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A B S T R A C T

In this paper we describe a fast algorithm for generating periodic RVEs of polycrystalline materials. In
particular, we use the damped Newton method from semi-discrete optimal transport theory to generate 3D
periodic Laguerre tessellations (or power diagrams) with cells of given volumes. Complex, polydisperse RVEs
with up to 100,000 grains of prescribed volumes can be created in a few minutes on a standard laptop. The
damped Newton method relies on the Hessian of the objective function, which we derive by extending recent
results in semi-discrete optimal transport theory to the periodic setting.
1. Introduction

There is a large literature on geometric modelling of polycrys-
talline metals and foams using Laguerre tessellations and weighted
Voronoi diagrams; see for example the following recent papers and
their references: [1–7]. Applications include generating representa-
tive volume elements (RVEs) for computational homogenisation [8,
9], fitting Laguerre tessellations to imaging data of polycrystalline
microstructures [10,11], and modelling grain growth [12].

This paper builds on the research programme initiated in [2],
where recent results from optimal transport theory [13] were exploited
to develop fast algorithms for generating Laguerre tessellations with
grains of given volumes. These ideas were developed further by [3]
(see below) and applied by [8] to study biopolymer aerogels. In this
paper we improve the speed of the algorithm from [2].

This paper also extends some theoretical results in semi-discrete
optimal transport theory from [14,15] to the periodic quadratic cost
function (see Theorem 2.5). This extension to periodic domains was
driven by applications, not only by the application to microstructure
modelling (where the RVEs should be periodic to avoid artificial bound-
ary effects in computational homogenisation), but also by a recent
application in weather modelling [16].

Outline of the paper. Section 2 includes the mathematical theory of
periodic semi-discrete optimal transport. In particular, in Section 2.2
we recall that periodic Laguerre tessellations with cells of given vol-
umes can be generated by maximising the concave function 𝛬, defined
in Eq. (2.2). In [2] 𝛬 is maximised using a 1st-order method (the
2nd-order damped Newton method of [14] was also proposed but not
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E-mail address: d.bourne@hw.ac.uk (D.P. Bourne).

implemented). Faster optimisation methods for maximising 𝛬 were
implemented in [3], including the Barzilai–Borwein method and a
modified Newton method.

In this paper we implement the damped Newton method of [14],
where the concave function 𝛬 is maximised by applying Newton’s
method with a bespoke backtracking scheme to the nonlinear equation
∇𝛬 = 0. This requires an expression for the Hessian of 𝛬, which does
not appear in the literature as far as we are aware ([14] does not in-
clude it since the periodic quadratic transport cost is not differentiable).
We derive it in Theorem 2.5.

In Section 3 we state the damped Newton method of [14] before
applying it to microstructure modelling in Section 4. In particular, we
combine the damped Newton method with [2, Algorithm 2] to develop
a fast algorithm for generating RVEs with grains of given volumes.
In Example 4.1 we generate a polydisperse RVE with 10,000 grains
of given volumes in less than a minute on a standard laptop, and
in Section 5 we generate RVEs with 100,000 grains in a matter of
minutes. In Section 5 we also study the number of Newton iterations
and backtracking steps for the damped Newton method.

Summary of main contributions.

• Theorem 2.5: We prove that the Kantorovich function 𝛬 is twice
differentiable (under suitable assumptions) and compute its Hessian.
This extension of some results from [14,15,17] to the periodic setting,
while relatively straightforward, is important for applications.

• Knowledge exchange: We show how the damped Newton method
from the mathematical theory of semi-discrete optimal transport [14]
vailable online 9 December 2022
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can be used to generate RVEs of polycrystalline materials with grains
of given volumes.

• Software: All our code is available on GitHub.
MATLAB-Voro: MATLAB mex files for generating 2D and 3D periodic
and non-periodic Laguerre tessellations using Voro++ [18]. https:
//github.com/smr29git/MATLAB-Voro
MATLAB-SDOT : MATLAB functions for solving semi-discrete optimal
transport problems using the damped Newton method.
https://github.com/DPBourne/MATLAB-SDOT
Laguerre-Polycrystalline-Microstructures: MATLAB functions for gener-
ating RVEs of polycrystalline microstructures using Laguerre tessella-
tions, including all the examples from this paper. https://github.com/
DPBourne/Laguerre-Polycrystalline-Microstructures

2. Periodic semi-discrete optimal transport

2.1. Notation

Throughout this paper |𝑥| denotes the standard Euclidean norm of
vector 𝑥 ∈ R𝑑 .

eriodic domain. First we define a general class of periodic domains
hat includes the flat cylinder, flat torus and triply-periodic cuboid. Let
⊂ R𝑑 , 𝑑 ≥ 2, be the integer span of 1 ≤ 𝑘 ≤ 𝑑 linearly independent

ectors 𝑣1,… , 𝑣𝑘 ∈ R𝑑 , i.e.,

= spanZ{𝑣1,… , 𝑣𝑘}.

f 𝑘 = 𝑑, then 𝛬 is a lattice. Let

= {𝑥 ∈ R𝑑 ∶ |𝑥| ≤ |𝑥 − 𝑢| ∀ 𝑢 ∈ 𝛬}.

n other words, 𝑉 is the fundamental Voronoi cell in the periodic
oronoi tessellation of R𝑑 generated by 𝛬. For example, if 𝑑 = 2,
= 1, 𝑣1 = (1, 0), then 𝑉 = [−1∕2, 1∕2] × R is the fundamental domain

f the flat cylinder. If 𝑑 = 2, 𝑘 = 2, 𝑣1 = (1, 0), 𝑣2 = (0, 1), then
= [−1∕2, 1∕2]×[−1∕2, 1∕2] is the fundamental domain of the flat torus.

or the microstructure application in Section 4, 𝛬 and 𝑉 are given in
qs. (4.1) and (4.2).

ransport cost. Let 𝑐𝛬 ∶ R𝑑×R𝑑 → R be the periodic quadratic transport
ost defined by

𝛬(𝑥, 𝑦) = |𝑥 − 𝑦|2𝛬 ∶= inf
𝑢∈𝛬

|𝑥 − 𝑦 − 𝑢|2.

bserve that 𝑐𝛬 is continuous but not differentiable, which is why the
esults of [14,15,17] do not immediately apply. For example, for the
ase of the flat torus given above with 𝑑 = 2, 𝑘 = 2, 𝑣1 = (1, 0),
𝑣2 = (0, 1), then 𝑐𝛬((0, 0), (𝑡, 0)) = min{𝑡2, (1 − 𝑡)2} for 𝑡 ∈ [0, 1], which
is not differentiable as a function of 𝑡 at 𝑡 = 1∕2. Note that the infimum
n the definition of 𝑐𝛬 is actually a minimum since |𝑥 − 𝑦 − 𝑢| → ∞ as
|𝑢| → ∞.

ource measure. Let 𝜌 ∈ 𝐿1(𝑉 ; [0,∞)) and let 𝜇 = 𝜌𝑑 ¬𝑉 be the mea-
sure on 𝑉 that is absolutely continuous with respect to the Lebesgue
measure with density 𝜌. For example, for the microstructure application
we take 𝑑 = 3, 𝜌(𝑥) = 1 for all 𝑥 ∈ 𝑉 so that 𝜇(𝐴) is the volume of a
set 𝐴 ⊆ 𝑉 . In general, we assume that the support of 𝜇 is contained in
a compact, convex subset 𝑋 of 𝑉 and that the restriction of 𝜌 to 𝑋 is
Hölder continuous.

Extend 𝜌 to R𝑑 by 𝛬-periodicity, namely, define 𝜌𝛬 ∶ R𝑑 → [0,∞)
by 𝜌𝛬(𝑥 + 𝑢) = 𝜌(𝑥) for all 𝑥 ∈ 𝑉 , 𝑢 ∈ 𝛬 (this defines 𝜌𝛬 uniquely a.e.).
Define 𝜇𝛬 = 𝜌𝛬 𝑑 . Then 𝜇𝛬 satisfies 𝜇𝛬

¬𝑉 = 𝜇 and

𝛬(𝐴) = 𝜇𝛬(𝐴 + 𝑢) (2.1)

for all 𝑢 ∈ 𝛬 and Lebesgue-measurable sets 𝐴 ⊂ R𝑑 .
2

Target measure. Let 𝑌 ⊂ int(𝑉 ) be a finite set. We call its elements
seeds. Let 𝑚 ∶ 𝑌 → (0,∞), 𝑦 ↦ 𝑚𝑦. Define the discrete measure
𝜈 ∶=

∑

𝑦∈𝑌 𝑚𝑦𝛿𝑦, where 𝛿𝑦 denotes the Dirac measure supported at 𝑦.
We assume that ∑𝑦∈𝑌 𝑚𝑦 = 𝜇(𝑉 ) so that 𝜈(𝑉 ) = 𝜇(𝑉 ). Throughout this
paper 𝑛 = #𝑌 . For the microstructure application the 𝑚𝑦 are the target
volumes of the 𝑛 grains.

Periodic laguerre tessellations. For each seed 𝑦 ∈ 𝑌 , we associate a weight
𝑤𝑦 ∈ R. Let 𝑤 be the weight map 𝑤 ∶ 𝑌 → R, 𝑦 ↦ 𝑤𝑦. For each 𝑦 ∈ 𝑌 ,
we define the periodic Laguerre cell

𝐿𝛬𝑦 (𝑤; 𝑌 ) ∶= {𝑥 ∈ 𝑉 ∶ |𝑥 − 𝑦|2𝛬 −𝑤𝑦 ≤ |𝑥 − 𝑧|2𝛬 −𝑤𝑧 ∀ 𝑧 ∈ 𝑌 }.

The collection of all cells {𝐿𝛬𝑦 (𝑤; 𝑌 )}𝑦∈𝑌 is the periodic Laguerre tessel-
lation of 𝑉 generated by (𝑌 ,𝑤).

2.2. The optimal transport problem

The Kantorovich function 𝛬 ∶ R𝑛 → R is

𝛬(𝑤) =
∑

𝑦∈𝑌
∫𝐿𝛬𝑦 (𝑤;𝑌 )

(|𝑥 − 𝑦|2𝛬 −𝑤𝑦)d𝜇(𝑥) +
∑

𝑦∈𝑌
𝑚𝑦𝑤𝑦. (2.2)

The (dual) periodic semi-discrete optimal transport problem is the
optimisation problem

max
{

𝛬(𝑤) ∶ 𝑤 ∈ R𝑛
}

.

The map 𝛬 is concave and its critical points satisfy

𝜇
(

𝐿𝛬𝑦 (𝑤; 𝑌 )
)

= 𝑚𝑦

(see Theorem 2.5). Hence, if 𝑤 ∈ argmax 𝛬, then the periodic Laguerre
tessellation {𝐿𝛬𝑦 (𝑤; 𝑌 )}𝑦∈𝑌 has cells of masses {𝑚𝑦}𝑦∈𝑌 . For example,
the cells have volumes {𝑚𝑦}𝑦∈𝑌 if 𝜌 = 1.

2.3. Regularity of the Kantorovich function

In this section we prove that 𝛬 is twice continuously differentiable
and compute its first and second derivatives. To overcome the lack
of smoothness of 𝑐𝛬, we rewrite 𝐿𝛬𝑦 and 𝛬 in terms of the standard
quadratic cost and standard Laguerre cells. Then the regularity of 𝛬

follows easily from [14,15].

Definition 2.1. Given 𝑦1, 𝑦2 ∈ R𝑑 , we write 𝑦1 ∼ 𝑦2 if 𝑦1 − 𝑦2 ∈ 𝛬. We
say that 𝑦 ∈ R𝑑 is a periodic copy of a seed 𝑦 ∈ 𝑌 if 𝑦 ∼ 𝑦. Define 𝑌 to
be the set of all periodic copies of the seeds in 𝑌 , namely

𝑌 = 𝑌 + 𝛬 = {𝑦 + 𝑢 ∶ 𝑦 ∈ 𝑌 , 𝑢 ∈ 𝛬}.

If 𝑦 ∈ 𝑌 , 𝑦 ∼ 𝑦 ∈ 𝑌 , we assign 𝑦 the weight 𝑤𝑦 ∶= 𝑤𝑦. Note
that if 𝑦1 ∼ 𝑦2, then 𝑤𝑦1 = 𝑤𝑦2 . Define the extended weight map
𝑤 ∶ 𝑌 → R, 𝑦 ↦ 𝑤𝑦. Given a domain 𝛺 ⊆ R𝑑 , the non-periodic
Laguerre tessellation {𝐿𝑦(𝑤;𝛺, 𝑌 )}𝑦∈𝑌 of 𝛺 generated by the extended
set of seeds and weights (𝑌 ,𝑤) is given by

𝐿𝑦(𝑤;𝛺, 𝑌 ) ∶= {𝑥 ∈ 𝛺 ∶ |𝑥 − 𝑦|2 −𝑤𝑦 ≤ |𝑥 − 𝑧|2 −𝑤𝑧 ∀ 𝑧 ∈ 𝑌 }.

Lemma 2.1. The periodic Laguerre cells can be written in terms of the
non-periodic cells as

𝐿𝛬𝑦 (𝑤; 𝑌 ) =
⋃

𝑢∈𝛬
𝐿𝑦+𝑢(𝑤;𝑉 , 𝑌 ). (2.3)

roof. Let 𝑥 ∈ 𝐿𝛬𝑦 (𝑤; 𝑌 ). By definition we have

𝑥 − 𝑦|2𝛬 −𝑤𝑦 ≤ |𝑥 − 𝑧|2𝛬 −𝑤𝑧 ∀ 𝑧 ∈ 𝑌 .

ence there exists 𝑢𝑥𝑦 ∈ 𝛬 such that, for all 𝑧 ∈ 𝑌 ,

𝑥 − 𝑦 − 𝑢𝑥𝑦|
2 −𝑤𝑦 ≤ |𝑥 − 𝑧|2𝛬 −𝑤𝑧

≤ |𝑥 − 𝑧 − 𝑢|2 −𝑤𝑧 ∀ 𝑢 ∈ 𝛬.

https://github.com/smr29git/MATLAB-Voro
https://github.com/smr29git/MATLAB-Voro
https://github.com/smr29git/MATLAB-Voro
https://github.com/DPBourne/MATLAB-SDOT
https://github.com/DPBourne/Laguerre-Polycrystalline-Microstructures
https://github.com/DPBourne/Laguerre-Polycrystalline-Microstructures
https://github.com/DPBourne/Laguerre-Polycrystalline-Microstructures
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Observe that 𝑤𝑦+𝑢𝑥𝑦 = 𝑤𝑦 and 𝑤𝑧+𝑢 = 𝑤𝑧. Therefore the previous in-
quality can be restated as

𝑥 − (𝑦 + 𝑢𝑥𝑦)|
2 −𝑤𝑦+𝑢𝑥𝑦 ≤ |𝑥 − 𝑧|2 −𝑤𝑧 ∀ 𝑧 ∈ 𝑌 .

Therefore 𝑥 ∈ 𝐿𝑦+𝑢𝑥𝑦 (𝑤;𝑉 , 𝑌 ) and so

𝐿𝛬𝑦 (𝑤; 𝑌 ) ⊆
⋃

𝑢∈𝛬
𝐿𝑦+𝑢(𝑤;𝑉 , 𝑌 ).

Now we prove the reverse inclusion. Let 𝑥 ∈ 𝐿𝑦+𝑢(𝑤;𝑉 , 𝑌 ) for some
𝑢 ∈ 𝛬. By definition,

|𝑥 − 𝑦|2𝛬 −𝑤𝑦 ≤ |𝑥 − 𝑦 − 𝑢|2 −𝑤𝑦+𝑢
≤ |𝑥 − 𝑧|2 −𝑤𝑧 ∀ 𝑧 ∈ 𝑌

here the second inequality follows from the fact that 𝑥 ∈ 𝐿𝑦+𝑢(𝑤;
, 𝑌 ). Therefore

𝑥 − 𝑦|2𝛬 −𝑤𝑦 ≤ |𝑥 − 𝑧 − 𝑢|2 −𝑤𝑧 ∀ 𝑧 ∈ 𝑌 , 𝑢 ∈ 𝛬.

Taking the minimum over 𝑢 gives

|𝑥 − 𝑦|2𝛬 −𝑤𝑦 ≤ |𝑥 − 𝑧|2𝛬 −𝑤𝑧 ∀ 𝑧 ∈ 𝑌 .

Therefore 𝑥 ∈ 𝐿𝛬𝑦 (𝑤; 𝑌 ), as required. □

Lemma 2.2. The 𝜇-measure of the periodic Laguerre cells can be expressed
in terms of the measure of the non-periodic Laguerre cells as follows:

𝜇(𝐿𝛬𝑦 (𝑤; 𝑌 )) =
∑

𝑢∈𝛬
𝜇
(

𝐿𝑦+𝑢(𝑤;𝑉 , 𝑌 )
)

= 𝜇𝛬(𝐿𝑦(𝑤;R𝑑 , 𝑌 )).

Proof. The first equality follows immediately from Lemma 2.1 and
the fact that the Laguerre cells {𝐿𝑦+𝑢(𝑤;𝑉 , 𝑌 )}𝑢∈𝛬 are disjoint up to a
et of measure zero since 𝜇 is absolutely continuous. Now we turn our
ttention to the second equality. Let 𝑦 ∈ 𝑌 . We claim that

𝑦(𝑤;R𝑑 , 𝑌 ) =
⋃

𝑢∈𝛬

(

𝐿𝑦+𝑢(𝑤;𝑉 , 𝑌 ) − 𝑢
)

. (2.4)

Let 𝑥 ∈ 𝐿𝑦(𝑤;R𝑑 , 𝑌 ). Then

|𝑥 − 𝑦|2 −𝑤𝑦 ≤ |𝑥 − 𝑧|2 −𝑤𝑧 ∀ 𝑧 ∈ 𝑌 .

hoose 𝑢 ∈ 𝛬 so that 𝑥 + 𝑢 ∈ 𝑉 . Then we can rewrite the previous
inequality as

|𝑥 + 𝑢 − (𝑦 + 𝑢)|2 −𝑤𝑦+𝑢 ≤ |𝑥 − 𝑧|2 −𝑤𝑧 ∀ 𝑧 ∈ 𝑌 .

Therefore 𝑥 + 𝑢 ∈ 𝐿𝑦+𝑢(𝑤;𝑉 , 𝑌 ) and so

𝐿𝑦(𝑤;R𝑑 , 𝑌 ) ⊆
⋃

𝑢∈𝛬

(

𝐿𝑦+𝑢(𝑤;𝑉 , 𝑌 ) − 𝑢
)

.

onversely, take 𝑥 ∈ 𝐿𝑦+𝑢(𝑤;𝑉 , 𝑌 ) − 𝑢 for some 𝑢 ∈ 𝛬. For all 𝑧 ∈ 𝑌 ,

|𝑥 − 𝑦|2 −𝑤𝑦 = |𝑥 + 𝑢 − (𝑦 + 𝑢)|2 −𝑤𝑦 ≤ |𝑥 − 𝑧|2 −𝑤𝑧.

Therefore 𝑥 ∈ 𝐿𝑦(𝑤;R𝑑 , 𝑌 ) and (2.4) follows.
Next we prove that {𝐿𝑦+𝑢(𝑤;𝑉 , 𝑌 ) − 𝑢}𝑢∈𝛬 are disjoint sets up to a

set of measure zero. Suppose that 𝑥 ∈ 𝐿𝑦+𝑢𝑖 (𝑤;𝑉 , 𝑌 ) − 𝑢𝑖 for 𝑖 ∈ {1, 2},
𝑢1, 𝑢2 ∈ 𝛬, 𝑢1 ≠ 𝑢2. Then 𝑥 + 𝑢𝑖 ∈ 𝑉 . By definition of 𝑉 ,

|𝑥 + 𝑢𝑖| ≤ |𝑥 + 𝑢𝑖 − 𝑢| ∀ 𝑢 ∈ 𝛬

for 𝑖 ∈ {1, 2}. That is,

|𝑥 − (−𝑢𝑖)| ≤ |𝑥 − 𝑢| ∀ 𝑢 ∈ 𝛬.

In other words, 𝑥 lies in the Voronoi cells with generators −𝑢1 and −𝑢2
in the Voronoi tessellation of R𝑑 generated by 𝛬. But the intersection
of Voronoi cells is a set of measure zero, as desired.

Combining everything and using 𝜇𝛬
¬𝑉 = 𝜇 gives

∑

𝜇
(

𝐿𝑦+𝑢(𝑤;𝑉 , 𝑌 )
) (2.1)

=
∑

𝜇𝛬
(

𝐿𝑦+𝑢(𝑤;𝑉 , 𝑌 ) − 𝑢
)

3

𝑢∈𝛬 𝑢∈𝛬
(2.4)
= 𝜇𝛬

(

𝐿𝑦(𝑤;R𝑑 , 𝑌 )
)

as required. □

Lemma 2.3. 𝛬 can be written in terms of the non-periodic transport cost
and Laguerre cells as

𝛬(𝑤) −
∑

𝑦∈𝑌
𝑚𝑦𝑤𝑦 =

∑

𝑦∈𝑌
∫𝐿𝑦(𝑤;R𝑑 ,𝑌 )

(

|𝑥 − 𝑦|2 −𝑤𝑦
)

d𝜇𝛬(𝑥) (2.5)

=
∑

𝑦∈𝑌
∫𝐿𝑦(𝑤;𝑉 ,𝑌 )

(

|𝑥 − 𝑦|2 −𝑤𝑦
)

d𝜇(𝑥). (2.6)

roof. Let 𝑦 ∈ 𝑌 , 𝑢 ∈ 𝛬, 𝑥 ∈ 𝐿𝑦+𝑢(𝑤;𝑉 , 𝑌 ). We claim that

|𝑥 − 𝑦|𝛬 = |𝑥 − 𝑦 − 𝑢|. (2.7)

o prove this observe that

𝑥 − 𝑦 − 𝑢|2 = |𝑥 − (𝑦 + 𝑢)|2 −𝑤𝑦+𝑢 +𝑤𝑦+𝑢
≤ |𝑥 − (𝑦 + 𝑣)|2 −𝑤𝑦+𝑣 +𝑤𝑦+𝑢

⏟⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏟
=0

for all 𝑣 ∈ 𝛬. Therefore

|𝑥 − 𝑦 − 𝑢| = min
𝑣∈𝛬

|𝑥 − 𝑦 − 𝑣| = |𝑥 − 𝑦|𝛬

s claimed. For all 𝑦 ∈ 𝑌 ,

∫𝐿𝛬𝑦 (𝑤;𝑌 )
(|𝑥 − 𝑦|2𝛬 −𝑤𝑦)d𝜇(𝑥)

(2.3)
= ∫⋃

𝑢∈𝛬 𝐿𝑦+𝑢(𝑤;𝑉 ,𝑌 )
(|𝑥 − 𝑦|2𝛬 −𝑤𝑦)d𝜇(𝑥)

(2.7)
= ∫⋃

𝑢∈𝛬 𝐿𝑦+𝑢(𝑤;𝑉 ,𝑌 )
(|𝑥 − 𝑦 − 𝑢|2 −𝑤𝑦)d𝜇(𝑥) (2.8)

=
∑

𝑢∈𝛬
∫𝐿𝑦+𝑢(𝑤;𝑉 ,𝑌 )

(|𝑥 − (𝑦 + 𝑢)|2 −𝑤𝑦)d𝜇(𝑥).

ombining this with the definition of 𝛬(𝑤) gives

𝛬(𝑤) −
∑

𝑦∈𝑌
𝑚𝑦𝑤𝑦 =

∑

𝑦∈𝑌

∑

𝑢∈𝛬
∫𝐿𝑦+𝑢(𝑤;𝑉 ,𝑌 )

(|𝑥 − (𝑦 + 𝑢)|2 −𝑤𝑦)d𝜇(𝑥)

=
∑

𝑦∈𝑌
∫𝐿𝑦(𝑤;𝑉 ,𝑌 )

(|𝑥 − 𝑦|2 −𝑤𝑦)d𝜇(𝑥).

his proves (2.6).
Using the substitution 𝑥′ = 𝑥 − 𝑢 in (2.8) gives

∫𝐿𝛬𝑦 (𝑤;𝑌 )
(|𝑥 − 𝑦|2𝛬 −𝑤𝑦)d𝜇(𝑥)

= ∫⋃
𝑢∈𝛬(𝐿𝑦+𝑢(𝑤;𝑉 ,𝑌 )−𝑢)

(|𝑥′ − 𝑦|2 −𝑤𝑦)d𝜇𝛬(𝑥′)

= ∫𝐿𝑦(𝑤;R𝑑 ,𝑌 )
(|𝑥′ − 𝑦|2 −𝑤𝑦)d𝜇𝛬(𝑥′)

by (2.4). This proves (2.5), as required. □

In Theorems 2.4 and 2.5 we enumerate the seeds 𝑦1,… , 𝑦𝑀 for some
𝑀 ∈ N, and in an abuse of notation we let 𝑤 denote both the weight
map 𝑤 ∶ 𝑦𝑖 ↦ 𝑤𝑦𝑖 ∈ R and the vector (𝑤1,… , 𝑤𝑀 ) ∶= (𝑤𝑦1 ,… , 𝑤𝑦𝑀 ).

First we recall a result from [14] (Theorems 1.3 & 4.1) about the
regularity of the Kantorovich function for the standard (non-periodic)
quadratic cost (see also [17, Proposition 2], [15, Theorem 45]).

Theorem 2.4 ([14]). Let 𝑌 = {𝑦1,… , 𝑦𝑁} ⊂ 𝑉 be a set of distinct seeds.
Define 𝑔 ∶ R𝑁 → R by

𝑔(𝑤) =
∑

𝑦∈𝑌
∫𝐿𝑦(𝑤;𝑉 ,𝑌 )

(|𝑥 − 𝑦|2 −𝑤𝑦) d𝜇(𝑥).

Then 𝑔 ∈ 𝐶1(R𝑁 ) is concave with
𝜕𝑔

(𝑤) = −𝜇
(

𝐿𝑦 (𝑤;𝑉 , 𝑌 )
)

, 𝑖 ∈ {1,… , 𝑁}.

𝜕𝑤𝑖 𝑖



Mechanics Research Communications 127 (2023) 104023D.P. Bourne et al.

𝐿

F

𝑌

p

S

𝑥

B

|

𝐿

𝑎

|

‖

𝐿

a

|

S
T

|

b

S

S

w

i

𝐿

s

𝜀

I

For 𝑖, 𝑗 ∈ {1,… , 𝑁}, define

𝑦𝑖𝑦𝑗 (𝑤;𝑉 , 𝑌 ) = 𝐿𝑦𝑖 (𝑤;𝑉 , 𝑌 ) ∩ 𝐿𝑦𝑗 (𝑤;𝑉 , 𝑌 )

(this may be the empty set). On the set
{

𝑤 ∈ R𝑁 ∶ 𝜇
(

𝐿𝑦(𝑤;𝑉 , 𝑌 )
)

> 0 ∀ 𝑦 ∈ 𝑌
}

(2.9)

𝑔 is twice continuously differentiable and, for 𝑖 ≠ 𝑗,

𝜕2𝑔
𝜕𝑤𝑖𝜕𝑤𝑗

(𝑤) = ∫𝐿𝑦𝑖𝑦𝑗 (𝑤;𝑉 ,𝑌 )
𝜌(𝑥)

2|𝑦𝑖 − 𝑦𝑗 |
d𝑑−1(𝑥),

𝜕2𝑔
𝜕𝑤2

𝑖

(𝑤) = −
𝑁
∑

𝑗=1
𝑗≠𝑖

𝜕2𝑔
𝜕𝑤𝑖𝜕𝑤𝑗

(𝑤).

Here 𝑑−1 denotes the (𝑑−1)-dimensional Hausdorff measure. Now
we extend Theorem 2.4 to the periodic cost.

Theorem 2.5. Let 𝑌 = {𝑦1,… , 𝑦𝑛} ⊂ int(𝑉 ) be a set of distinct seeds.
The Kantorovich function 𝛬 ∈ 𝐶1(R𝑛) is concave with

𝜕𝛬

𝜕𝑤𝑖
(𝑤) = 𝑚𝑦𝑖 − 𝜇

(

𝐿𝛬𝑦𝑖 (𝑤; 𝑌 )
)

, 𝑖 ∈ {1,… , 𝑛}.

ix 𝑤 ∈ R𝑛. Let

̃ = 𝑌 (𝑤) = {𝑦 ∈ 𝑌 ∶ 𝐿𝑦(𝑤;𝑉 , 𝑌 ) ≠ ∅}

and let 𝑤̃ = 𝑤|𝑌 be the restriction of 𝑤 to 𝑌 . If 𝑌 ⊂ 𝑌 (𝑤) and

𝜇
(

𝐿𝑦(𝑤̃;𝑉 , 𝑌 (𝑤))
)

> 0 ∀ 𝑦 ∈ 𝑌 (𝑤), (2.10)

then 𝛬 is twice continuously differentiable at 𝑤 and, for 𝑖 ≠ 𝑗,

𝜕2𝛬

𝜕𝑤𝑖𝜕𝑤𝑗
(𝑤) =

∑

𝑦,𝑦′∈𝑌
𝑦∼𝑦𝑖
𝑦′∼𝑦𝑗

∫𝐿𝑦𝑦′ (𝑤;𝑉 ,𝑌 )
𝜌(𝑥)

2|𝑦 − 𝑦′|
d𝑑−1(𝑥)

𝜕2𝛬

𝜕𝑤2
𝑖

(𝑤) = −
𝑛
∑

𝑗=1
𝑗≠𝑖

𝜕2𝛬

𝜕𝑤𝑖𝜕𝑤𝑗
(𝑤).

Proof. Step 1. We prove that 𝑌 is a finite set.
Step 1a. First we show that the Voronoi cell 𝑉 is bounded in the

periodic directions. By definition of 𝑉 , for all 𝑥 ∈ 𝑉 , 𝑖 ∈ {1,… , 𝑘},

|𝑥 ⋅ 𝑣𝑖| ≤
1
2
|𝑣𝑖|

2 ≤ 1
2

max
𝑗∈{1,…,𝑘}

|𝑣𝑗 |
2 =∶ 1

2
𝑀2. (2.11)

Step 1b. Next we show that the Laguerre cells are bounded in the
eriodic directions. Let 𝑥 ∈ 𝐿𝑦(𝑤;R𝑑 , 𝑌 ), 𝑦 ∈ 𝑌 . For all 𝑖 ∈ {1,… , 𝑘},

|𝑥 − 𝑦|2 −𝑤𝑦 ≤ |𝑥 − (𝑦 + 𝑣𝑖)|
2 −𝑤𝑦+𝑣𝑖 .

ince 𝑤𝑦+𝑣𝑖 = 𝑤𝑦, we obtain the bound

⋅ 𝑣𝑖 ≤
1
2
|𝑣𝑖|

2 + 𝑦 ⋅ 𝑣𝑖 ≤
1
2
𝑀2 +𝑀 max

𝑦∈𝑌
|𝑦| ∶= 𝐶.

y replacing 𝑣𝑖 with −𝑣𝑖 we obtain

𝑥 ⋅ 𝑣𝑖| ≤ 𝐶.

Step 1c. It is an easy exercise to check that

𝑦+𝑢(𝑤;R𝑑 , 𝑌 ) = 𝐿𝑦(𝑤;R𝑑 , 𝑌 ) + 𝑢 ∀ 𝑦 ∈ 𝑌 , 𝑢 ∈ 𝛬.

Step 1d. Finally, we show that 𝑌 is finite. Take 𝑢 = ∑𝑘
𝑖=1 𝑎𝑖𝑣𝑖 where

= (𝑎1,… , 𝑎𝑘) ∈ Z𝑘. Assume that

𝑎| >
√

𝑘
( 1
2
𝑀2 + 𝐶

)

‖𝐺−1
‖2 =∶ 𝑐 (2.12)

where 𝐺 ∈ R𝑘×𝑘 is the Gram matrix with components 𝐺𝑖𝑗 = 𝑣𝑖 ⋅ 𝑣𝑗 and
⋅ ‖2 is the matrix 2-norm. We will show that, for all 𝑦 ∈ 𝑌 ,

(𝑤;𝑉 , 𝑌 ) = ∅,
4

𝑦+𝑢 m
which proves that 𝑌 is finite. In particular,

𝑌 ⊆

{

𝑦 + 𝑢 ∶ 𝑦 ∈ 𝑌 , 𝑢 =
𝑘
∑

𝑖=1
𝑎𝑖𝑣𝑖, 𝑎 ∈ Z𝑘, |𝑎| ≤ 𝑐

}

.

Let 𝑏 ∈ R𝑘 be the vector with components 𝑏𝑖 = 𝑢 ⋅ 𝑣𝑖. Then 𝑎 = 𝐺−1𝑏
nd

𝑎| ≤ ‖𝐺−1
‖2 |𝑏| ≤

√

𝑘 ‖𝐺−1
‖2 |𝑏|∞. (2.13)

Take 𝑥 ∈ 𝐿𝑦+𝑢(𝑤;R𝑑 , 𝑌 ). Then 𝑥 = 𝑥 + 𝑢 for some 𝑥 ∈ 𝐿𝑦(𝑤;R𝑑 , 𝑌 ) by
tep 1c. Take 𝑖 ∈ {1,… , 𝑘} with |𝑢 ⋅ 𝑣𝑖| = max𝑗∈{1,…,𝑘} |𝑢 ⋅ 𝑣𝑗 | = |𝑏|∞.
hen

𝑥 ⋅ 𝑣𝑖| = |𝑥 ⋅ 𝑣𝑖 + 𝑢 ⋅ 𝑣𝑖|

≥ |𝑢 ⋅ 𝑣𝑖| − |𝑥 ⋅ 𝑣𝑖|

≥ max
𝑗∈{1,…,𝑘}

|𝑢 ⋅ 𝑣𝑗 | − 𝐶

> 1
2
𝑀2

y Step 1b and (2.12), (2.13). But then 𝑥 ∉ 𝑉 by Step 1a. Therefore
𝐿𝑦+𝑢(𝑤;𝑉 , 𝑌 ) = ∅, as claimed.

Step 2. Next we prove that for all 𝑦 ∈ 𝑌 ,

𝐿𝑦(𝑤̃;𝑉 , 𝑌 ) = 𝐿𝑦(𝑤;𝑉 , 𝑌 ). (2.14)

If 𝑥 ∈ 𝐿𝑦(𝑤;𝑉 , 𝑌 ), then

|𝑥 − 𝑦|2 −𝑤𝑦 ≤ |𝑥 − 𝑧|2 −𝑤𝑧

for all 𝑧 ∈ 𝑌 , hence for all 𝑧 ∈ 𝑌 since 𝑌 ⊆ 𝑌 . Therefore 𝐿𝑦(𝑤;𝑉 , 𝑌 ) ⊆
𝐿𝑦(𝑤̃;𝑉 , 𝑌 ). Now we prove the opposite inclusion. Let 𝑥 ∈ 𝐿𝑦(𝑤̃;𝑉 , 𝑌 ).
uppose for contradiction that 𝑥 ∉ 𝐿𝑦(𝑤;𝑉 , 𝑌 ). Then 𝑥 ∈ 𝐿𝑧(𝑤;𝑉 , 𝑌 )

for some 𝑧 ∈ 𝑌 , 𝑧 ≠ 𝑦. Moreover, 𝑧 ∈ 𝑌 else 𝐿𝑧(𝑤;𝑉 , 𝑌 ) = ∅. Therefore
𝑥 ∈ 𝐿𝑦(𝑤̃;𝑉 , 𝑌 ) ∩ 𝐿𝑧(𝑤̃;𝑉 , 𝑌 ) and so

|𝑥 − 𝑦|2 − 𝑤̃𝑦 = |𝑥 − 𝑧|2 − 𝑤̃𝑧. (2.15)

ince 𝑥 ∉ 𝐿𝑦(𝑤;𝑉 , 𝑌 ), there exists 𝑢 ∈ 𝑌 such that

|𝑥 − 𝑦|2 − 𝑤̃𝑦 > |𝑥 − 𝑢|2 −𝑤𝑢. (2.16)

Since 𝑥 ∈ 𝐿𝑧(𝑤;𝑉 , 𝑌 ),

|𝑥 − 𝑧|2 − 𝑤̃𝑧 ≤ |𝑥 − 𝑣|2 −𝑤𝑣 ∀ 𝑣 ∈ 𝑌 . (2.17)

Combining (2.15)–(2.17) gives

|𝑥 − 𝑧|2 − 𝑤̃𝑧 = |𝑥 − 𝑦|2 − 𝑤̃𝑦 > |𝑥 − 𝑢|2 −𝑤𝑢 ≥ |𝑥 − 𝑧|2 − 𝑤̃𝑧,

hich is a contradiction. Hence 𝑥 ∈ 𝐿𝑦(𝑤;𝑉 , 𝑌 ).
Step 3. Fix 𝑤 ∈ R𝑛. We prove that, under assumption (2.10), 𝑌 (𝑤)

s independent of 𝑤 in a neighbourhood of 𝑤.
Step 3a. Define 𝑓 ∶ 𝑉 × 𝑌 → R by

𝑓 (𝑥, 𝑦) = |𝑥 − 𝑦|2 −𝑤𝑦 − min
𝑧∈𝑌

(|𝑥 − 𝑧|2 −𝑤𝑧).

Let 𝑥 ∈ 𝑉 , 𝑦 ∈ 𝑌 ⧵ 𝑌 . Then, for some 𝑢 ∈ 𝑌 , 𝑢 ≠ 𝑦, 𝑥 ∈ 𝐿𝑢(𝑤̃;𝑉 , 𝑌 ) =
𝑢(𝑤;𝑉 , 𝑌 ) (by (2.14)) and so

𝑓 (𝑥, 𝑦) = |𝑥 − 𝑦|2 −𝑤𝑦 − (|𝑥 − 𝑢|2 −𝑤𝑢) > 0.

We can rewrite 𝑓 as

𝑓 (𝑥, 𝑦)=max
𝑧∈𝑌

(

2𝑥 ⋅ (𝑧 − 𝑦) + |𝑦|2 − |𝑧|2 +𝑤𝑧 −𝑤𝑦
)

.

Hence 𝑓 (⋅, 𝑦) is positive, convex and piecewise affine with finitely many
lopes, and so inf𝑥∈𝑉 𝑓 (𝑥, 𝑦) = min𝑥∈𝑉 𝑓 (𝑥, 𝑦) > 0.

Step 3b. By Step 3a, we can define

= 1
2

inf
𝑦∈𝑌 ⧵𝑌

min
𝑥∈𝑉

𝑓 (𝑥, 𝑦).

n this step we show that 𝜀 > 0. Let 𝜙 ∶ 𝑌 ⧵ 𝑌 → R, 𝜙(𝑦) =
in 𝑓 (𝑥, 𝑦) > 0. Take any sequence (𝑦 ) ⊂ 𝑌 ⧵𝑌 with |𝑦 | → +∞. We
𝑥∈𝑉 𝑛 𝑛
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show that lim𝑛→∞ 𝜙(𝑦𝑛) = +∞, which implies that 2𝜀 = inf𝑦∈𝑌 ⧵𝑌 𝜙(𝑦) =
in𝑦∈𝑌 ⧵𝑌 𝜙(𝑦) > 0. Since 𝑌 is a finite set, there exists a subsequence (𝑦𝑛)

not relabelled) such that 𝑦𝑛 = 𝑦 + 𝑢𝑛 with 𝑦 ∈ 𝑌 , 𝑢𝑛 ∈ 𝛬, |𝑢𝑛| → +∞.
et 𝑥𝑛 ∈ argmin𝑥∈𝑉 𝑓 (𝑥, 𝑦𝑛). If 𝑢 =

∑𝑘
𝑖=1 𝑎𝑖𝑣𝑖 ∈ 𝛬, then 𝑎 = 𝐺−1𝑏 where

and 𝑏 were defined in Step 1d. By (2.11),

𝑥𝑛 ⋅ 𝑢| =
|

|

|

|

|

|

𝑘
∑

𝑖=1
𝑎𝑖(𝑣𝑖 ⋅ 𝑥𝑛)

|

|

|

|

|

|

≤
√

𝑘 1
2
𝑀2

|𝑎|

≤
√

𝑘 1
2
𝑀2

‖𝐺−1
‖2|𝑏|

≤ 𝑘 1
2
𝑀3

‖𝐺−1
‖2|𝑢| =∶ 𝐾|𝑢|.

Since 𝑌 ⊂ 𝑌 ,

𝜙(𝑦𝑛) = 𝑓 (𝑥𝑛, 𝑦𝑛)

= max
𝑧∈𝑌

(

2𝑥𝑛 ⋅ (𝑧 − 𝑦𝑛) + |𝑦𝑛|
2 − |𝑧|2 +𝑤𝑧 −𝑤𝑦𝑛

)

≥ 2𝑥𝑛 ⋅ (𝑦 − 𝑦𝑛) + |𝑦𝑛|
2 − |𝑦|2 +𝑤𝑦 −𝑤𝑦𝑛

= −2𝑥𝑛 ⋅ 𝑢𝑛 + |𝑦 + 𝑢𝑛|
2 − |𝑦|2

≥ −2𝐾|𝑢𝑛| + |𝑦 + 𝑢𝑛|
2 − |𝑦|2 → ∞ as 𝑛→ ∞,

as required.
Step 3c. Let 𝜓 ∶ 𝑌 → R, |(𝜓𝑦1 ,… , 𝜓𝑦𝑛 )| < 𝜀, 𝑥 ∈ 𝑉 . Extend

𝜓 to 𝑌 and 𝑌 the usual way. Assume that 𝑦 ∈ 𝑌 , 𝑦 ∉ 𝑌 (𝑤). Then
𝑥 ∈ 𝐿𝑢(𝑤̃;𝑉 , 𝑌 ) for some 𝑢 ≠ 𝑦, 𝑢 ∈ 𝑌 . Therefore

|𝑥 − 𝑦|2 − (𝑤𝑦 + 𝜓𝑦) − [|𝑥 − 𝑢|2 − (𝑤̃𝑢 + 𝜓̃𝑢)]

= |𝑥 − 𝑦|2 −𝑤𝑦 − min
𝑧∈𝑌

[|𝑥 − 𝑧|2 − 𝑤̃𝑧] + 𝜓̃𝑢 − 𝜓𝑦

> |𝑥 − 𝑦|2 −𝑤𝑦 − min
𝑧∈𝑌

[|𝑥 − 𝑧|2 − 𝑤̃𝑧] − 2𝜀 ≥ 0.

Therefore 𝑥 ∉ 𝐿𝑦(𝑤 + 𝜓 ;𝑉 , 𝑌 ). Since 𝑥 ∈ 𝑉 was arbitrary, this implies
that 𝐿𝑦(𝑤+𝜓 ;𝑉 , 𝑌 ) = ∅. Hence 𝑦 ∉ 𝑌 (𝑤+𝜓), and 𝑌 ⧵𝑌 (𝑤) ⊆ 𝑌 ⧵𝑌 (𝑤+𝜓)
for all |𝜓| < 𝜀.

To complete the proof of Step 3 we need to show that, under
assumption (2.10), 𝑌 (𝑤) ⊆ 𝑌 (𝑤 + 𝜓) if 𝜓 is sufficiently small. Let 𝑦 ∈
𝑌 (𝑤). The map 𝑤 ↦ 𝜇(𝐿𝑦(𝑤;𝑉 , 𝑌 )) is continuous (cf. [15, Proposition
38(vii)]). Therefore there exists 𝛿𝑦 > 0 such that 𝜇(𝐿𝑦(𝑤+𝜓 ;𝑉 , 𝑌 )) > 0
if |𝜓| < 𝛿𝑦, which implies that 𝑦 ∈ 𝑌 (𝑤 + 𝜓). Take 𝛿 = min𝑦∈𝑌 (𝑤) 𝛿𝑦 > 0
since 𝑌 (𝑤) is finite. Therefore 𝑌 (𝑤) ⊆ 𝑌 (𝑤 + 𝜓) for all |𝜓| < 𝛿, as
required.

Step 4. Now we compute the gradient and Hessian of 𝛬. Fix 𝑤0 ∈
R𝑛. By (2.6) and (2.14), for 𝑤 in a sufficiently small neighbourhood of
𝑤0,

𝛬(𝑤) = 𝑔(𝑤̃) +
∑

𝑦∈𝑌
𝑚𝑦𝑤𝑦,

where 𝑔 is as in Theorem 2.4 with 𝑁 = |𝑌 (𝑤0)| ≥ 𝑛 and with the set of
seeds 𝑌 (𝑤0) (which is fixed in the chosen neighbourhood of 𝑤0).

Observe that 𝛬 is concave since it is the sum of a linear function
and the composition of the concave function 𝑔 with the linear function
𝑤↦ 𝑤̃.

The gradient of 𝛬 follows from the Chain Rule and Theorem 2.4:

𝜕𝛬

𝜕𝑤𝑦
(𝑤0) =

∑

𝑧∈𝑌 (𝑤0)

𝜕𝑔
𝜕𝑤̃𝑧

(𝑤̃0)
𝜕𝑤̃𝑧
𝜕𝑤𝑦

(𝑤0) + 𝑚𝑦

=
∑

𝑧∈𝑌 (𝑤0)
𝑧∼𝑦

𝜕𝑔
𝜕𝑤̃𝑧

(𝑤̃0) + 𝑚𝑦

= −
∑

𝑧∈𝑌 (𝑤0)
𝑧∼𝑦

𝜇
(

𝐿𝑧(𝑤̃0;𝑉 , 𝑌 (𝑤0))
)

+ 𝑚𝑦

= −𝜇(𝐿𝛬𝑦 (𝑤0; 𝑌 )) + 𝑚𝑦

by Lemma 2.2 and Eq. (2.14).
If assumption (2.10) holds for 𝑤 = 𝑤0, then 𝑤̃0 belongs to the set

̃ ̃
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(2.9) (with seeds 𝑌 (𝑤0)). Therefore 𝑤 ↦ 𝑔(𝑤) is twice continuously
differentiable at 𝑤0 and so is 𝛬. Let 𝑦𝑖, 𝑦𝑗 ∈ 𝑌 , 𝑖 ≠ 𝑗. Applying the
Chain Rule and Theorem 2.4 gives

𝜕2𝛬

𝜕𝑤𝑖𝜕𝑤𝑗
(𝑤0) =

∑

𝑧∈𝑌 (𝑤0)
𝑧∼𝑦𝑖

∑

𝑧′∈𝑌 (𝑤0)

𝜕2𝑔
𝜕𝑤̃𝑧𝜕𝑤̃𝑧′

(𝑤̃0)
𝜕𝑤̃𝑧′
𝜕𝑤𝑦𝑗

(𝑤0)

=
∑

𝑧∈𝑌 (𝑤0)
𝑧∼𝑦𝑖

∑

𝑧′∈𝑌 (𝑤0)
𝑧′∼𝑦𝑗

𝜕2𝑔
𝜕𝑤̃𝑧𝜕𝑤̃𝑧′

(𝑤̃0)

=
∑

𝑧,𝑧′∈𝑌 (𝑤0)
𝑧∼𝑦𝑖 ,𝑧′∼𝑦𝑗

∫𝐿𝑧𝑧′ (𝑤̃0;𝑉 ,𝑌 (𝑤0))

𝜌(𝑥)
2|𝑧 − 𝑧′|

d𝑑−1(𝑥)

=
∑

𝑧,𝑧′∈𝑌
𝑧∼𝑦𝑖 ,𝑧′∼𝑦𝑗

∫𝐿𝑧𝑧′ (𝑤0;𝑉 ,𝑌 )

𝜌(𝑥)
2|𝑧 − 𝑧′|

d𝑑−1(𝑥)

y Eq. (2.14). We also used the fact that 𝑧 ≠ 𝑧′ if 𝑧 ∼ 𝑦𝑖, 𝑧′ ∼ 𝑦𝑗 , 𝑦𝑖 ≠ 𝑦𝑗 ,
hich follows from the assumption that 𝑌 ⊂ int(𝑉 ).

Finally, the diagonal entries of the Hessian are obtained by differ-
ntiating the following expression with respect to 𝑤𝑖:
𝑛

𝑗=1

𝜕𝛬

𝜕𝑤𝑗
(𝑤0) =

𝑛
∑

𝑗=1

[

𝑚𝑦𝑗 − 𝜇
(

𝐿𝛬𝑦𝑗 (𝑤0; 𝑌 )
)

]

= 0.

his concludes the proof. □

emark 2.1. The Hessian of 𝛬 can be rewritten as follows, which we
ound more convenient for computational purposes: For 𝑖 ≠ 𝑗,
𝜕2𝛬

𝜕𝑤𝑖𝜕𝑤𝑗
(𝑤) =

∑

𝑦∈𝑌
𝑦∼𝑦𝑗

∫𝐿𝑦𝑖𝑦(𝑤;R𝑑 ,𝑌 )
𝜌𝛬(𝑥)

2|𝑦𝑖 − 𝑦|
d𝑑−1(𝑥).

. The damped Newton method

Given 𝑤 ∈ R𝑛, let 𝐻(𝑤) ∈ R𝑛×𝑛 denote the Hessian matrix 𝐷2(𝑤).
If 𝑤 satisfies (2.10), it can be shown that 𝐻(𝑤) is singular with 1-
dimensional kernel spanned by (1, 1,… , 1) ∈ R𝑛 (𝐻(𝑤) is a weighted
graph Laplacian matrix of a connected graph). Moreover, the (𝑛 − 1) ×
(𝑛 − 1) matrix 𝐻̂(𝑤) obtained by deleting the last row and column of
𝐻(𝑤) is non-singular. Let 𝑒(𝑤) be the error

𝑒(𝑤) = max
𝑦∈𝑌

|

|

|

|

|

𝜕𝛬

𝜕𝑤𝑦
(𝑤)

|

|

|

|

|

= max
𝑦∈𝑌

‖

‖

‖

𝜇
(

𝐿𝛬𝑦 (𝑤; 𝑌 )
)

− 𝑚𝑦
‖

‖

‖

.

We recall the damped Newton method of Kitagawa, Mérigot and
Thibert [14] for maximising 𝛬:

Initialisation. Choose 𝑤0 ∈ R𝑛 such that

𝜇
(

𝐿𝛬𝑦 (𝑤
0; 𝑌 )

)

> 0 ∀ 𝑦 ∈ 𝑌 , (3.1)

i.e., all the Laguerre cells have positive mass. Let

𝜀 ∶= 1
2
min

{

min
𝑦∈𝑌

𝜇
(

𝐿𝛬𝑦 (𝑤
0; 𝑌 )

)

, min
𝑦∈𝑌

𝑚𝑦

}

> 0.

Iteration step. Give 𝑤𝑘−1, define 𝑤𝑘 as follows:

1. Define the Newton direction 𝑑𝑘 ∈ R𝑛−1 by solving the sparse
symmetric positive definite linear system

−𝐻̂(𝑤𝑘−1) 𝑑𝑘 = 𝑏

where 𝑏𝑖 = 𝜕𝛬∕𝜕𝑤𝑖(𝑤𝑘−1), 𝑖 = 1,… , 𝑛 − 1.
2. Find the smallest value of 𝑙𝑘 ∈ {0} ∪ N such that 𝑤𝑘,𝑙𝑘 ∈ R𝑛

defined by 𝑤𝑘,𝑙𝑘𝑛 = 0,

𝑤𝑘,𝑙𝑘𝑖 = 𝑤𝑘−1𝑖 + 2−𝑙𝑘𝑑𝑘𝑖 , 𝑖 ∈ {1,… , 𝑛 − 1},

satisfies

min
𝑦∈𝑌

𝜇
(

𝐿𝛬𝑦 (𝑤
𝑘,𝑙𝑘 ; 𝑌 )

)

≥ 𝜖,

𝑒(𝑤𝑘,𝑙𝑘 ) ≤ (1 − 2−(𝑙𝑘+1)) 𝑒(𝑤𝑘−1).

3. Define the Newton update 𝑤𝑘 ∶= 𝑤𝑘,𝑙𝑘 .
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Stopping condition. Terminate the algorithm when the mass percentage
error is less than some prescribed tolerance 𝜂 ∈ [0, 100]:

100 ⋅max
𝑦∈𝑌

|

|

|

𝜇
(

𝐿𝛬𝑦 (𝑤
𝑘; 𝑌 )

)

− 𝑚𝑦
|

|

|

𝑚𝑦
< 𝜂.

We refer to 𝑙𝑘 as the number of backtracking steps at iteration 𝑘. If
𝑙𝑘 = 0, then 𝑤𝑘 is the standard Newton step for the nonlinear system
∇𝛬(𝑤) = 0. The backtracking ensures that the iterates 𝑤𝑘 remain in
the region where 𝛬 is twice differentiable.

In [14] it is proved that, for a class of continuously differentiable
transport costs 𝑐, the damped Newton method converges for any initial
guess satisfying (3.1) with linear rate and asymptotic quadratic rate
(see [14, Prop. 6.1]). While their result does not apply to our non-
smooth cost 𝑐𝛬, we have observed quadratic convergence in numerical
experiments and believe the proof can be easily extended.

4. RVEs of polycrystalline materials

We can apply the theory above to generate 3D polycrystalline
microstructures. We take 𝑑 = 3,

𝛬 = spanZ{(𝐿1, 0, 0), (0, 𝐿2, 0), (0, 0, 𝐿3)}, (4.1)

𝑉 =
[

−𝐿1
2 ,

𝐿1
2

]

×
[

−𝐿2
2 ,

𝐿2
2

]

×
[

−𝐿3
2 ,

𝐿3
2

]

, (4.2)

where 𝐿1, 𝐿2, 𝐿3 > 0, and 𝜌(𝑥) = 1 for all 𝑥 ∈ 𝑉 . Then 𝜇(𝐿𝛬𝑦 (𝑤;𝑉 ))
equals the volume of 𝐿𝛬𝑦 (𝑤;𝑉 ). For 𝑎𝑛𝑦 choice of seeds 𝑦𝑖 and any list
of volumes 𝑚𝑖 (such that ∑𝑖 𝑚𝑖 = 𝐿1𝐿2𝐿3), the damped Newton method
generates grains with volumes 𝑚𝑖. The choice of the seeds 𝑦𝑖 gives extra
control over the RVE. Choosing the seeds at random can lead to very
anisotropic grains. The following algorithm updates the seed locations
iteratively in order to generate grains that are not too irregular (see
below for a precise definition of ‘regular’). It combines [2, Algorithm
2] with the damped Newton method.

Input. The number of grains 𝑛, the desired grain volumes 𝑚1,… , 𝑚𝑛
with ∑

𝑖 𝑚𝑖 = 𝐿1𝐿2𝐿3, the volume percentage error tolerance 𝜂 > 0,
and the number of regularisation (Lloyd) steps 𝐾.

Initialisation. Randomly select 𝑛 distinct seeds 𝑦(0)1 ,… , 𝑦(0)𝑛 ∈ int(𝑉 ). Set
𝑌(0) ∶= {𝑦(0)1 ,… , 𝑦(0)𝑛 }, 𝑤(0) ∶= 0 ∈ R𝑛, and

𝐿(0)
𝑖 ∶= 𝐿𝑦(0)𝑖

(𝑤(0);R𝑑 , 𝑌(0)), 𝑖 ∈ {1,… , 𝑛}.

Iteration step. For 𝑘 = 1,… , 𝐾:

1. Regularisation. Define 𝑦(𝑘)𝑖 to be the centroid

𝑦(𝑘)𝑖 = 1
𝜇(𝐿(𝑘−1)

𝑖 ) ∫𝐿(𝑘−1)
𝑖

𝑥 d𝑥.

Set 𝑌(𝑘) = {𝑦(𝑘)1 ,… , 𝑦(𝑘)𝑛 }.
2. Damped Newton. Apply the damped Newton method with initial

guess 𝑤0 = 0 ∈ R𝑛 to find a weight vector 𝑤(𝑘) ∈ R𝑛 satisfying

100 ⋅max
𝑖

|

|

|

𝜇
(

𝐿𝛬
𝑦(𝑘)𝑖

(𝑤(𝑘); 𝑌(𝑘))
)

− 𝑚𝑖
|

|

|

𝑚𝑖
< 𝜂.

For 𝑖 ∈ {1,… , 𝑛}, define

𝐿(𝑘)
𝑖 ∶= 𝐿𝑦(𝑘)𝑖

(𝑤(𝑘);R𝑑 , 𝑌(𝑘)).

Output. Define 𝑦𝑖 ∶= 𝑦(𝐾)
𝑖 , 𝑌 = {𝑦1,… , 𝑦𝑛}, and 𝑤 = 𝑤(𝐾). Then the

periodic Laguerre cells 𝐿𝛬𝑦1 (𝑤;𝑉 ),… , 𝐿𝛬𝑦𝑛 (𝑤;𝑉 ) have volumes 𝑚1,… , 𝑚𝑛
up to 𝜂 percentage error.

If 𝐾 is large, then the outputted Laguerre tessellation is approxi-
mately a centroidal Laguerre tessellation [19]. This means that the seeds
𝑦𝑖 are approximately the centroids of the grains, which results in grains
that are more ‘regular’ (round).
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Fig. 1. A periodic Laguerre tessellation with 10,000 grains of prescribed volumes (up
to 1% error), where the target volumes were drawn from a log-normal distribution;
see Example 4.1. The grains are coloured according to their volume using a log scale.
The large yellow polygons that are visible in the top face and the front-right face are
slices through the same periodic grain. (For interpretation of the references to colour
in this figure legend, the reader is referred to the web version of this article.)

The initial guess 𝑤0 = 0 for the damped Newton steps satisfies
assumption (3.1) since the corresponding Laguerre tessellation is a
Voronoi tessellation, and Voronoi cells have positive volume when the
seeds lie in the box.

The main difference between this algorithm and the one imple-
mented in [2] is that we compute the weights using the 2nd-order
damped Newton method instead of the slower 1st-order BFGS method.
A rigorous study of various optimisation algorithms (steepest descent,
Malitsky–Mishchenko, Barzilai–Borwein, BFGS, modified Newton) and
regularisation steps (Lloyd, Anderson-accelerated Lloyd) is given in [3].

Example 4.1. We reproduce Example 5.5 from [2]. We take 𝑛 =
10,000 grains, 𝐿1 = 𝐿2 = 𝐿3 = 2, 𝐾 = 5, 𝜂 = 1. The target grain volumes
𝑚𝑖 are drawn from a log-normal distribution as follows: First radii 𝑟𝑖
are drawn from a log-normal distribution with mean 1 and standard
deviation 0.35. Then we define 𝑚𝑖 = 4

3𝜋𝑟
3
𝑖 . Finally, the volumes are

normalised so that the total volume of the grains equals the volume
of the box. This is described further in [2, Example 5.5]. The RVE is
shown in Fig. 1. This example took 47.24 s on a laptop with processor
Intel(R) Core(TM) i5-1135G7 @ 2.40 GHz (cf. the run time of 669 s
in [2, Example 5.5]).

5. Numerical tests of damped Newton

In this section we illustrate the performance of the damped Newton
method from Section 3. In both examples 𝛬 and 𝑉 are given by (4.1),
(4.2) with 𝐿1 = 𝐿2 = 𝐿3 = 1 and 𝜌(𝑥) = 1 for all 𝑥 ∈ 𝑉 so that the
damped Newton method generates Laguerre cells of given volumes.

Example 5.1. Table 1 reports mean run times of the damped Newton
method over 100 numerical experiments for three types of microstruc-
ture.

The 1st column is the number of grains. The 2nd column is the mean
run time for an idealised single phase (SP) microstructure, where all the
grains have the same volume 𝑚𝑖 = 𝐿1𝐿2𝐿3∕𝑛 for all 𝑖. The 3rd column
is the mean run time for an idealised dual phase (DP) microstructure,
where half of the grains have volume 𝑥 and the other half have volume
5𝑥, where 𝑥 is such that ∑𝑖 𝑚𝑖 = 𝐿1𝐿2𝐿3. The 4th column (log-normal)
is the mean run time for a more realistic microstructure where the grain
volumes are drawn from a log-normal distribution as in Example 4.1.
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Table 1
Run times of the damped Newton method for generating Laguerre
tessellations with 𝑛 grains of given volumes (see Example 5.1), where all
the grains have the same volume (SP), there are two grain sizes (DP),
or the volumes are drawn from a log-normal distribution (log-normal).
𝑛 Mean run time (s)

SP DP log-normal

100 0.03 0.09 0.06
250 0.07 0.16 0.23
500 0.18 0.34 0.53
1000 0.48 0.69 1.29
2500 1.30 1.82 3.51
5000 2.83 4.29 7.97
10,000 6.68 9.11 18.15
25,000 22.22 29.26 57.84
50,000 57.60 72.53 224.63
100,000 171.65 222.42 396.26

Fig. 2. The colour bar shows the number of backtracking steps for each Newton
iteration, for each of 100 random log-normal microstructures with 100,000 grains (see
Example 5.2). Each row in the figure is a single draw, the number of coloured blocks
indicates the number of Newton iterations until the error tolerance is reached, and the
colour of each block indicates the number of backtracking steps per Newton iteration.
The draws have been sorted by the number of backtracking steps in each Newton
iteration. (For interpretation of the references to colour in this figure legend, the reader
is referred to the web version of this article.)

In all three experiments the seeds 𝑦1,… , 𝑦𝑛 were drawn randomly from
a uniform distribution and we average the run times over 100 draws.
The volume tolerance is 𝜂 = 1%. We used the same laptop that was used
for Example 4.1.

The run times grow superlinearly with respect to 𝑛 but subquadrat-
ically. They increase as the complexity of the microstructure increases.

Example 5.2. Fig. 2 shows the number of Newton iterations and the
number of backtracking steps 𝑙𝑘 per Newton iteration for 100 random
log-normal microstructures with 𝑛 = 100, 000 grains (as in the previous
example). There is no backtracking at all after the 4th Newton iteration
in any of the 100 experiments. In most experiments there is only one
backtracking step in the 3rd Newton iteration. We do not observe the
extensive backtracking in the early iterations reported in [3, Section
3.4].

6. Extensions

In principle the methods from this paper generalise to more ex-
otic Laguerre diagrams. For example, non-periodic generalised balanced
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power diagrams (GBPDs) [1] with cells of given volumes can be found
by maximising

GBPD(𝑤) =
𝑛
∑

𝑖=1
∫𝐿𝑖(𝑤;𝑌 ,𝐴)

(|𝑥 − 𝑦𝑖|
2
𝐴𝑖

−𝑤𝑖)d𝑥 +
𝑛
∑

𝑖=1
𝑚𝑖𝑤𝑖

where 𝐴 = {𝐴1,… , 𝐴𝑛} is a collection of symmetric positive definite
matrices, | ⋅ |𝐴𝑖 is the 𝐴𝑖-norm, given by |𝑥|2𝐴𝑖 = 𝑥 ⋅ 𝐴𝑖𝑥, and

𝐿𝑖(𝑤; 𝑌 , 𝐴) = {𝑥 ∈ 𝑉 ∶ |𝑥 − 𝑦𝑖|
2
𝐴𝑖

−𝑤𝑖 ≤ |𝑥 − 𝑦𝑗 |
2
𝐴𝑗

−𝑤𝑗 ∀ 𝑗}.

If 𝑤 ∈ argmax GBPD, then the cells 𝐿𝑖(𝑤; 𝑌 , 𝐴) have volumes 𝑚𝑖.
Periodic GBPDs can be generated in a similar way. In practice it is
challenging to compute GBPDs efficiently if there are many grains. We
are currently working on this.
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