Geometric modelling of polycrystalline materials: Laguerre tessellations and periodic semi-discrete optimal transport

D.P. Bourne, M. Pearce, S.M. Roper

A R T I C L E I N F O

Keywords:
Laguerre diagrams
Power diagrams
Polycrystalline materials
Grains
Semi-discrete optimal transport theory

A B S T R A C T

In this paper we describe a fast algorithm for generating periodic RVEs of polycrystalline materials. In particular, we use the damped Newton method from semi-discrete optimal transport theory to generate 3D periodic Laguerre tessellations (or power diagrams) with cells of given volumes. Complex, polydisperse RVEs with up to 100,000 grains of prescribed volumes can be created in a few minutes on a standard laptop. The damped Newton method relies on the Hessian of the objective function, which we derive by extending recent results in semi-discrete optimal transport theory to the periodic setting.

1. Introduction

There is a large literature on geometric modelling of polycrystalline metals and foams using Laguerre tessellations and weighted Voronoi diagrams; see for example the following recent papers and their references: [1–7]. Applications include generating representative volume elements (RVEs) for computational homogenisation [8, 9], fitting Laguerre tessellations to imaging data of polycrystalline microstructures [10,11], and modelling grain growth [12].

This paper builds on the research programme initiated in [2], where recent results from optimal transport theory [13] were exploited to develop fast algorithms for generating Laguerre tessellations with grains of given volumes. These ideas were developed further by [3] (see below) and applied by [8] to study biopolymer aerogels. In this paper we improve the speed of the algorithm from [2].

This paper also extends some theoretical results in semi-discrete optimal transport theory from [14,15] to the periodic quadratic cost function (see Theorem 2.5). This extension to periodic domains was driven by applications, not only by the application to microstructure modelling (where the RVEs should be periodic to avoid artificial boundary effects in computational homogenisation), but also by a recent application in weather modelling [16].

Outline of the paper. Section 2 includes the mathematical theory of periodic semi-discrete optimal transport. In particular, in Section 2.2 we recall that periodic Laguerre tessellations with cells of given volumes can be generated by maximising the concave function K^A, defined in Eq. (2.2). In [2] K^A is maximised using a 1st-order method (the 2nd-order damped Newton method of [14] was also proposed but not implemented). Faster optimisation methods for maximising K^A were implemented in [3], including the Barzilai–Borwein method and a modified Newton method.

In this paper we implement the damped Newton method of [14], where the concave function K^A is maximised by applying Newton’s method with a bespoke backtracking scheme to the nonlinear equation $\nabla K^A = 0$. This requires an expression for the Hessian of K^A, which does not appear in the literature as far as we are aware ([14] does not include it since the periodic quadratic transport cost is not differentiable). We derive it in Theorem 2.5.

In Section 3 we state the damped Newton method of [14] before applying it to microstructure modelling in Section 4. In particular, we combine the damped Newton method with [2, Algorithm 2] to develop a fast algorithm for generating RVEs with grains of given volumes. In Example 4.1 we generate a polydisperse RVE with 10,000 grains of given volumes in less than a minute on a standard laptop, and in Section 5 we generate RVEs with 100,000 grains in a matter of minutes. In Section 5 we also study the number of Newton iterations and backtracking steps for the damped Newton method.

Summary of main contributions.

- Theorem 2.5: We prove that the Kantorovich function K^A is twice differentiable (under suitable assumptions) and compute its Hessian. This extension of some results from [14,15,17] to the periodic setting, while relatively straightforward, is important for applications.
- Knowledge exchange: We show how the damped Newton method from the mathematical theory of semi-discrete optimal transport [14]
can be used to generate RVEs of polycrystalline materials with grains of given volumes.

- Software: All our code is available on GitHub.

MATLAB-Voro: MATLAB mex files for generating 2D and 3D periodic and non-periodic Laguerre tessellations using Voro++ [18].
https://github.com/smr29git/MATLAB-Voro

MATLAB-SDOT: MATLAB functions for solving semi-discrete optimal transport problems using the deep meshed Newtont method.
https://github.com/DPBourne/MATLAB-SDOT

Laguerre-Polycrystalline-Microstructures: MATLAB functions for generating RVEs of polycrystalline microstructures using Laguerre tessellations, including all the examples from this paper. https://github.com/DPBourne/Laguerre-Polycrystalline-Microstructures

2. Periodic semi-discrete optimal transport

2.1. Notation

Throughout this paper |x| denotes the standard Euclidean norm of a vector x ∈ R^d.

Periodic domain. First we define a general class of periodic domains that includes the flat cylinder, flat torus and triply-periodic cuboid. Let A ⊆ V, we take 𝜌 ∈ V, such that includes the flat cylinder, flat torus and triply-periodic cuboid. Let

D.P. Bourne et al.

38. Hölder continuous.

39. Software: All our code is available on GitHub.

40. Eqs. (4.1) and (4.2).

41. For example, for the results of [14,15,17] do not immediately apply. For example, for the collection of all cells (L^A(w; Y))_{Y ∈ F} is the periodic Laguerre tessellation of V generated by (Y, w).

42. 2.2. The optimal transport problem

The Kantorovich function K^A : R^n → R is

43. (2.2)

44. The map K^A is concave and its critical points satisfy

45. μ(L^A(w; Y)) = m_w.

46. (see Theorem 2.5). Hence, if w ∈ argmax K^A, then the periodic Laguerre tessellation (L^A(w; Y))_{Y ∈ F} has cells of masses (m_w)_{Y ∈ F}. For example, the cells have volumes m_w if ρ = 1.

47. 2.3. Regularity of the Kantorovich function

In this section we prove that K^A is twice continuously differentiable and compute its first and second derivatives. To overcome the lack of smoothness of c^A, we rewrite L^A and K^A in terms of the standard quadratic cost and standard Laguerre cells. Then the regularity of K^A then follows easily from [14,15].

Definition 2.1. Given y_1, y_2 ∈ R^n, we write y_1 ∼ y_2 if y_1 − y_2 ∈ A. We say that Y ∈ R^n is a periodic copy of a seed y ∈ Y if Y ∼ y. Define Ȳ to be the set of all periodic copies of the seeds in Y, namely

48. 2.4. The periodic Laguerre cells can be written in terms of the non-periodic cells as

49. L^A_y(ω; Y) := \bigcup_{u ∈ A} L^A_y(ω; V, Ȳ).

50. (2.3)

51. **Proof.** Let x ∈ L^A_y(ω; Y). By definition we have

52. [x − y]_A^2 − w_z ≤ [x − z]_A^2 − w_z ∀ z ∈ Y.

53. Hence there exists u_z ∈ A such that, for all z ∈ Y,

54. [x − y − u_z]_A^2 − w_z ≤ [x − z]_A^2 − w_z ≤ [x − z − u]_A^2 − w_z ∀ u ∈ A.
Observe that \(\overline{w}_{y+u} = w_y \) and \(\overline{w}_{z+u} = w_z \). Therefore the previous inequality can be restated as

\[
| x - (y + u_z)|^2 - \overline{w}_{y+u} \leq | x - z|^2 - \overline{w}_z \quad \forall z \in \overline{Y}.
\]

Therefore \(x \in L_{y+u}(\overline{W}; V, \overline{Y}) \) and so

\[
L^i_n(w; Y) \subseteq \bigcup_{u \in A} L_{y+u}(\overline{W}; V, \overline{Y}).
\]

Now we prove the reverse inclusion. Let \(x \in L_{y+u}(\overline{W}; V, \overline{Y}) \) for some \(u \in A \). By definition,

\[
| x - y|^2_A - w_y \leq | x - y - u|^2 - \overline{w}_{y+u}
\]

where the second inequality follows from the fact that \(x \in L_{y+u}(\overline{W}; V, \overline{Y}) \). Therefore

\[
| x - y|^2_A - w_y \leq | x - z|^2 - \overline{w}_z \quad \forall z \in Y, u \in A.
\]

Taking the minimum over \(u \) gives

\[
| x - y|^2_A - w_y \leq | x - z|^2 - \overline{w}_z \quad \forall z \in \overline{Y}.
\]

Therefore \(x \in L^i_n(w; Y) \), as required.

Lemma 2.2. The \(\mu \)-measure of the periodic Laguerre cells can be expressed in terms of the measure of the non-periodic Laguerre cells as follows:

\[
\mu(L^i_n(w; Y)) = \sum_{u \in A} \mu(L_{y+u}(\overline{W}; V, \overline{Y})) = \mu_A(L_{y}(\overline{W}; \mathbb{R}^d, \overline{Y})).
\]

Proof. The first equality follows immediately from Lemma 2.1 and the fact that the Laguerre cells \(\{ L_{y+u}(\overline{W}; V, \overline{Y}) \}_{u \in A} \) are disjoint up to a set of measure zero since \(\mu \) is absolutely continuous. Now we turn our attention to the second equality. Let \(y \in W \). We claim that

\[
L_{y}(\overline{W}; \mathbb{R}^d, \overline{Y}) = \bigcup_{u \in A} \left(L_{y+u}(\overline{W}; V, \overline{Y}) - u \right).
\]

Let \(x \in L_{y}(\overline{W}; \mathbb{R}^d, \overline{Y}) \). Then

\[
| x - y|^2 - w_y \leq | x - z|^2 - \overline{w}_z \quad \forall z \in \overline{Y}.
\]

Choose \(u \in A \) so that \(x + u \in V \). Then we can rewrite the previous inequality as

\[
| x + u - (y+u)|^2 - \overline{w}_{y+u} \leq | x - z|^2 - \overline{w}_z \quad \forall z \in \overline{Y}.
\]

Therefore \(x + u \in L_{y+u}(\overline{W}; V, \overline{Y}) \) and so

\[
L_{y}(\overline{W}; \mathbb{R}^d, \overline{Y}) \subseteq \bigcup_{u \in A} \left(L_{y+u}(\overline{W}; V, \overline{Y}) - u \right).
\]

Conversely, take \(x \in L_{y+u}(\overline{W}; V, \overline{Y}) - u \) for some \(u \in A \). For all \(z \in \overline{Y} \),

\[
| x - y|^2 - w_y = | x + u - (y+u)|^2 - \overline{w}_{y+u} \leq | x - z|^2 - \overline{w}_z.
\]

Therefore \(x \in L_{y}(\overline{W}; \mathbb{R}^d, \overline{Y}) \) and (2.4) follows.

Next we prove that \(\{ L_{y+u}(\overline{W}; V, \overline{Y}) - u \}_{u \in A} \) are disjoint sets up to a set of measure zero. Suppose that \(x \in L_{y+u_1}(\overline{W}; V, \overline{Y}) - u_1 \) for \(i \in \{1, 2\} \), \(u_1, u_2 \in A \), \(u_1 \neq u_2 \). Then \(x + u_i \in V \). By definition of \(V \),

\[
| x + u_i | \leq | x + u_i - u_i | \quad \forall u_i \in A
\]

for \(i \in \{1, 2\} \). That is,

\[
|x - (u_1 - u_2)| \leq | x - u_2 | \quad \forall u \in A.
\]

In other words, \(x \) lies in the Voronoi cells with generators \(-u_1 \) and \(-u_2 \) in the Voronoi tessellation of \(\mathbb{R}^d \) generated by \(A \). But the intersection of Voronoi cells is a set of measure zero, as desired.

Combining everything and using \(\mu_A(V) = \mu \) gives

\[
\sum_{u \in A} \mu \left(L_{y+u}(\overline{W}; V, \overline{Y}) - u \right) = \sum_{u \in A} \mu \left(L_{y+u}(\overline{W}; V, \overline{Y}) - u \right)
\]

as required.

Lemma 2.3. \(K^4 \) can be written in terms of the non-periodic transport cost and Laguerre cells as

\[
K^4(u) = \sum_{y \in Y} \int_{L_{y}(\overline{W}; V, \overline{Y})} (| x - y |^2 - w_y) \, d\mu(x)
\]

for all \(v \in A \). Therefore

\[
| x - y - u |^2 = | x - y - u |, \quad \forall v \in A.
\]

To prove this observe that

\[
| x - y - u |^2 = | x - y |^2 - \overline{w}_{y+u} + \overline{w}_{y+u}
\]

as claimed. For all \(v \in Y \),

\[
\int_{L_{y}(\overline{W}; V, \overline{Y})} (| x - y |^2 - w_y) \, d\mu(x)
\]

for all \(v \in A \). Therefore

\[
| x - y - u | = \min_{v \in A} | x - y - v | = | x - y |^2 A
\]

This proves (2.6). Using the substitution \(x' = x - u \in (2.8) \) gives

\[
\int_{L_{x'}(\overline{W}; V, \overline{Y})} (| x' - y |^2 - w_y) \, d\mu(x')
\]

by (2.4). This proves (2.5), as required.

In Theorems 2.4 and 2.5 we enumerate the seeds \(y_1, \ldots, y_M \) for some \(M \in \mathbb{N} \), and in an abuse of notation we let \(w \) denote both the weight map \(w : Y, \rightarrow w_1 \in \mathbb{R} \) and the vector \((w_1, \ldots, w_M) := \left(w(y_1), \ldots, w(y_M) \right) \).

First we recall a result from [14] (Theorems 1.3 & 4.1) about the regularity of the Kantorovich function for the standard (non-periodic) quadratic cost (see also [17], Proposition 2.1, [15], Theorem 45).

Theorem 2.4 (14). Let \(Y = \{y_1, \ldots, y_N\} \subseteq V \) be a set of distinct seeds. Define \(g : \mathbb{R}^N \rightarrow \mathbb{R} \) by

\[
g(w) = \sum_{y \in Y} \int_{L_{y}(\overline{W}; V, \overline{Y})} (| x |^2 - w_y) \, d\mu(x).
\]

Then \(g \in C^1(\mathbb{R}^N) \) is concave with

\[
\frac{\partial g}{\partial w_i}(w) = -\mu \left(L_{y_i}(\overline{W}; V, \overline{Y}) \right), \quad i \in \{1, \ldots, N\}.
\]
For $i,j \in \{1, \ldots, N\}$, define
\[L_{ij}(w;V,Y) = L_{ij}(w;V,Y) \cap L_{ij}(w;V,Y) \]
(this may be the empty set). On the set
\[\{w \in \mathbb{R}^N : \mu(L_{ij}(w;V,Y)) > 0 \forall y \in Y\} \]
(2.9)
g is twice continuously differentiable and, for $i \neq j$,
\[\frac{\partial^2 g}{\partial w_i \partial w_j} (u) = \int_{L_{ij}(w;V,Y)} \frac{\rho(x)}{2|y - y'|} d\mathcal{H}^{d-1}(x), \]
\[\frac{\partial^2 g}{\partial w_i^2} (u) = \sum_{j=1}^N \frac{\partial^2 g}{\partial w_i \partial w_j} (u). \]

Here \mathcal{H}^{d-1} denotes the $(d-1)$-dimensional Hausdorff measure. Now we extend Theorem 2.4 to the periodic cost.

Theorem 2.5. Let $Y = \{y_1, \ldots, y_n\} \subset \text{int}(V)$ be a set of distinct seeds. The Kantorovich function $K^A \in C^1(\mathbb{R}^n)$ is concave with
\[\frac{\partial K^A}{\partial w_i} (u) = m_i - \mu(L_i(u;V,Y)), \quad i = 1, \ldots, n. \]

Fix $w \in \mathbb{R}^n$. Let
\[\bar{Y} = Y \setminus \{y \in Y : L_i(\bar{Y},V,Y) \neq \emptyset\} \]
and let $\bar{w} = \bar{w}[i]$ be the restriction of \bar{w} to \bar{Y}. If $y \in \bar{Y}(w)$, then
\[\frac{\partial^2 K^A}{\partial w_i \partial w_j} (u) = \sum_{i,j=1}^n \int_{L_i(\bar{w}[i],V,Y)} \frac{\rho(x)}{2|y - y'|} d\mathcal{H}^{d-1}(x), \]
(2.10)
then K^A is twice continuously differentiable at \bar{w} and, for $i \neq j$,
\[\frac{\partial^2 K^A}{\partial w_i \partial w_j} (u) = \sum_{i,j=1}^n \frac{\partial^2 K^A}{\partial w_i \partial w_j} (u) \]

Proof. Step 1. We prove that \bar{Y} is a finite set.

Step 1a. First we show that the Voronoi cell V is bounded in the periodic directions. By definition of V, for all $x \in V$, $i \in \{1, \ldots, k\}$,
\[|v \cdot u_i| \leq \frac{1}{2} |v|^2 \leq \frac{1}{2} \max_{j \in \{1, \ldots, k\}} |v_j|^2 =: \frac{1}{2} M^2. \]

(2.11)

Step 1b. Next we show that the Laguerre cells are bounded in the periodic directions. Let $x \in L_i(\bar{w}[i],V,Y)$, $y \in Y$. For all $i \in \{1, \ldots, k\}$,
\[|x \cdot u_i - u_i| \leq \overline{y} \cdot u_i. \]

Since $\overline{y} \cdot u_i = y_i$, we obtain the bound
\[x \cdot u_i \leq \frac{1}{2} |v|^2 + y_i \leq \frac{1}{2} M^2 + M \max_{y \in Y} |y| := C. \]

By replacing u_i with $-u_i$ we obtain
\[|x \cdot u_i| \leq C. \]

Step 1c. It is an easy exercise to check that $L_{y_\alpha}(\bar{w}[i],V,Y) = L_{y_\alpha}(\bar{w}[i],V,Y) + u \forall y \in Y, u \in A$.

Step 1d. Finally, we show that \bar{Y} is finite. Take $u = \sum a_i u_i$ where $a = (a_1, \ldots, a_k) \in \mathbb{Z}^k$. Assume that
\[|a| > \sqrt{k} \left(\frac{1}{2} M^2 + C \right) \|G^{-1}\|_2 =: c. \]
(2.12)
where $G \in \mathbb{R}^{k \times k}$ is the Gram matrix with components $G_{ij} = v_i \cdot v_j$ and $\|\cdot\|_2$ is the matrix 2-norm. We will show that, for all $y \in Y$,
\[L_{y_\alpha}(\bar{w}[i],V,Y) = \emptyset, \]
which proves that \bar{Y} is finite. In particular,
\[\bar{Y} \subseteq \{ y + u : y \in Y, u = \sum a_i u_i, a \in \mathbb{Z}^k, |a| \leq c \}. \]

Let $b \in \mathbb{R}^k$ be the vector with components $b_i = u \cdot v_i$. Then $a = G^{-1} b$ and
\[|a| \leq \|G^{-1}\|_2 |b| \leq \sqrt{k} \|G^{-1}\|_2 |b|_\infty. \]
(2.13)

Take $x \in L_{y_\alpha}(\bar{w}[i],V,Y)$. Then $x = u + a$ for some $x \in L_{y_\alpha}(\bar{w}[i],V,Y)$ by Step 1c. Take $i \in \{1, \ldots, k\}$ with $|u \cdot v_i| = \max_{j \in \{1, \ldots, k\}} |u \cdot v_j| = |b|_\infty$. Then
\[|\bar{v} \cdot v_i| = |v \cdot v_i + u \cdot v_i| \geq \max_{j \in \{1, \ldots, k\}} |u \cdot v_j| - C \]
\[> \frac{1}{2} M^2 \]
by Step 1b and (2.12), (2.13). But then $x \not\subset V$ by Step 1a. Therefore $L_{y_\alpha}(\bar{w}[i],V,Y) = \emptyset$, as claimed.

Step 2. Next we prove that for all $y \in \bar{Y}$,
\[L_i(\bar{w}[i],V,Y) = L_i(\bar{w}[i],V,Y). \]
(2.14)
If $x \in L_i(\bar{w}[i],V,Y)$, then
\[|x - y|^2 - |y|^2 \leq |x - z|^2 - |z|^2 \]
for all $z \in \bar{Y}$, hence for all $z \in \bar{Y}$ since $\bar{Y} \subseteq Y$. Therefore $L_i(\bar{w}[i],V,Y) \subseteq L_i(\bar{w}[i],V,Y)$. Now we prove the opposite inclusion. Let $x \in L_i(\bar{w}[i],V,Y)$. Suppose for contradiction that $x \not\in L_i(\bar{w}[i],V,Y)$. Then $x \in L_i(\bar{w}[i],V,Y)$ for some $z \in \bar{Y}$, $z \neq y$. Moreover, $z \in \bar{Y}$ else $L_i(\bar{w}[i],V,Y) = \emptyset$. Therefore $x \in L_i(\bar{w}[i],V,Y) \cap L_i(\bar{w}[i],V,Y)$ and so
\[|x - y|^2 - |y|^2 \geq |x - z|^2 - |z|^2, \]
(2.15)

Since $x \not\in L_i(\bar{w}[i],V,Y)$, there exists $y \in \bar{Y}$ such that
\[|x - y|^2 - |y|^2 > |x - u|^2 - |u|^2, \]
(2.16)

Since $x \in L_i(\bar{w}[i],V,Y)$,
\[|x - z|^2 - |z|^2 \leq |x - u|^2 - |u|^2 \quad \forall y \in \bar{Y}. \]

(2.17)
Combining (2.15)–(2.17) gives
\[|x - z|^2 - |z|^2 = |x - y|^2 - |y|^2 > |x - u|^2 - |u|^2 \geq |x - z|^2 - |z|^2, \]
which is a contradiction. Hence $x \in L_i(\bar{w}[i],V,Y)$.

Step 3. Fix $w \in \mathbb{R}^n$. We prove that, under assumption (2.10), $\bar{Y}(w)$ is independent of w in a neighbourhood of u.

Step 3a. Define $f : V \times \bar{Y} \to \mathbb{R}$ by
\[f(x,y) = |x - y|^2 - \overline{y} - \min_{z \in \bar{Y}} |x - z|^2 - \overline{z}. \]

Let $x \in V$, $y \in \bar{Y} \setminus \bar{Y}$. Then, for some $u \in \bar{Y}$, $y \neq x$, $u \in L_i(\bar{w}[i],V,Y) = L_i(\bar{w}[i],V,Y)$ (by (2.14)) and so
\[f(x,y) = |x - y|^2 - \overline{y} - (|x - u|^2 - \overline{u}) > 0. \]

We can rewrite f as
\[f(x,y) = \max \{2(x \cdot (z - y)) + |y|^2 - |z|^2 + \overline{y} - \overline{z} : z \in \bar{Y} \}. \]

Hence $f(x,y)$ is positive, convex and piecewise affine with finitely many slopes, and so $\inf_{x \in \bar{Y}} f(x,y) = \min_{x \in \bar{Y}} f(x,y) = 0$.

Step 3b. By Step 3a, we can define
\[\epsilon = \frac{1}{2} \inf_{x \in \bar{Y}} \min_{y \in \bar{Y}} f(x,y). \]

In this step we show that $\epsilon > 0$. Let $\phi : \bar{Y} \setminus \bar{Y} \to \mathbb{R}$, $\phi(y) = \min_{y \in \bar{Y}} f(x,y) > 0$. Take any sequence $(y_\alpha) \subset \bar{Y} \setminus \bar{Y}$ with $|y_\alpha| \to +\infty$. We
show that lim$_{\epsilon \to 0}$ $\phi(y_\epsilon) = +\infty$, which implies that $2\epsilon = \max_{y \in \mathbb{R}^d} \phi(y) = \min_{u \in \bar{Y}} \phi(u) > 0$. Since Y is a finite set, there exists a subsequence (y_{n_k}) (not relabelled) such that $y_{n_k} \to y^* + u$, with $y \in Y$, $u \in A$, $|u_n| \to +\infty$. Let $\lambda_{n_k} \in \arg\min_{\lambda \in T(Y)} f(x_{n_k}, y_{n_k})$. If $u = \lambda_{n_k}$, $a \in \mathbb{R}$, then $a = G^{-1}b$ where G and b were defined in Step 1d. By (2.11),

$$[x_n, u] = \sum_{i=1}^k a_i (x_i - x_0) \leq \sqrt{k} \frac{1}{2} M^2 [u]$$

$$\leq \sqrt{\frac{1}{2} M^2 \|G^{-1}\|^2 [u]}$$

$$\leq k \frac{1}{2} M^3 \|G^{-1}\|^2 [u] =: \kappa [u].$$

Since $Y \subset \bar{Y}$,

$$\phi(y_{n_k}) = f(x_{n_k}, y_{n_k})$$

$$\geq \max_{y \in \mathbb{R}^d} \left(2 x_n \cdot \left(y - y_{n_k} \right) + |x_n|^2 - |z|^2 + \nu_z - w_n \right)$$

$$\geq 2 x_n \cdot (y - y_{n_k}) + |x_n|^2 - |z|^2 + \nu_z - w_n$$

$$= 2 x_n \cdot u + |y_{n_k} + u|^2 - |z|^2$$

$$\geq -2 \kappa |u_n| + |y_{n_k} + u|^2 - |z|^2 \to \infty \text{ as } n \to \infty,$$

as required.

Step 3c. Let $\psi : Y \to \mathbb{R}, |(\psi_y, \ldots, \psi_y)| < \epsilon, x \in V$. Extend ψ to \bar{Y} and \bar{Y} the usual way. Assume that $y \in \bar{Y}, y \notin \bar{Y}(w)$. Then $x \in L_u(dV \bar{Y})$ for some $u \neq y$, $u \in Y$. Therefore

$$x = L_u(dV \bar{Y}) \subseteq \bar{Y}(w) \cup \bar{Y}(w+y)$$

for all $|w| < \epsilon$. To complete the proof of Step 3 we need to show that, under assumption (2.10), $\bar{Y}(w) \subseteq Y(w + \xi)$ if ξ is sufficiently small. Let $y \in \bar{Y}(w)$. The map $u \mapsto \mu(L_u(dV \bar{Y}))$ is continuous (cf. [15, Proposition 38(viii)]). Therefore $\psi_y \in \bar{Y}(w+y)$. Hence, $y \notin \bar{Y}(w+y)$, and $\bar{Y}(w+y) \subseteq \bar{Y}(w+y)$ for all $|w| < \epsilon$, as required.

Step 4. Now we compute the gradient and Hessian of K^4. Fix $u_0 \in \mathbb{R}^d$. By (2.6) and (2.14), for u in a sufficiently small neighbourhood of u_0,

$$K^4(u) = g(\bar{u}) + \sum m_i u_i,$$

where g is as in Theorem 2.4 with $N = \lceil |Y(u_0)| \rceil \geq n$ and with the set of seed $\bar{Y}(u_0)$, which is fixed in the chosen neighbourhood of u_0.

Observe that K^4 is concave since it is the sum of a linear function and the composition of the concave function g with the linear function $u \mapsto \bar{u}$.

The gradient of K^4 follows from the Chain Rule and Theorem 2.4:

$$\frac{\partial K^4}{\partial u_j}(u_0) = \sum_{i \in T(Y)} \frac{\partial g}{\partial z_i}(\bar{u}_0) \frac{\partial L_{u_j}}{\partial u_i}(u_0) + m_j$$

$$= \sum_{i \in T(Y)} \frac{\partial g}{\partial z_i}(\bar{u}_0) + m_j$$

$$= \sum_{i \in T(Y)} \mu(L_{u_i}(\bar{u}_0, V, \bar{Y}(u_0))) + m_j$$

$$= -\mu(L_{u_j}(\bar{u}_0, V, Y)) + m_j$$

by Lemma 2.2 and Eq. (2.14).

If assumption (2.10) holds for $u = u_0$, then $\bar{u}_0 \in Y(u_0)$, and $u \mapsto g(\bar{u})$ is twice continuously differentiable at u_0 and so is K^4. Let $y_j, y_j \in Y, i \neq j$. Applying the Chain Rule and Theorem 2.4 gives

$$\frac{\partial^2 K^4}{\partial u_i \partial u_j}(u_0) = \sum_{z \in T(Y)} \sum_{m \in T(Y)} \frac{\partial^2 g}{\partial z_i \partial z_j}(\bar{u}_0) \frac{\partial L_{u_i}}{\partial u_m}(u_0)$$

$$= \sum_{z \in T(Y)} \sum_{m \in T(Y)} \frac{\partial^2 g}{\partial z_i \partial z_j}(\bar{u}_0)$$

$$= \sum_{z \in T(Y)} \sum_{m \in T(Y)} \int_{L_{u_i}(\bar{u}_0, V, \bar{Y}(u_0))} \frac{\partial g}{\partial z_i \partial z_j}(\bar{u}_0)$$

by Eq. (2.14). We also used the fact that $\mathbb{R} \neq z'$ if $\mathbb{R} \in (y_j, y_j) \neq y_j$, which follows from the assumption that $Y \subset \text{int}(V')$.

Finally, the diagonal entries of the Hessian are obtained by differentiating the following expression with respect to u_i:

$$\sum_{j \neq i} \frac{\partial^2 K^4}{\partial u_i \partial u_j}(u_0) = \sum_{j \neq i} \left| m_{i,j} - \mu(L_{u_i}(u_0, Y)) \right| = 0.$$ This concludes the proof.

Remark 2.1. The Hessian of K^4 can be rewritten as follows, which we found more convenient for computational purposes: For $i \neq j$,

$$\frac{\partial^2 K^4}{\partial u_i \partial u_j}(u_0) = \int_{Y \setminus \{Y \}} \frac{\partial^2 g}{\partial z_i \partial z_j}(\bar{u}_0) \frac{\partial \rho(x)}{\partial z_i \partial z_j}(\bar{u}_0) dH^\mu(x).$$

3. The damped Newton method

Given $w \in \mathbb{R}^n$, let $H(w) \in \mathbb{R}^{n \times n}$ denote the Hessian matrix $D^2 \bar{K}(w)$. If u satisfies (2.10), it can be shown that $H(w)$ is singular with 1-dimensional kernel spanned by $(1, 1, \ldots, 1)$ in \mathbb{R}^n ($H(w)$ is a weighted graph Laplacian matrix of a connected graph). Moreover, the $(n-1) \times (n-1)$ matrix $H(w)$ obtained by deleting the last row and column of $H(w)$ is non-singular. Let $e(w)$ be the error

$$e(w) = \max_{y \in \mathbb{R}^n} \frac{\partial K^4}{\partial u_j}(w) = \max_{y \in \mathbb{R}^n} \left| \mu(L_y^4(u_0, Y)) - m_y \right|.$$ We recall the damped Newton method of Kitagawa, Mérigot and Thibert [14] for maximising K^4:

Initialisation. Choose $w^0 \in \mathbb{R}^n$ such that

$$\mu(L_y^4(u_0, Y)) > 0 \quad \forall y \in \mathbb{R}^n,$$

i.e., all the Laguerre cells have positive mass. Let $\epsilon := \frac{1}{2} \min_{y \in \mathbb{R}^n} \left(\min \mu(L_y^4(u_0, Y)), \min m_y \right) > 0$.

Iteration step. Give $u(k)_i$ as follows:

1. Define the Newton direction $d_k \in \mathbb{R}^{n-1}$ by solving the sparse symmetric positive definite linear system

$$\hat{H}(u(k-1)) d_k = b,$$

where $b_i = \partial \hat{K}^4/\partial u_i(u(k-1), i = 1, \ldots, n-1$.

2. Find the smallest value of $\delta_k \in [0, \infty]$ such that $u(k+1)$ is defined by $u_k^k = 0$,

$$u(k+1) = u(k) + 2 \delta_k d_k, \quad i = 1, \ldots, n-1,$$

satisfies

$$\min_{y \in \mathbb{R}^n} \mu(L_y^4(u(k+1), Y)) \geq \epsilon,$$

$$e(u(k+1)) \leq (1 - 2^{-i+1}) e(u(k-1)).$$

3. Define the Newton update $u(k+1) := u(k)+$.
Stopping condition. Terminate the algorithm when the mass percentage error is less than some prescribed tolerance \(\eta \in [0, 100] \):

\[
100 \cdot \max_{i \in \mathcal{V}} \left| \frac{\mu(L_i^A(w^k; Y)) - m_i}{m_i} \right| < \eta.
\]

We refer to \(l_k \) as the number of backtracking steps at iteration \(k \). If \(l_k = 0 \), then \(u^k \) is the standard Newton step for the nonlinear system \(\nabla \mathcal{K}(u) = 0 \). The backtracking ensures that the iterates \(u^k \) remain in the region where \(\mathcal{K} \) is twice differentiable.

In [14] it is proved that, for a class of continuously differentiable transport costs \(c \), the damped Newton method converges for any initial guess satisfying (3.1) with linear rate and asymptotic quadratic rate (see [14, Prop. 6.1]). While their result does not apply to our non-smooth cost \(c_f \), we have observed quadratic convergence in numerical experiments and believe the proof can be easily extended.

4. RVEs of polycrystalline materials

We can apply the theory above to generate 3D polycrystalline microstructures. We take \(d = 3 \).

\[
\mathcal{A} = \text{span}_\mathbb{Z} \{L_1, L_2, L_3\},
\]

\[
V = \left[-\frac{L_1}{2}, \frac{L_1}{2} \right] \times \left[-\frac{L_2}{2}, \frac{L_2}{2} \right] \times \left[-\frac{L_3}{2}, \frac{L_3}{2} \right],
\]

where \(L_1, L_2, L_3 > 0 \), and \(\rho(x) = 1 \) for all \(x \in V \). Then \(\mu(L_i^A(u; V)) \) equals the volume of \(L_i^A(u; V) \). For any choice of seeds \(y_i \) and any list of volumes \(m_i \) (such that \(\sum m_i = L_1 L_2 L_3 \)), the damped Newton method generates grains with volumes \(m_i \). The choice of the seeds \(y_i \) gives extra control over the RVE. Choosing the seeds at random can lead to very anisotropic microstructures. The following algorithm updates the seed locations iteratively in order to generate grains that are not too irregular (see below for a precise definition of ‘regular’). It combines [2, Algorithm 2.1] with the damped Newton method.

Input. The number of grains \(n \), the desired grain volumes \(m_1, \ldots, m_n \) with \(\sum m_i = L_1 L_2 L_3 \), the volume percentage error tolerance \(\eta > 0 \), and the number of regularisation (Lloyd) steps \(K \).

Initialisation. Randomly select \(n \) distinct seeds \(y_i^{(0)}, \ldots, y_i^{(0)} \in \text{int}(V) \). Set \(Y_i^{(0)} := \{y_i^{(0)}, \ldots, y_i^{(0)}\}, w_i^{(0)} := 0 \in \mathbb{R}^n \), and

\[
L_i^{(0)} := L_i^A(\overline{w_i^{(0)}}, \mathbb{R}^d, \overline{Y_i^{(0)}}), \quad i \in \{1, \ldots, n\}.
\]

Iteration step. For \(k = 1, \ldots, K \):

1. Regularisation. Define \(y_i^{(k)} \) to be the centroid

\[
y_i^{(k)} = \frac{1}{\mu(L_i^{(k-1)})} \int_{L_i^{(k-1)}} x \, dx.
\]

Set \(Y_i^{(k)} := \{y_i^{(k)}, \ldots, y_i^{(k)}\} \).

2. Damped Newton. Apply the damped Newton method with initial guess \(u^0 = 0 \in \mathbb{R}^n \) to find a weight vector \(w_i^{(k)} \in \mathbb{R}^n \) satisfying

\[
100 \cdot \max_{i \in \mathcal{V}} \left| \frac{\mu(L_i^A(w_i^{(k)}; Y)) - m_i}{m_i} \right| < \eta.
\]

For \(i \in \{1, \ldots, n\} \), define

\[
L_i^{(k)} := L_i^A(\overline{w_i^{(k)}}, \mathbb{R}^d, \overline{Y_i^{(k)}}).
\]

Output. Define \(y_i := y_i^{(K)} \), \(Y = \{y_1, \ldots, y_n\} \), and \(w = w_i^{(K)} \). Then the periodic Laguerre tessellation \(L_i^A(u; V) \) have volumes \(m_1, \ldots, m_n \) up to \(\eta \) percentage error.

If \(K \) is large, then the outputted Laguerre tessellation is approximately a centroidal Laguerre tessellation [19]. This means that the seeds \(y_i \) are approximately the centroids of the grains, which results in grains that are more ‘regular’ (round).

Fig. 1. A periodic Laguerre tessellation with 10,000 grains of prescribed volumes (up to 1% error), where the target volumes were drawn from a log-normal distribution; see Example 4.1. The grains are coloured according to their volume using a log scale. The large yellow polygons that are visible in the top face and the front-right face are slices through the same periodic grain. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

The initial guess \(u^0 = 0 \) for the damped Newton steps satisfies assumption (3.1) since the corresponding Laguerre tessellation is a Voronoi tessellation, and Voronoi cells have positive volume when the seeds lie in the box.

The main difference between this algorithm and the one implemented in [2] is that we compute the weights using the 2nd-order damped Newton method instead of the slower 1st-order BFGS method. A rigorous study of various optimisation algorithms (steepest descent, Malitsky–Mishchenko, Barzilai–Borwein, BFGS, modified Newton) and regularisation steps (Lloyd, Anderson-accelerated Lloyd) is given in [3].

Example 4.1. We reproduce Example 5.5 from [2]. We take \(n = 10,000 \) grains, \(L_1 = L_2 = L_3 = 2 \), \(K = 5 \), \(\eta = 1 \). The target grain volumes \(m_i \) are drawn from a log-normal distribution as follows: First radii \(r_i \) are drawn from a log-normal distribution with mean 1 and standard deviation 0.35. Then we define \(m_i = \frac{1}{2} \pi r_i^2 \). Finally, the volumes are normalised so that the total volume of the grains equals the volume of the box. This is described further in [2, Example 5.5]. The RVE is shown in Fig. 1. This example took 47.24 s on a laptop with processor Intel(R) Core(TM) i5-1135G7 @ 2.40 GHz (cf. the run time of 669 s in [2, Example 5.5]).

5. Numerical tests of damped Newton

In this section we illustrate the performance of the damped Newton method from Section 3. In both examples \(A \) and \(V \) are given by (4.1), (4.2) with \(L_1 = L_2 = L_3 = 1 \) and \(\rho(x) = 1 \) for all \(x \in V \) so that the damped Newton method generates Laguerre cells of given volumes.

Example 5.1. Table 1 reports mean run times of the damped Newton method over 100 numerical experiments for three types of microstructure.

The 1st column is the number of grains. The 2nd column is the mean run time for an idealised single phase (SP) microstructure, where all the grains have the same volume \(m_1 = L_1 L_2 L_3 \) for all \(i \). The 3rd column is the mean run time for an idealised dual phase (DP) microstructure, where half of the grains have volume \(m_1 \) and the other half have volume \(5x \), where \(x \) is such that \(\sum m_i = L_1 L_2 L_3 \). The 4th column (log-normal) is the mean run time for a more realistic microstructure where the grain volumes are drawn from a log-normal distribution as in Example 4.1.
power diagrams (GBPDs) [1] with cells of given volumes can be found by maximising
\[K_{\text{GBPD}}(\omega) = \sum_{i=1}^{n} \int_{L_{i}(\omega; Y, A)} (|x - y|^2_{A_i} - w_i) \, dx + \sum_{i=1}^{n} m_i w_i \]

where \(A = \{ A_1, \ldots, A_n \} \) is a collection of symmetric positive definite matrices, \(\| \cdot \|_{A_i} \) is the \(A_i \)-norm, given by \(\| x \|_{A_i} = x \cdot A_i x \), and
\[L_i(\omega; Y, A) = \{ x \in V : |x - y|^2_{A_i} - w_i \leq |x - y|^2_{A_j} - w_j \ \forall j \}. \]

If \(\omega \in \text{argmax} K_{\text{GBPD}} \), then the cells \(L_i(\omega; Y, A) \) have volumes \(m_i \). Periodic GBPDs can be generated in a similar way. In practice it is challenging to compute GBPDs efficiently if there are many grains. We are currently working on this.

Declaration of competing interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Data availability

No data was used for the research described in the article.

Acknowledgements

The authors thank Piet Kok, Wil Spanjer, Carola Celada-Caser and Karo Sedighiani for fruitful discussions. DPB acknowledges financial support from the EPSRC, UK grant EP/V00204X/1. MP thanks the Centre for Doctoral Training in Mathematical Modelling, Analysis and Computation funded by EPSRC, UK grant EP/S023291/1.

References

