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In this letter, we demonstrate a deep-learning based method capable of synthesizing a photorealistic 3D hologram in 
real-time directly from the input of a single 2D image. We design a fully automatic pipeline to create large-scale datasets 
by converting any collection of real-life images into pairs of 2D images and corresponding 3D holograms, and train our 
convolutional neural network (CNN) end-to-end in a supervised way. Our method is extremely computation-efficient 
and memory-efficient for 3D hologram generation merely from the knowledge of hand-accessible 2D image content. We 
experimentally demonstrate speckle-free and photorealistic holographic 3D displays from a variety of scene images, 
opening up a way of creating real-time 3D holography from daily pictures. © 2022 Optical Society of America

 

Holographic display enables glass-free and true 3D viewing 
experiences via the modulation of computer-generated hologram 
(CGH) [1]. CGHs are digitally generated by simulating the physical 
diffraction propagation from the 3D wave field data to the 
hologram, but the overall computational efficiency remains rather 
challenging and limits its application to real-time display. 

One primary challenge is the tremendous computational cost 
required to perform diffraction simulation for holographic 
wavefront propagation. Several accelerating algorithms for 
numerical diffraction were designed to tackle this problem [2], 
such as look-up tables, wavefront-recording plane, multilayer 
depth discretization, and using graphics processing unit (GPU) 
computing. Recently, deep-learning based CGH generating 
strategies [3-8] showed significantly speeding up of runtime for 
real-time CGH generation as well as high-quality display results for 
various 3D scenes. However, these methods still heavily depend on 
the input of the huge amount of volumetric 3D light wave data in 
the type of multi-depth images [3-6] or RGB-D [7,8], the pre-
acquisition and representation of which further hinders the 

power-efficient CGH generation from original 3D targets.
Creating 3D data for computer-generated holography is another 

challenge for addressing CGH computational efficiency. 3D 
cameras, including time-of-flight (TOF) cameras, light-field 
cameras, stereo cameras, liquid-lens based cameras are employed 
to acquire dense and deep 3D information [9-11], but all of them 
have intrinsic limitations in depicting immediate and accurate 3D 
scene geometry due to the strict devices calibrations and time-
consuming post-processing algorithms. A more attractive strategy 
is to reversely convert a 3D wavefront from a 2D image. Due to the 
ill-posed nature of this task, attempts at depth estimation from a 
single image using traditional algorithms are restricted in 
situations where the particular cue is present [12]. Although deep 
convolutional neural networks (CNN) can handle better 
generalization in a more powerful way [13], collecting high-quality 
and diverse “image + depth” pairs datasets for supervised network 
training is still a challenging task. 

In this work, we propose a data-driven deep convolutional 
neural network (CNN) framework to enable fully-automatic and 
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real-time generation of photorealistic 3D CGH end-to-end from a 
single 2D image input. We enable this pipeline by creating a large-
scale CGH dataset with 30000 pairs of 2D images and 
corresponding ground truth 3D holograms for the supervised 
training of our CNN model. Our technique includes the first use of 
2D natural images as convenient and efficient datasets for the 3D 
CGH synthesis network. We experimentally demonstrate the 
robustness of the proposed 3D CGH generation CNN to various 
natural pictures via high-quality holographic reproduction results.    

Fig. 1. Schematic of the end-to-end 3D photorealistic hologram generation 
network architecture. The network receives a single gray-level 2D image as 
input and rapidly synthesizes a complex hologram that records the 
corresponding 3D diffractive wavefront of the image content. 

Figure 1 shows the structure of the proposed CNN. The network 
receives a single 2D image in gray-level as the input, and maps the 
image to a predicted monochromatic 3D complex hologram as 
output. The network is based on the multiscale ResNets 
architecture consisting of seven down-sampling residual blocks 
and seven up-sampling residual blocks. The input image is filtered 
and passed through down-sampling blocks with resolution 
decreasing. Each up-sampling block uses skip connections from 
the down-sampling block’s activation output, enabling it to resolve 
higher-resolution details. At the last of the network, the amplitude 
and phase of the complex hologram are calculated through an 
output branch, where we employ 1×1 convolution and sigmoid 
function for fine-tuning and normalization.  

In computer vision community, deep learning has already made 
success in converting 2D image into 3D content. Many deep 
learning models can predict accurate depth from 2D image by 
data-driven training strategy. Based on this fact, our intuition is 
that given the vast number of training datasets it should be 
possible to train a deep learning model to predict the 3D diffractive 
wavefront of 2D image content. To facilitate training CNN for our 
task, we first create a large training dataset consisting the pairs of 
2D images and the corresponding ground truth 3D CGHs. An 
obvious idea for synthesizing such dataset is to use existing RGB-
depth (RGB-D) images or light-field images, from which we can 
pick up a 2D image and calculate its corresponding ground truth 
3D CGH for CNN training. However, large quantities of benchmark 
RGB-D datasets are not available online and are also expensive to 
acquire using 3D cameras for novel scene domains. Although it is 
possible to artificially synthesize large-scale 3D models with 
specialized graphic software, it lacks the generality to adapt to 
various scenes with a realistic appearance. 

Alternatively, we tackle the problem of creating a large-scale 
training dataset by introducing a fully automatic 2D image to 3D 
CGH dataset synthesize approach which only requires a collection 
of single images. Our approach, which we dubbed “MiDaS-

Diffraction-based approach”, uses a state-of-the-art (SOTA) off-the-
shelf monocular depth estimator, named MiDaS [14], to firstly 
predict a depth map for each training image. Then we refine this 
depth prediction along with the image together to further compute 
a 3D CGH using numerical diffraction algorithms. In doing so, we 
open up the way to synthesize large numbers of dataset from any 
2D image.

Fig. 2. Workflow for learning 3D holograms from 2D images. We use 
“MiDaS-Diffraction based approach” to create training dataset consisting of 
“2D images + ground truth 3D holograms”. All the synthesized large-scale 
data are fed to train the proposed CNN under supervision. ASM: Angular 
spectrum method

Figure 2 shows one example of synthesizing training dataset 
using “MiDaS-Diffraction based approach”. Starting from any single 
2D image of a natural scene, we perform monocular depth 
estimation using “MiDaS”, a network with a ResNeXt-101 
backbone, to infer a pixel-level depth map to the 2D image [14]. 
MiDaS is a state-of-the-art monocular depth estimation network 
that performs best over all of the other counterparts and is widely 
used as an off-the-shelf tool for stereo datasets synthesis [15]. 
MiDaS is trained with a variety of mixed multiple datasets under 
principled multi-object learning strategy and is quite robust across 
diverse images. The predicted depth by MiDaS is aligned pixel-by-
pixel with the grayscale format of the input 2D image to composite 
dense 3D volumetric light wave data for monochromatic CGH 
calculation. According to the point-cloud diffraction model, the 
complex wavefront of a particular hologram H(xm, yn) contributed 
from all volumetric object points is given by
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where A(xi, yi) is the grayscale amplitude associated with the image 
pixel (xi, yi) at the MiDaS-predicted depth d(xi, yi).  is the 
wavelength.  is the position-dependent initial phase to achieve a 
smooth phase profile. We can further accelerate the calculation of 
Eq. (1) by dividing the image contents into 256 layer-based depth 
images according to the 8-bit depth map d(x, y) and calculate the 
ground truth CGH from each layer image using angular spectrum 
propagation as
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where fx, and fy are the spatial frequencies,   and 1  denote the 
2D Fourier transform and inverse Fourier transform operator. di 
(i=1, 2, … 256) is the distance between each layer to the CGH.   



A large-scale training dataset consisting of 2D images and 
corresponding ground truth holograms is synthesized using the 
MiDaS-diffraction-based approach, and feed to the CNN for end-to-
end supervised training with MSE (mean square error) loss 
function. To maximize the learning ability of our CNN to adapt to 
different test domains, we generate our training dataset and 
validation dataset by randomly selecting 30000 and 1000 single 
images from popular natural image datasets of COCO2017 [16], 
ADE20K [17], Depth in the Wild [18], and DIODE [19]. We resize all 
images to 1024×512 pixels and successively apply the monocular 
depth estimator and diffraction algorithms of Eq. (2) to calculate 
the corresponding ground truth complex holograms. In our 
calculation, we set and normalize the 8-bit depth range of all the 
image scenes from z=0.001m (near plane) to z=0.005m (far plane). 
The calculation assumes a wavelength of 532nm and a pixel pitch 
of 6.4 m. Our CNN is trained on a platform of NVIDIA GeForce 
RTX 2060 GPU using Adam optimizer with a batch size of 2 and 30 
epochs. The learning rate starts at 0.0001 and is decreased by half 
every 10 epochs. Both of training and validation loss values along 
with the epochs are also plotted in the lower right of Fig. 2.

Fig. 3. Simulation results comparing the proposed CNN to the existing 
algorithm. (a) The generation of ground truth 3D complex hologram from 
original RGB-D data and the CNN predicted 3D complex hologram from 2D 
image input. (b)-(c) Simulated reconstructions of front and rear focuses 
from ground truth hologram. (d)-(e) Simulated reconstructions of front and 
rear focuses from CNN predicted hologram. 

We first quantitatively evaluate our CNN in simulation. Figure 
3(a) visualizes a real-world captured RGB-D data where we extract 
its gray-level 2D image as the CNN input to predict complex 
hologram. A ground truth hologram is calculated by using Eq. (2) 
from the original RGB-D volumetric input. Figures 3(b)-3(e) 
compares the depth-of-field images refocused from the ground 
truth hologram (Figs. 3(b)-3(c)) and CNN predicted hologram (Fig. 
3(d)-3(e)). The results exhibit perceptually similar reconstructions 
at the front and rear planes. The total runtime of the CNN for 
inferring hologram from the input image is 0.0175 s on GPU and 
0.7661 s on CPU (Intel Core i9-10900), which promises real-time 
computation performance. We also compute the peak signal-to-
noise ratio (PSNR) between CNN and ground truth based results 
respectively as stated in Fig. 3. Figure 4 shows the experimental 
setup for the optically holographic 3D display of the CNN predicted 
hologram. The complex hologram is encoded into a phase-only 
CGH using a double-phase method [20]. The experiment employs a 
reflective phase-only SLM (UPOLabs HDSLM64R, 1920×1080, 

pixel pitch 6.4μm) to display phase-only CGH at a wavelength of 
532 nm. The hologram is relayed through a 4-f system where an 
aperture stop is placed at the Fourier plane to block higher-order 
diffractions. The reconstructed 3D images are recorded by a digital 
camera (Nikon D3100) at the rear and far focus depths as shown 
in Figs. 4(b) and 4(c), which reveals highly consistency with the 
simulation results of Figs. 3(d) and 3(e). 

Fig. 4. (a) Experimental setup for holographic 3D display. (b) Optical 
recordings of the 3D image at front focused distance. (c) Optical recordings 
of the 3D image at rear focused distance. SLM: spatial light modulator    

We further verify our CNN model on a variety of datasets to 
demonstrate the generality of our CGH generation approach. We 
choose different natural 2D images of indoor and outdoor scenes 
from NYU Depth Dataset V2 [21], Make3D Dataset [22], and live-
action capture of streetscape using the author’s smartphone. We 
also select several images of synthetic scenes from the SceneFlow 
dataset [23] and the cartoon movie “Big Buck Bunny” [24]. All of 
these 2D images are input to our trained CNN and generate 
corresponded 3D CGHs separately. Figure 5 shows the 
experimentally reconstructed 3D images recorded at the rear and 
far focus depths, confirming our CNN-based 3D holography can 
provide correct focus cues for these 3D targets. 

The effective training of our CNN model depends on two aspects: 
first is the performance of employed monocular depth estimator 
“MiDaS”. We test more cases of 2D image contents where it is 
challenging to predict depth information using MiDaS. The results 
are shown and discussed in Supplement 1. Second is the smooth 
phase distribution assigned to the image contents in the diffraction 
calculation for ground truth hologram synthesis, which helps boost 
easy learning of diffraction features with small numerical aperture 
propagation. But the lack of randomness [25, 26] in such smooth 
phase strategy degrade the comfort of holographic 3D viewing 
experiences (see Supplement 1 for more details).

In this paper, we have developed a deep convolutional neural 
network-based method that can directly and rapidly generate an 
accurate 3D CGH from the input of a 2D image. The CNN model is 
trained end-to-end from the large-scale hologram dataset which is 
synthesized with a fully automatic pipeline from natural images. 
Our approach enables the possibility of converting any 2D image 
into 3D CGH in real time, opening up the door to achieve high-
quality and realistic 3D holography using immediate capture of 2D 
pictures from portable and consumer cameras. In the future we 
intend to explore more functions of the CNN for real-time color 3D 
holography from single RGB images for potential VR/AR 
applications. 
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