubits to store the squared u mantissa

|qu3|qu2|qu1|q0〉 : NM qubits to store a temporary copy of the u mantissa

|c〉 : ‘carry’ qubit-set here to |0〉
|anc〉 : ancilla qubit-initialized at |0〉

|cr6|cr5| . . . |cr1|cr0〉 : 2NM − 1 qubits to temporarily store the squaring result

Starting from the left-hand side of Figure 3, the steps shown can be summarized
as follows:

• Qubit |cut〉 initialized at |0〉 is set to |1〉 in case u2 gets truncated to 0. For employed
quantum floating-point format (exponent bias equals to 8), this occurs for sub-normal u
velocity, i.e., |eu2|eu1|eu0〉 = |000〉 as well as for velocities with |eu2|eu1|eu0〉 = |001〉
or |eu2|eu1|eu0〉 = |010〉;

• For |cut〉 = |0〉, the mantissa qubits of u get temporarily copied into the workspace
qubits in preparation for the squaring operation (termed SQ4 here for NM = 4 consid-
ered). Once 2NM-qubits defining square of u mantissa is set, the temporary copies of
u mantissa qubits are removed;

• For the two ‘rest-state’ discrete-velocity directions (defined by |dv1|dv0〉 = |01〉 and
|dv1|dv0〉 = |10〉) the final state of the qubits defining the equilibrium function in
floating-point format can directly be defined from velocity u. This operation is per-
formed at 0110r8 in the circuit;

• For the discrete velocity pointing left (|dv1|dv0〉 = |00〉) and for the discrete velocity
pointing right (|dv1|dv0〉 = |11〉), the equilibrium distribution function combines a
term ±u/2 and u2/2. In the quantum circuit, the operation shown as 0011a2 prepares
this summation for which a 5-qubit modulo adder (MADD5) is used for NM = 4 by
employing the 2NM-qubit mantissa squaring output with u, while introducing shift
accounting for the exponents of u and u2 terms;

• Once the 5-qubit modulo adder has performed the required addition for the two
discrete-velocity directions defined by |dv1|dv0〉 = |00〉 and |dv1|dv0〉 = |11〉, opera-
tion 0011b2 uses this output to define the equilibrium distribution function for these
directions in quantum floating-point format.

• Operation UMA5 (un-computation of MADD5) and subsequent steps shown in
Figure 4 un-compute the previously computed u2 to return the qubits to the bottom
half of the circuit (workspace) to their original |0〉 state. As part of this process, ISQ4
un-computed the squaring of the u mantissa.

The squaring of the u-velocity mantissa is based on the shift-and-add principle.
Figure 5 shows the controlled 4-qubit full additions (FA4) for NM = 4, creating the square
with the application of a, output-register shift (Sh4) between successive controlled addi-
tions. The quantum circuit implementation of the un-computation with UFA4 representing
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the un-computation of the 4-qubit full additions with reverse shifts (Ŝh4) is also shown
between successive steps.
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|eu1〉
|eu0〉
|su〉

|mu2〉
|mu1〉
|mu0〉

|eg2〉 = |0〉
|eg1〉 = |0〉
|eg0〉 = |0〉
|sg〉 = |0〉

|mg2〉 = |0〉
|mg1〉 = |0〉
|mg0〉 = |0〉

|cut〉 = |0〉

|r4〉 = |0〉

SQ4

MA5

|0〉

|qu3〉 = |0〉 |0〉

|r3〉 = |0〉 |0〉

|qu2〉 = |0〉 |0〉

|r2〉 = |0〉 |0〉

|qu1〉 = |0〉 |0〉

|r1〉 = |0〉 |0〉

|qu0〉 = |0〉 |0〉

|r0〉 = |0〉 |0〉

|c〉 = |0〉 |0〉

|r7〉 = |0〉 |0〉

|r6〉 = |0〉 |0〉

|r5〉 = |0〉 |anc〉 = |0〉

|anc0〉 = |0〉 |r7〉

|cr6〉 = |0〉 |r6〉

|cr5〉 = |0〉 |r5〉

|cr4〉 = |0〉 |r4〉

|cr3〉 = |0〉 |r3〉

|cr2〉 = |0〉 |r2〉

|cr1〉 = |0〉 |r1〉

|cr0〉 = |0〉 |r0〉

Figure 3. Modified D1Q3 model: quantum circuit design for computing ~geq. Floating-point represen-
tation uses four mantissa qubits (NM = 4) and three exponent qubits (NE = 3), with an exponent
bias set to eight. Part 1.



Appl. Sci. 2023, 13, 529 12 of 36

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

|dv1〉

0011b2

0011c2

|dv1〉

|dv0〉 |dv0〉
|eu2〉 |eu2〉
|eu1〉 |eu1〉
|eu0〉 |eu0〉
|su〉 |su〉

|mu2〉 |mu2〉
|mu1〉 |mu1〉
|mu0〉 |mu0〉

|eg2〉 = |0〉 |eg2〉
|eg1〉 = |0〉 |eg1〉
|eg0〉 = |0〉 |eg0〉
|sg〉 = |0〉 |sg〉
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|cut〉 |cut〉 = |0〉

|a4〉

UMA5

ISQ4

|r4〉 = |0〉

|b4〉 |qu3〉 = |0〉
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|b3〉 |qu2〉 = |0〉

|a2〉 |r2〉 = |0〉

|b2〉 |qu1〉 = |0〉

|a1〉 |r1〉 = |0〉

|b1〉 |qu0〉 = |0〉

|a0〉 |r0〉 = |0〉

|b0〉 |c〉 = |0〉

|c〉 = |0〉 |r7〉 = |0〉

|0〉 |r6〉 = |0〉

|anc0〉 = |0〉 |r5〉 = |0〉

|r7〉 |anc〉 = |0〉

|r6〉 |cr6〉 = |0〉

|r5〉 |cr5〉 = |0〉

|r4〉 |cr4〉 = |0〉

|r3〉 |cr3〉 = |0〉

|r2〉 |cr2〉 = |0〉

|r1〉 |cr1〉 = |0〉

|r0〉 |cr0〉 = |0〉

Figure 4. Modified D1Q3 model: quantum circuit design for computing ~geq. Floating-point represen-
tation uses four mantissa qubits (NM = 4) and three exponent qubits (NE = 3), with an exponent
bias set to eight. Part 2.
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|r4〉 = |0〉

FA4

Sh4

FA4

Sh4

FA4

Sh4

FA4

|r7〉

|qu3〉 |qu3〉
|r3〉 = |0〉 |r6〉

|qu2〉 |qu2〉
|r2〉 = |0〉 |r5〉

|qu1〉 |qu1〉
|r1〉 = |0〉 |r4〉

|qu0〉 |qu0〉
|r0〉 = |0〉 |r3〉

|c〉 = |0〉 |c〉 = |0〉

|r7〉 = |0〉 |r2〉
|r6〉 = |0〉 |r1〉

|r5〉 = |0〉 |r0〉

|anc〉 = |0〉 |anc〉 = |0〉

|r7〉

UFA4

Ŝh4

UFA4

Ŝh4

UFA4

Ŝh4

UFA4

|r4〉 = |0〉

|qu3〉 |qu3〉
|r6〉 |r3〉 = |0〉

|qu2〉 |qu2〉
|r5〉 |r2〉 = |0〉

|qu1〉 |qu1〉
|r4〉 |r1〉 = |0〉

|qu0〉 |qu0〉
|r3〉 |r0〉 = |0〉

|c〉 = |0〉 |c〉 = |0〉

|r2〉 |r7〉 = |0〉
|r1〉 |r6〉 = |0〉

|r0〉 |r5〉 = |0〉

|anc〉 = |0〉 |anc〉 = |0〉

Figure 5. Quantum-circuit implementation of SQ4 operation (and its un-computation ISQ4) as used
in the modified D1Q3 model and in the non-linear lattice model for 1D Burgers equations.

5. Quantum-Circuit Implementation for One-Dimensional Burgers Equation

The quantum-circuit implementation of the non-linear lattice model for the one-
dimensional Burgers equation is investigated in this section. In particular, the quantum
floating-point-based implementation of its non-linear equilibrium function is employed in
the collision step. For NM = 4 and NE = 3 (using an exponent bias of 5), Figures 6 and 7
show the overall design of this quantum-circuit implementation.

In the quantum-circuit implementation, the number of qubits needed is identical
to that demonstrated for the modified D1Q3 model in the previous section for the same
choice of NM and NE. For convenience, the qubits associated with storing the equilibrium
distribution function ~f eq are now named with f instead of g. Specifically, here the qubits
are named:

|e f 2|e f 1|e f 0〉 : NE-qbit representation of the exponent of f eq

|s f 〉 : sign bit for considered the component of f eq

|m f 2|m f 1|m f 0〉 : (NM − 1)-qbit representation of mantissa of f eq
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|cr0〉 = |0〉 |r0〉

Figure 6. Quasi-1D Burgers: quantum circuit design for computing ~f eq in the lattice model. The
floating-point representation uses four mantissa qubits (NM = 4) and three exponent qubits (NE = 3),
with an exponent bias set to five. Part 1.
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Figure 7. Quasi-1D Burgers: quantum circuit design for the evaluation of ~f eq in the lattice model. The
floating-point representation uses four mantissa qubits (NM = 4) and three exponent qubits (NE = 3),
with an exponent bias set to five. Part 2.

Starting from the left-hand side of Figure 6, the steps shown can be summarized
as follows:

• Qubit |cut〉 initialized at |0〉 is set to |1〉 in case u2 gets truncated to 0. For the em-
ployed quantum floating-point format (with exponent bias equal to five in contrast
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to eight used for modified D1Q3 model), this occurs for sub-normal u velocity, i.e.,
|eu2|eu1|eu0〉 = |000〉;

• For |cut〉 = |0〉, the mantissa qubits of u get temporarily copied into the workspace
qubits in preparation of the squaring operation (termed SQ4 here for NM = 4 consid-
ered). Once 2NM-qubits defining the square of u mantissa is set, the temporary copies
of u mantissa qubits are removed;

• For the two discrete-velocity directions defined by |dv1|dv0〉 = |01〉 and |dv1|dv0〉 =
|10〉, the final state of the qubits defining the equilibrium function in floating-point
format can directly be defined from velocity u. This operation is performed at 0110u4
in the circuit;

• For the two discrete-velocity directions defined by |dv1|dv0〉 = |00〉 and |dv1|dv0〉 =
|11〉, the equilibrium distribution function combines terms ±u/4 and u2/4. In the
quantum circuit, the operation shown as 0011a2 prepares this summation for which
a 5-qubit modulo adder (MADD5) is used for NM = 4 by employing the 2NM-qubit
mantissa squaring output with u, while introducing shift accounting for the exponents
of u and u2 terms;

• Once the 5-qubit modulo adder has performed the required addition for the two
discrete-velocity directions defined by |dv1|dv0〉 = |00〉 and |dv1|dv0〉 = |11〉, opera-
tion 0011b2 uses this output to define the equilibrium distribution function for these
directions in the quantum floating-point format.

• Operation UMA5 (un-computation of MADD5) and the subsequent steps shown in
Figure 7 un-compute the previously computed u2 to return the qubits in the bottom
half of the circuit (workspace) to their original |0〉 state. As part of this process, ISQ4
un-computed the squaring of the u mantissa.

The similarity of this quantum circuit design with that of the modified D1Q3 non-
linear lattice model is apparent.

6. Extension to Two- and Three-Dimensional Lattice Models

In the two non-linear lattice models considered so far, i.e., the modified D1Q3 model as
well as the D2Q4 model for the quasi one-dimensional Burgers equation, the non-linearity
in the equilibrium distribution used in collision term was of the form u2. LBM models for
flow problems in two- or three-dimensional space also contain squared-velocity terms in
the respective equilibrium distribution functions. As shown previously in Equation (4), the
equilibrium distribution function for 2D and 3D LBM models can generally be written as,

f eq
a = ρwa

[
1 +

3
c2 ea ·V +

9
2c4

(
ea ·V

)2 − 3
2c2 V ·V

]
(19)

with a ∈ [0, 8] for the D2Q9 model and a ∈ [0, 26] for the D3Q27 LBM model. This means
that for each of the discrete-velocity directions, a term −3(u2 + v2)/2c2 will result in 2D
models, and similarly, −3(u2 + v2 + w2)/2c2, for 3D LBM models. In the present work, the
extension to multi-dimensional non-linear problems is considered with a particular focus
on constructing the non-linear equilibrium distribution function:

• Floating-point arithmetic is used to represent the squared-velocity terms in the equi-
librium distribution function;

• As a first step, the focus is on computing u2 + v2 for two-dimensional problems, where
u and v represent the Cartesian velocity components in the x− and y−directions
scaled by a suitable reference velocity (e.g., lattice velocity in LBM);

• The construction of quantum circuits for the ’full’ equilibrium distribution function
and the resulting collision term is left for future publications;

• A further motivation for the current focus on evaluating u2 + v2 is the obvious and
direct connection to evaluating kinetic energy in a wider range of lattice models
beyond the LBM.
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As mentioned in Section 1, the quantum circuits developed are aimed at near-future
quantum computers with a relatively small number of ‘logical’ qubits with a level of
fault tolerance facilitating the considered circuit depths. A well-considered trade-off
between circuit width and circuit depth is, therefore, essential and will be discussed in the
next section.

6.1. Design Considerations for Quantum-Circuit Implementation of u2 + v2 Calculation

To achieve a term of the form u2 + v2 in the floating-point format, a number of different
approaches can be used. The different approaches considered in the present work are:

• Design Ekin2D1, based on the sequential computation of u2 and v2 with each term
temporarily stored in the quantum floating-point format. This is followed by a floating-
point addition to obtain u2 + v2. From a classical computational point of view, this
appears to be the most obvious design approach. Figure 8 shows the overall layout
of the quantum circuit based on this design. As before, SQ4 and ISQ4 represent
the mantissa squaring operation and its reverse. CCu2 and CCv2 are used to define
u2 and v2 in the floating-point format starting from the 2NM output of squaring. To
facilitate the re-use of workspace qubits, the mantissa qubits of u and v are temporarily
swapped by SWuv. Based on the difference in the exponent of u2 and v2 (evaluated by
DEsq—result temporarily stored in qubits defining the exponent of v2), PS prepares
the floating-point addition of u2 and v2, with FA4 and UFA4 representing 4-qubit full
adder and its reverse. UDEsq returns exponent v2 to the state before DEsq. Not shown
here for brevity are the subsequent steps needed to un-compute the calculations of u2

and v2 needed to return the qubits involved back to the initial state |0〉;
• Design Ekin2D2, based on the sequential computation of u2 and v2 with temporary

storage using two separate 2NM-qubit registers of the mantissa-squaring operations
for u2 and v2. Based on these two registers, as well as the exponents of u and v (and
their difference), the summation u2 + v2 in the floating-point format can be performed.
The motivation for this design is that compared to Design Ekin2D1, the complexity
involved in the setting results in quantum floating-point format can potentially be
reduced, as found previously for the 1D lattice implementations. Figure 9 shows the
overall layout of the quantum circuit based on this design. Compared to EKin2D1, the
summation of u2 and v2 now uses the difference in the exponent of u- and v-velocity
since exponents of u2 and v2 are no longer formed explicitly. A key further observation
that can be made is the reduction in un-computation steps needed up to the point
of setting the desired output. The gate operations to the right of UDEuv represent
the first steps of the un-computation used to ‘clear’ the qubit registers defining the
mantissa-squaring output for u2 and v2;

• Design Ekin2D3, where the term u2 + v2 is constructed using shift-and-add-based
squaring involving both u and v directly. Clearly, the design needs to account for
the possibility of u and v having different exponents. The main motivation for this
design is that compared to Designs Ekin2D1 and EKin2D2, it can be expected that
the quantum-circuit width can be reduced by eliminating the temporary storage of
the terms u2 and v2 separately. However, the shift-and-add-based squaring of the
mantissa will be more complex, as detailed here. A further motivation relates to the
potential reduction in rounding and truncation error in defining u2 + v2. This aspect
is considered in more detail in Section 7.

Based on the considerations detailed, as well as the circuit-width analysis shown in
the next section, design EKin2D3 was selected for further detailed analysis. Its quantum
circuit implementation is described in Sections 6.3, 7 and 8.
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6.2. Analysis of Circuit Width for Different Designs

In required qubits terms, all three designs need at least the following qubits to store
input and output data for NM = 4 and NE = 3:

|eu2|eu1|eu0〉 : NE-qbit representation of the exponent of u

|mu2|mu1|mu0〉 : (NM − 1)-qbit representation of the mantissa of u

|ev2|ev1|ev0〉 : NE-qbit representation of the exponent of v

|mv2|mv1|mv0〉 : (NM − 1)-qbit representation of the mantissa of v

|ek2|ek1|ek0〉 : NE-qbit representation of the exponent of kinetic energy

|mk2|mk1|mk0〉 : (NM − 1)-qbit representation of the mantissa of kinetic energy

This means that, more generally, 3NE + 3(NM − 1) qubits represent the absolute
minimum circuit width. In the following, the number of additional qubits required for the
different designs is detailed.
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Figure 8. Quantum circuit design Ekin2D1 for the computation of u2 + v2. The floating-point
representation uses four mantissa qubits (NM = 4) and three exponent qubits (NE = 3).
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Figure 9. Quantum circuit design Ekin2D2 for computation of u2 + v2. The floating-point representa-
tion uses four mantissa qubits (NM = 4) and three exponent qubits (NE = 3).

6.2.1. Design Ekin2D1

For Design Ekin2D1, the following additional qubits are needed:

|qu3〉 : ’hidden’ mantissa qubit for u and v for NM = 4

|r7| . . . |r0〉 : 2NM-qubit register for mantissa squaring output

|c〉 : ’carry’ qubit—initialized as |0〉
|anc〉 : ancilla qubit—initialized as |0〉

|eusq2|eusq1|eusq0〉 : NE-qbit representation of the exponent of u2

|musq2|musq1|musq0〉 : (NM − 1)-qbit representation of the mantissa of u2

|evsq2|evsq1|evsq0〉 : NE-qbit representation of the exponent of v2

|mvsq2|mvsq1|mvsq0〉 : (NM − 1)-qbit representation of the mantissa of v2
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Here it is assumed that a number of space-saving measures are used. First, the temporary
swapping of u and v mantissa qubits so the same set-up for mantissa squaring of u can
be re-used for v. Secondly, the difference in u2 and v2 exponents, temporarily needed
in working out the quantum floating-point addition, can be stored in |evsq2|evsq1|evsq0〉
and that after un-computation of this difference, the original exponent of v2 is restored.
Lastly, it can be assumed that the 2NM-qubit register |r7| . . . |r0〉 can be re-used to perform
the addition of the (re-normalized) mantissa qubit-strings of u2 and v2. Therefore, the
additional qubit count amounts to the total,

1 + 2NM + 2 + 2NE + 2(NM − 1) = 1 + 4NM + 2NE

6.2.2. Design Ekin2D2

For Design Ekin2D2, the following additional qubits are needed:

|qu3〉 : ’hidden’ mantissa qubit for u and v for NM = 4

|r07| . . . |r00〉 : 2NM-qubit register for mantissa squaring output—u2

|r15| . . . |r08〉 : 2NM-qubit register for mantissa squaring output—v2

|c〉 : ’carry’ qubit—initialized as |0〉
|anc〉 : ancilla qubit—initialized as |0〉

|r24| . . . |r16〉 : 2NM + 1-qubit workspace to perform floating-point

addition of re-normalized mantissa qubit strings for u2 and v2

Here it is assumed that a number of space-saving measures are used. First, the temporary
swapping of u and v mantissa qubits so the same set-up for mantissa squaring of u can be
re-used for v. Secondly, the difference in u and v exponents, temporarily needed in working
out the quantum floating-point addition, can be temporarily stored in |ev2|ev1|ev0〉 and
that after un-computation of this difference, the original exponent of v is restored. Lastly, it
is assumed that starting from the two 2NM-qubit mantissa-squaring result registers, the
exponent difference for u and v, stored temporarily in |ev2|ev1|ev0〉, can be used to set up
two NM input qubit strings representing re-normalized mantissa qubits of u2 and v2 into
NM-qubit full adder, re-using |c〉 as the ‘carry’ qubit. Therefore, for this design, the total
number of additional qubits is

1 + 2NM + 2NM + 2 + 2NM + 1 = 6NM + 3

since, for practical applications, NM needs to be significantly greater than NE, it follows
that Design Ekin2D2 has greater circuit width than Design Ekin2D1.

6.2.3. Design Ekin2D3

For Design Ekin2D3, the minimum set of additional qubits can be summarized as,

|qu3|qu2|qu1|q0〉 : ‘Copy’ of mantissa qubits for u and v for

NM = 4 (including ‘hidden’ qubit)

|r08| . . . |r00〉 : 2NM + 1-qubit register for mantissa squaring output—u2 + v2

|c〉 : ‘carry’ qubit—initialized as |0〉
|anc〉 : ancilla qubit—initialized as |0〉

Here, it should be noted that 2NM + 1 is the minimum qubit register size for the combined
u2 + v2 mantissa squaring. For cases with a significant difference in u- and v-exponents,
rounding and truncation effects can be reduced by extending this register further. This
is discussed in more detail in Section 7. As before, it is assumed that temporarily, the
difference in u and v exponents can be stored in |ev2|ev1|ev0〉, followed by un-computation
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to restore the value of the v-exponent. Therefore, the minimum number of additional qubits
for Design Ekin2D3 becomes

NM + 2NM + 1 + 2 = 3NM + 3

This means that Design Ekin2D3 can be used to create quantum-circuit implementations
with a minimum number of qubits among the three designs considered here. Even if
the qubit register size for the combined u2 + v2 mantissa squaring output is chosen to be
larger than 2NM + 1. For NE = 3, designs with 2NM + 3 and 2NM + 5 output registers
are analyzed in detail in Section 7. The analysis shows that for NM = 4, extending the
output-register size beyond 2NM + 5 gives no further reduction in rounding and truncation
when setting the final result in the floating-point format.

6.3. Modified Full Adders for Combined u2 + v2 Evaluation

For the combined evaluation of (mantissa of) u2 + v2, the shift-and-add-based ap-
proach is used in a modified form as compared with the evaluation of u2 for one-dimensional
lattice models. As before, quantum full adders, as introduced by Cuccaro (here, controlled
by ancilla qubit |anc〉) form the building block. The clear, modular structure was the
motivation to use this type of full adder.

For the combined evaluation of u2 + v2, a number of modifications to the full adder
are introduced that can be summarized as follows:

• For NM mantissa qubits for both u- and v-velocity, a (2NM + 1)−qubit output register
is needed to remove the potential of overflow;

• In the shift-and-add approach, NM − 1 shifts will be used as in the one-dimensional
u2 evaluation;

• In each of the NM-controlled addition operations for u and NM-controlled additions
steps for v, the controlled additions add NM mantissa qubits into an (NM + 1)−qubit
register;

• For NM = 4, the modified full adders are defined starting from a 5-qubit full adder.
The modification is based on a specialization of the (NM + 1)-qubit input register
based on the fact that the most significant qubit will be |0〉;

• A modular structure is maintained by a pair-wise arrangement of the qubits defining
u- and v-velocity mantissa, as demonstrated later. This means that now MAJ and
UMA blocks appear defined to act covering four qubits (however, one qubit will never
be acted on).

Figure 10 shows the quantum-circuit implementation of the modified adders used
to add 4-qubit u-input (top of figure) as well as 4-qubit v-input into the 6-qubit register
|r05| . . . |r00〉. Modified sub-circuits MAJu and MAJv are derived from MAJ by accounting
for the 1-qubit additional spacing introduced by the second set of input qubits interleaved
with the first set of input qubits. Similarly, sub-circuits UMAu and UMAv can be derived
directly from UMA. As can be seen in the circuit for the addition of v-input at the bottom
of Figure 10, for the least-significant inputs |v0〉, the original MAJ and UMA sub-circuits
need to be used since only three qubits are involved in these steps. The modified full adders
shown here form the basis for the mantissa squaring used in the quantum-circuit design
based on quantum floating-point arithmetic described in the next sections.
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Figure 10. Definition of FAu and FUv-modified Cuccaro 5-qubit full adders for use in shift-and-add-
based squaring for NM = 4.

7. Detailed Description of Quantum Circuit for u2 + v2 Evaluation (Design EKin2D3)

For the shift-and-add multiplier used in Design EKin2D3 detailed here, the modified
full adder quantum circuits were detailed for the case NM = 4. In this section, NM = 4 will
again be used as an example, where it needs to be considered that, in practically relevant
applications, NM will typically be significantly larger due to precision requirements.

Before detailing the quantum-circuit implementation, the key features of Design
EKin2D3 can be summarized as follows:

• Combined evaluation of mantissa squaring of u2 and v2 with a minimum of (2NM + 1)
output to avoid overflow;

• Quantum floating-point arithmetic is used with u defined by NM − 1 mantissa qubits
|mu2|mu1|mu0〉 and |eu2|eu1|eu0〉 (NE qubits defining exponent), and v is similarly
defined by |mv2|mv1|mv0〉 and |ev2|ev1|ev0〉;
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• In setting up the mantissa squaring, potential differences in the exponents of u and
v need to be accounted for. If Eu and Ev are the integer values of the u-velocity and
v-velocity exponents, respectively, then for Ev < Eu, a floating-point addition needs
a ’shift’ on the v-input qubits by ∆E = Eu − Ev placed in the input register of the
adder toward a less significant position. For Ev ≤ Eu and normalized u-velocity,
|qu3|qu2|qu1|qu0〉 is set to state |1|mu2|mu1|mu0〉. For Eu − Ev = 1, the input qubits
|qv3|qv2|qv1|qv0〉 need to be set to state |0|1|mu2|mu1〉 (if u is normalized input).
Similarly, for larger ∆E, ever larger shifts will be applied;

• The shifts introduced to account for exponent differences of u and v will lead to the
elimination of one or more less-significant mantissa qubits for ∆E > 0;

• Improved designs can be derived that employ an extended workspace in the shift-and-
add-based multiplier, with the aim of reducing the truncation and rounding effects
created for ∆E > 0.

To investigate the effect of extending the shift-and-add-based multiplier in more detail,
for NM = 4, three different designs were considered, as detailed in the next sections. For
clarity, only the case Eu ≥ Ev will be considered.

At the top of the quantum circuits for each of these designs, the qubit mapping can be
summarized as follows:

|eu2|eu1|eu0〉 : NE qubits defining the u-velocity exponent

|vsub〉 : initialized at |0〉, in state |1〉 for sub-normal v

|ev2|ev1|ev0〉 : NE qubits defining the v-velocity exponent

|mv2|mv1|mv0〉 : NM − 1 qubits defining the v-velocity mantissa

Right at the bottom of the circuit, the qubits defined to store kinetic energy in the floating-
point format are allocated:

|ek2|ek1|ek0〉 : NE qubits defining the u+v2 exponent

|mk2|mk1|mk0〉 : NM − 1 qubits defining the u2 + v2 mantissa

The different designs use a varying number of workspace qubits, as detailed in the respec-
tive sections. In the quantum-circuit design, the first three steps are identical:

• Set |vsub〉 = |1〉 for cases with |ev2|ev1|ev0〉 = |000〉 (sub-normal v-velocity);
• Perform operation Eu− Ev that calculates the difference in u- and v−velocity expo-

nents (Eu − Ev) and set this difference (temporarily) in qubits |ev2|ev1|ev0〉;
• For |eu2|eu1|eu0〉 = |000〉 (sub-normal u-velocity), set |qu3〉 = |0〉;
In this design of the quantum circuit, Eu ≥ Ev was assumed. For the design with (2NM +
1) = 9-qubit results register, these steps can be seen in the circuit shown in Figure 11. The
next step involves the preparation of the mantissa-squaring operation.

7.1. (2NM + 1) = 9-Qubit Results Register |r8| . . . |r0〉
The minimum-width design employs a (2NM + 1) = 9-qubit results register |r08| . . . |r00〉.

The SQ4 operator used in this design is shown in Figure 12 and employs the modified
full adders defined in Section 6.3. As can be seen, NM steps are used, with a controlled
addition for u-velocity and v−velocity mantissa qubits during each step. NM − 1 shift
is performed on the output register, as previously for one-dimensional lattice models.
Figure 11 shows the overall layout of the quantum circuit for NM = 4 and NE = 3,
including the set-up of the SQ4 operation. The four u-velocity mantissa qubits are set as
|1|mu2|mu1|mu0〉 for normalized u-velocity, and |0|mu2|mu1|mu0〉 for sub-normal u. The
next four blocks of logical operations (separated by dashed lines) define the four qubits
defining the mantissa of v-velocity, using a shift where needed. For |ev2|ev1|ev0〉 = |000〉
(i.e., Eu = Ev), the four qubits |qv3|qv2|qv1|qv0〉 are set to |1|mv2|mv1|mv0〉 (for normalized
inputs) or |0|mv2|mv1|mv0〉 for sub-normal v-velocity input. Next, the following blocks
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account for the situations with ∆E = 1, ∆E = 2 and ∆E = 3 in succession. As can
be seen, for a normalized v-input with ∆E = 1, the circuit defines |qv3|qv2|qv1|qv0〉 =
|0|1|mu2|mu1〉. Similarly, |qv3|qv2|qv1|qv0〉 = |0|0|1|mu2〉 for ∆E = 2. Finally, for ∆E = 3,
only the most significant mantissa qubit of v-velocity is used (|1〉 for normalized and |0〉
for sub-normal v-input). For ∆E ≥ 4, the contribution from v to u2 + v2 is eliminated fully.
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Figure 11. Design EKin2D3 with (NM + 1)−qubit mantissa squaring output register.

7.2. (2NM + 3) = 11-Qubit Results Register |r10| . . . |r00〉
In this design, a mantissa-squaring operation termed SQ5 sets the result in an 11-qubit

output register for NM = 4. For each of the NM + 1 = 5 steps, five u-mantissa qubits and
five v-mantissa qubits are added to the results register to employ two controlled, modified
6-qubit full adders. Similar to the modified 5-qubit full adders for the 9-qubit workspace
design, the modification is based on the fact that the leading qubit in the original 6-qubit
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input is |0〉. Then, for the mantissa of u and v, NM + 1 = 5 qubits are conditionally added
into a NM + 3 = 7-qubit output register for the adder. A total of four shift operations
are applied to the 11-qubit output register |r10| . . . |r00〉 of the squaring operations, i.e.,
between each of the controlled-addition steps. This extended squaring operation is detailed
in Figure 13.
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Figure 12. Design EKin2D3 with (NM + 1)−qubit mantissa squaring output register-SQ4 operator.
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Figure 13. Quantum circuit defining SQ5 used in the computation of u2 + v2. Scaled velocity
components u and v are represented as floating-point numbers with four mantissa qubits (NM = 4)
and three exponent qubits (NE = 3). Circuit uses modified 6-qubit Cuccaro full adders (FAu and FAv)
with 11-qubit results register. Sh performs a ’downward’ shift of the results register.
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Setting up the SQ5 operation differs significantly from setting up SQ4 in the pre-
vious design, as can be seen in Figure 14, where the overall design of the quantum-
circuit implementation is shown. Here, five qubits define the mantissa of u-velocity and
are set as |1|mu2|mu1|mu0|0〉 for normalized u-velocity and |0|mu2|mu1|mu0|0〉 for sub-
normal u. For Eu − Ev = 0, the five qubits defining the v-velocity are set similarly as
|1|mv2|mv1|mv0|0〉 for normalized v-velocity, and |0|mv2|mv1|mv0|0〉 for sub-normal v.
Next, for Eu − Ev = 1, the five v-mantissa qubits are set as |0|1|mv2|mv1|mv0〉 for normal-
ized v-velocity, and |0|0|mv2|mv1|mv0〉 for sub-normal v. This means that for Eu − Ev = 1,
there is no elimination of the least-significant mantissa-qubit for v (as there was in the
11-qubit workspace design). For Eu − Ev ≥ 2, shifts to the v-matissa qubits will be applied
so that one or more less-significant v-mantissa qubits will be removed. The least-significant
qubit in the 5−qubit u-mantissa string is, therefore, always |0〉, explaining the absence of
the full-adder for u in the first step in SQ5, shown in Figure 13.
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Figure 14. Design EKin2D3 with (NM + 3)−qubit mantissa squaring output register.
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An alternative implementation for NM = 4 using the modified, controlled 5-qubit full
adders, as used previously in the 9-qubit workspace implementation, can also be created. In
that case, the squaring operation based on the shift-and-add approach employs NM + 2 = 6
steps with NM + 1 = 5 shift operations. In the interest of brevity, this alternative circuit
design is not discussed further.

7.3. (2NM + 5) = 13-Qubit Results Register |r12| . . . |r00〉
In this design, a mantissa-squaring operation termed SQ6 sets the result in a 13-qubit

output register for NM = 4. For each of the NM + 2 = 6 steps, six u-velocity mantissa
qubits and six v-velocity mantissa qubits are added to the results register to employ two
controlled, modified 7-qubit full adders. Similar to the modified 5-qubit full adders for the
9-qubit workspace design, the modification is based on the fact that the leading qubit in
the original 7-qubit input is |0〉. Then, for the mantissa of u and v, NM + 1 = 6 qubits are
conditionally added to a NM + 3 = 8-qubit output register for the adder. A total of five
shift operations are applied to the 13-qubit output register |r12| . . . |r00〉 of the squaring
operations, i.e., between each of the controlled-addition steps. This extended squaring
operation is detailed in Figure 15.

Setting up the SQ6 operation differs significantly from setting up SQ4 and SQ5
in the previous designs. Here, six qubits define the u-velocity mantissa and are set as
|1|mu2|mu1|mu0|0|0〉 for the normalized u-velocity and |0|mu2|mu1|mu0|0|0〉 for the sub-
normal u. For Eu − Ev = 0, the six qubits defining the v-velocity mantissa are set similarly
to |1|mv2|mv1|mv0|0|0〉 for the normalized v-velocity, and |0|mv2|mv1|mv0|0|0〉 for the
sub-normal v. For Eu − Ev = 1, the six v-mantissa qubits are set as |0|1|mv2|mv1|mv0|0〉
for the normalized v-velocity, and |0|0|mv2|mv1|mv0|0〉 for the sub-normal v. Next, for
Eu − Ev = 2, the six v-mantissa qubits are set as |0|0|1|mv2|mv1|mv0〉 for the normalized
v-velocity, and |0|0|0|mv2|mv1|mv0〉 for the sub-normal v. This means that for Eu − Ev ≥ 2
there is no elimination of the least-significant mantissa-qubit for v. For Eu − Ev ≥ 3, shifts
to the v-mantissa qubits will be applied so that one or more less-significant v-mantissa
qubits will be removed. The two least-significant qubits in the 6-qubit u-mantissa string are,
therefore, always |0〉, explaining the absence of the full-adder for u in the first two steps in
SQ6, as shown in Figure 15.

As observed previously for the design employing (2NM + 3) = 11-qubits, a quantum
circuit design employing the modified controlled (NM + 1)-qubit full adders, as used
previously in the 9-qubit workspace implementation, can also be created, involving NM +
4 = 8 steps with NM + 3 = 7 shift operations. In the interest of brevity, this alternative
circuit design is not discussed further.
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Figure 15. Quantum circuit defining SQ6 used in the computation of u2 + v2. The scaled velocity
components u and v are represented as floating-point numbers with four mantissa qubits (NM = 4)
and three exponent qubits (NE = 3). The circuit uses modified 7-qubit Cuccaro full adders (FAu and
FAv) with a 13-qubit results register. Sh performs a ‘downward’ shift of the results register.
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8. Setting u2 + v2 in the Floating-Point Format

Figures 16 and 17 show the quantum-circuit implementation of the CC operator as
used in the kinetic-energy evaluation for an exponent bias of 5. As before, NM = 4,
NE = 3 and the assumption Ev ≤ Eu were made in developing the circuit. Then, for
|eu2|eu1|eu0〉 = |000〉, the output u2 + v2 will always be truncated to 0. For other exponents
of u-velocity, Table 1 shows the range of non-zero floating-point numbers for output u2 + v2.

For the remaining exponent values, the range of outputs can be summarized as follows:
The left-most two gate operations in Figure 16 perform the required operations for

|eu2|eu1|eu0〉 = |001〉. As can be seen, for |eu2|eu1|eu0〉 = |010〉, the output can be
sub-normal or normalized. In terms of quantum-circuit implementation, |r8〉 = |1〉 in-
dicates that the normalized output occurs for |eu2|eu1|eu0〉 = |010〉. In Figure 16, the
case |eu2|eu1|eu0〉 = |010〉 is implemented as the second block of gate operations (from
left). In terms of quantum-circuit implementation, the cases |eu2|eu1|eu0〉 = |011〉 and
|eu2|eu1|eu0〉 = |100〉 are largely identical (apart from setting exponent), as shown in
Figure 17. The possibility of overflow for |eu2|eu1|eu0〉 = |101〉 and the guaranteed over-
flow for |eu2|eu1|eu0〉 = |110〉 are accounted for in the third block of gate operations in
Figure 16.
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Figure 16. Quantum circuit implementation of CC used to set u2 + v2 in the floating-point format
from the 9-qubit work register. NM = 4 and NE = 3. The exponent bias is five. Part 1.
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Figure 17. Quantum circuit implementation of CC used to set u2 + v2 in the floating-point format
from the 9-qubit work register. NM = 4 and NE = 3. The exponent bias is five. Part 2.
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Table 1. Setting u2 + v2 as floating-point numbers. For different exponents of u-velocity, the range of
numbers is shown. The exponent bias is five.

|eu2|eu1|eu0〉 Minimum Maximum

|001〉 (8/128)2 → |000|000〉 2× (15/128)2 → |000|011〉
|010〉 (8/64)2 → |000|010〉 2× (15/64)2 → |001|110〉
|011〉 (8/32)2 → |001|000〉 2× (15/32)2 → |011|110〉
|100〉 (8/16)2 → |011|000〉 2× (15/16)2 → |101|110〉
|101〉 (8/8)2 → |101|000〉 2× (15/8)2 → overflow

9. Summary of Methodology and Algorithms

The quantum circuits presented in this work were intended as building blocks for
future quantum-circuit implementations of full LBM models. To facilitate further develop-
ments as well as a wider adoption of the presented circuits, a step-by-step methodology for
simulating the algorithm for the modified D1Q3 model is presented in this section. The
methodology is based on the evaluation of the circuits on a Quantum Computer simulator.
For the Burgers model and kinetic energy evaluation, the methodology is equivalent and
not discussed here in the interest of brevity. The step-by-step approach outlined here
can be used for two purposes. First, for the relatively small circuits considered here, the
intended state of the qubit register at the end of the simulation for a chosen input state can
be obtained classically so that the circuits can be verified. A second application involves
hybrid quantum/classical simulation approaches where the simulated quantum circuit
represents the quantum part of the hybrid simulation.

9.1. Methodology Using Quantum Computer Simulator

For all quantum circuits considered, it is assumed that qubits at the top of quantum
circuits shown to act as the most-significant bits in the indexing of amplitudes of the
quantum state vector. Furthermore, it is assumed that the employed simulator provides
direct access to quantum state amplitudes, so that quantum measurements can be simulated
by inspecting amplitudes of the output state. It should be noted that for the number of
qubits used in the considered circuits, the simulations employing storage of the full state
vector will often exceed limits on available memory. Quantum-circuit reduction steps [12]
can then be used to perform a partial evaluation of the circuits. In the interest of brevity,
this is not pursued further here, and it is assumed that the original circuit can be simulated
directly.

9.2. Algorithm for the Modified D1Q3 Model

At the start of the simulation, it is assumed that velocity u represented in the floating-
point format is known (e.g., for a specific example or from a previous step in a hybrid
quantum/classical simulation approach) so that |eu2|eu1|eu0〉 and |mu2|mu1|mu0〉 are
defined (for examples with NM = 4 and NE = 3). For positive u, |su〉 = |0〉. The
methodology for circuit evaluation involves the following steps:

1. Initialization of initial state of the qubit register |ψ〉init. Using the qubit arrangement
shown in Figures 3 and 4, for each of the four directions defined by qubits |dv1|dv0〉,
a single amplitude of |ψ〉init is set to 1/2 (to define a normalized state vector). The
indices of the non-zero amplitude for each of the four directions are:

|dv1|dv0〉 = |00〉 : (00|eu2|eu1|eu1|0|mu2|mu1|mu0| . . . |0)2

|dv1|dv0〉 = |01〉 : (01|eu2|eu1|eu1|0|mu2|mu1|mu0| . . . |0)2

|dv1|dv0〉 = |10〉 : (10|eu2|eu1|eu1|0|mu2|mu1|mu0| . . . |0)2

|dv1|dv0〉 = |11〉 : (11|eu2|eu1|eu1|0|mu2|mu1|mu0| . . . |0)2

where dots refer to further qubits in state |0〉;
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2. Evolution of the quantum state of qubit register by performing the quantum gate op-
erations outlined in the quantum circuits shown in Figures 3 and 4. After completion,
the output quantum state |ψ〉out will have four non-zero amplitudes equal to 1/2. For
non-zero u, the indices of these are different from those in the initial state to reflect
the computational work performed;

3. Obtaining output. Assuming that in the output state, the indices of non-zero ampli-
tudes are defined by:

(00|eu2|eu1|eu1|0|mu2|mu1|mu0|eg2|eg1|eg0|sg|mg2|mg1|mg0| . . . |0)2

(01|eu2|eu1|eu1|0|mu2|mu1|mu0|eg2|eg1|eg0|sg|mg2|mg1|mg0| . . . |0)2

(10|eu2|eu1|eu1|0|mu2|mu1|mu0|eg2|eg1|eg0|sg|mg2|mg1|mg0| . . . |0)2

(11|eu2|eu1|eu1|0|mu2|mu1|mu0|eg2|eg1|eg0|sg|mg2|mg1|mg0| . . . |0)2

the state of the qubits |eg2|eg1|eg0〉, |sg〉 and |mg2|mg1|mg0〉 (for NM = 4 and NE = 3)
defining the equilibrium distribution function for each of the four directions can be
obtained;

Using the presented methodology for circuit verification, the final step would involve
checking the obtained shift in indices of non-zero amplitudes with those for the intended
output state. For hybrid quantum/classical approaches, the output obtained for the equilib-
rium distribution function components is used to evaluate the collision term in the ’classical’
part of the algorithm. Once the non-equilibrium distribution function and velocity u have
been updated in the classical part of the hybrid approach, the steps outlined above can be
repeated, starting again from step 1.

10. Conclusions

Quantum-circuit implementations for the evaluation of the non-linear equilibrium
distribution function in one-dimensional non-linear lattice models for fluid modeling were
presented in detail. A reduced-precision quantum floating-point format was employed
with an asymmetric bias optimized for the lattice model considered. For this floating-
point representation, the increase in the quantum circuit width and circuit depth with an
increasing number of mantissa qubits used was analyzed. The second part of this work dealt
with the design of quantum-circuit implementations for the non-linear terms of equilibrium
distribution functions in multi-dimensional Lattice Boltzmann models. Specifically, as
a first step, the evaluation of the kinetic energy in two-dimensional lattice models was
described in detail. The complexity analysis of various quantum circuit designs considered
in this study showed that a novel, modular design in which a shift-and-add-based approach
directly incorporates contributions from u- and v-velocity components leads to the smallest
quantum circuit width. Extending the number of mantissa qubits used in the examples
(i.e., NM = 4) to a more realistic scale, e.g., ≥8 (to avoid excessive rounding), the quantum
circuit width becomes O(100) qubits. For the projected availability of future quantum
computers, this means that in the near future, meaningful proof-of-concept experiments
could be performed. In future work, the extension to quantum-circuit implementations
for the collision terms of the full two- and three-dimensional Lattice Boltzmann methods
will be presented as the first next step. Then, quantum algorithms for the full two- and
three-dimensional Lattice Boltzmann method will be the main research focus.
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Abbreviations
The following abbreviations are used in this manuscript:

CFD Computational Fluid Dynamics
QC Quantum Computing
LBM Lattice Boltzmann Method
NS Navier–Stokes
NISQ Noisy Intermediate-Scale Quantum

Appendix A. Quantum Floating-Point Representation

An important characteristic of the quantum-circuit development described in this
work is the use of a floating-point representation along with computational basis encoding.
This quantum floating-point format was introduced by the author in a previous work [6,12]
and has the following main features:

• Its design follows the IEEE-754 standard [15] in employing sub-normal numbers
and consistent rounding (rounding down to the nearest is used here), as well as the
representation of overflow conditions. The maximum value for the exponent possible
(considering the number of exponent qubits used) defines overflow, while an exponent
value of 0 means that the number represented is sub-normal;

• The number of mantissa and exponent qubits is smaller than the equivalent number of
bits in the IEEE-754 single-precision format. The example circuits shown here typically
employ four mantissa qubits in the interest of limiting the size and improving the clarity
of the circuits;

• Using the ‘hidden-qubit’ approach, only NM − 1 qubits are stored in a representation
with NM mantissa qubits. NE qubits represent the exponent;

• The qubit layout for a floating-point number is as follows: the leading qubit represents
the sign (|0〉 for positive numbers), followed by NE exponent qubits, and finally,
NM − 1 mantissa qubits;

• In contrast to the IEEE-754 standard, an asymmetric bias is used here for the exponent.
The motivation for this choice was to reduce the number of exponent qubits required
to provide a sufficient range for the floating-point numbers for the specific application
considered. In the quantum circuits developed here, NE = 3 was selected as a good
comprise between range and quantum-circuit width;

• For NE = 3, the maximum exponent value is seven, so the state |111〉 for exponent
qubits indicates overflow. For NE = 3, an exponent bias equal to three is a ’symmetric’
bias when following the approach used in the IEEE-754 definition. In the current
applications, the floating-point numbers are biased toward smaller numbers by using
an exponent bias greater than three.

In Table A1, the sub-normal numbers (and zero) for NM = 4 and NE = 3 are shown
for a symmetric bias (3 for NE = 3) and for an exponent bias of eight, selected here for
applications of the modified D1Q3 model. As expected, the sub-normal numbers for the
asymmetric bias are a factor 2(8−3) = 32 smaller. Although the floating-point format
includes a sign qubit, the arithmetic performed in the quantum circuits typically accounts
for a negative sign by temporarily converting the mantissa to 2’s complement. The last
column in Table A1 shows 2’s complement representation of the mantissa for the sub-
normal numbers. Starting from the mantissa (including ‘hidden qubit’), NM + 1 = 5 qubits
are needed to represent 2’s complement. As in the IEEE-754 standard, sub-normal numbers
are the smallest numbers that can be represented. The best accuracy in using floating-point
arithmetic is obtained when normalized floating-point numbers are used. For the D1Q3
lattice example, velocity components (scaled by lattice speeds) are among the variables that
need to be represented. Small numbers will result (typically < 0.1 due to scaling used), so an
asymmetric bias is used to make the floating-point representation use normalized numbers
for these velocities and for the similarly small distribution function components represented
in floating-point format (at least for most of the considered computational domain). Further,
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for velocity components represented as normalized numbers, computing the square will
lead to reduced rounding and truncation compared with velocity components defined
as sub-normal numbers for the same NM. To illustrate normalized numbers as used
in the present work, Table A2 shows the floating-point numbers for an exponent value
of six. Again, numbers defined for symmetric exponent bias are compared with those
for the selected exponent bias of eight. Clearly, the use of the asymmetric bias reduces
the maximum (absolute) value that can be represented. However, for the applications
considered, this represents no problem with the scaling employed. Furthermore, checks on
the occurrence of overflow can be performed using the status of exponent qubits.

Table A1. Sub-normal floating-point numbers with four mantissa and three exponent qubits. The
sign is defined by the leading qubit.

bias = 3
Positive Negative 2’s Complement (Mantissa)

|0|000|000〉 0 |0|000|000〉 0 |00000〉
|0|000|001〉 1/32 |1|000|001〉 −1/32 |11111〉
|0|000|010〉 2/32 |1|000|010〉 −2/32 |11110〉
|0|000|011〉 3/32 |1|000|011〉 −3/32 |11101〉
|0|000|100〉 4/32 |1|000|100〉 −4/32 |11100〉
|0|000|101〉 5/32 |1|000|101〉 −5/32 |11011〉
|0|000|110〉 6/32 |1|000|110〉 −6/32 |11010〉
|0|000|111〉 7/32 |1|000|111〉 −7/32 |11001〉
bias = 8
Positive Negative 2’s Complement (Mantissa)

|0|000|000〉 0 |0|000|000〉 0 |00000〉
|0|000|001〉 1/1024 |1|000|001〉 −1/1024 |11111〉
|0|000|010〉 2/1024 |1|000|010〉 −2/1024 |11110〉
|0|000|011〉 3/1024 |1|000|011〉 −3/1024 |11101〉
|0|000|100〉 4/1024 |1|000|100〉 −4/1024 |11100〉
|0|000|101〉 5/1024 |1|000|101〉 −5/1024 |11011〉
|0|000|110〉 6/1024 |1|000|110〉 −6/1024 |11010〉
|0|000|111〉 7/1024 |1|000|111〉 −7/1024 |11001〉

Table A2. Example of normalized floating-point numbers with four mantissa and three exponent
qubits. Exponent has value of six (110 in binary). The sign is defined by the leading qubit.

bias=3
Positive Negative 2’s Complement (Mantissa)

|0|110|000〉 8 |1|110|000〉 −8 |11000〉
|0|110|001〉 9 |1|110|001〉 −9 |10111〉
|0|110|010〉 10 |1|110|010〉 −10 |10110〉
|0|110|011〉 11 |1|110|011〉 −11 |10101〉
|0|110|100〉 12 |1|110|100〉 −12 |10100〉
|0|110|101〉 13 |1|110|101〉 −13 |10011〉
|0|110|110〉 14 |1|110|110〉 −14 |10010〉
|0|110|111〉 15 |1|110|111〉 −15 |10001〉
bias=8
Positive Negative 2’s Complement (Mantissa)

|0|110|000〉 8/32 |1|110|000〉 −8/32 |11000〉
|0|110|001〉 9/32 |1|110|001〉 −9/32 |10111〉
|0|110|010〉 10/32 |1|110|010〉 −10/32 |10110〉
|0|110|011〉 11/32 |1|110|011〉 −11/32 |10101〉
|0|110|100〉 12/32 |1|110|100〉 −12/32 |10100〉
|0|110|101〉 13/32 |1|110|101〉 −13/32 |10011〉
|0|110|110〉 14/32 |1|110|110〉 −14/32 |10010〉
|0|110|111〉 15/32 |1|110|111〉 −15/32 |10001〉
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