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Abstract. Recently, graph neural networks have become the state-of-
the-art in collaborative filtering, since the interactions between users
and items essentially have a graph structure. However, a major issue
with the user-item interaction graph in recommendation is the absence
of the positional information of users/items, which limits the expressive
power of graph recommenders in distinguishing the users/items with
the same neighbours after propagating several graph convolution lay-
ers. Such a phenomenon further induces the well-known over-smoothing
problem. We hypothesise that we can obtain a more expressive graph
recommender through graph positional encoding (e.g., Laplacian eigen-
vector) thereby also alleviating the over-smoothing problem. Hence, we
propose a novel model named Positional Graph Contrastive Learning
(PGCL) for top-K recommendation, which aims to explicitly enhance
graph representation learning with graph positional encoding in a con-
trastive learning manner. We show that concatenating the learned graph
positional encoding and the pre-existing users/items’ features in each
feature propagation layer can achieve significant effectiveness gains. To
further have sufficient representation learning from the graph positional
encoding, we use contrastive learning to jointly learn the correlation be-
tween the pre-exiting users/items’ features and the positional informa-
tion. Our extensive experiments conducted on three benchmark datasets
demonstrate the superiority of our proposed PGCL model over exist-
ing state-of-the-art graph-based recommendation approaches in terms of
both effectiveness and alleviating the over-smoothing problem.

1 Introduction

Personalised recommendation is a widely used technology to improve the quality
of information services, which aims to predict a group of items that users might
intend to purchase according to their preferences. The effective personalisation
of the recommendation results, typically rely on rich available data, in particu-
lar the historical user-item interactions [11]. Recent advances in Graph Neural
Networks (GNNs) provided a strong and fundamental opportunity to develop ef-
fective personalised recommendations [29]. Specifically, GNNs adopt embedding
propagation to aggregate neighbourhood embeddings iteratively through con-
nectivities on a bipartite user-item graph. By stacking the multiple propagation
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layers, each node on the graph can access high-order neighbours’ information
through the message passing scheme [31], rather than only modelling the direct
interactions between users and items. With their advantages in handling struc-
tural data and exploring structural information on a graph, graph recommenders
have attained a state-of-the-art recommendation performance [6].

Despite the success of the graph recommenders, the current graph feature
propagation function only repeatedly aggregates neighbourhood embeddings that
are adjacent to the target node. As a consequence, the conventional message
passing scheme of the graph recommenders typically fails to differentiate two
users with the same interacted items and all user representations converge to
a constant after propagating several graph convolution layers [2]. This prob-
lem can be further amplified after stacking multiple layers [10], leading to the
well-known over-smoothing problem [17]. Indeed, this limitation is now well un-
derstood in the context of the equivalence of GNNs with the Weisfeiler-Leman
(WL) test [30] for graph isomorphism [22,34], which further confirms the limited
expressive power of the current graph recommenders. Consequently, there is a
stronger motivation for proposing a new graph recommender that is more ex-
pressive in distinguishing the users/items with the same neighbours after graph
convolution and hence to further amplify the difference between the users/items
further apart. Indeed, many approaches have been proposed to alleviate the lim-
ited expressive power of the GNNs, to some extent, by considering the positional
encoding (PE) information of nodes for enriching the nodes’ features [4,14,25].
Graph positional encoding approaches [3,4,37] typically consider a global posi-
tioning or a unique representation of the users/items in the graph, which can
encode a graph-based distance between the users/items. To leverage the advan-
tage of positional encoding, in this paper, we also use a graph-specific learned
positional encoding as a unique ID for each user/item and inject these positional
encodings into each feature propagation layer to improve the expressive power
of graph recommenders.

Inspired by recent studies [15,32,33,39], which have shown the superior ability
of Contrastive Learning (CL) to construct supervised signals from correlations
within raw data, we also investigate in this paper the possibility of leveraging
CL to explore the correlations among learned graph positional encodings and
address the limited expressive power problem in graph recommenders. A typical
approach [32,40] to apply CL to recommendations on graphs is to first augment
the user-item bipartite graph with noise or structure perturbations, and then to
maximise the agreement of the augmented user/item embeddings via a graph
encoder. To address the limited expressive power of graph recommenders, we
propose a novel recommendation model named Positional Graph Contrastive
Learning (PGCL) for top-K recommendation, which aims to use existing graph
positional encoding methods to improve the expressive power of graph recom-
menders and further enhances the integrated user/item representations through
a noise-based augmentation method. To be more specific, PGCL provides addi-
tional positional information to existing graph recommenders by injecting the
learned graph positional encoding into each feature propagation layer. Further-
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more, in order to prevent distorting the users’ intents, we apply a noise-based
augmentation technique to such position-enhanced user/item embeddings – this
aims to maintain the users’ intent unchanged while adding distance properties
to the learned user/item representations. To summarise, in this paper, we argue
that graph recommenders enriched with our proposed graph positional encod-
ing can effectively improve their expressive power while alleviating the over-
smoothing problem. Indeed, we show that with the integration of contrastive
learning, our PGCL model enforces the divergence of the learned user/item rep-
resentations resulting in an improved recommendation performance.

Our contributions in this paper are as follows: p1q We propose a personalised
graph-based recommendation model for top-K recommendation, which lever-
ages the learned graph positional encoding to facilitate a new message passing
scheme for existing graph recommenders; p2q We apply noise-based augmenta-
tion on position-enhanced user/item embeddings and examine the impact of the
resulting PGCL model using different ranking metrics; p3q We conduct extensive
experiments on three benchmark datasets and demonstrate the effectiveness of
PGCL in comparison to the existing state-of-the-art graph recommenders; p4q

By comparing with the existing baselines, we show that PGCL is more expres-
sive by stacking multiple layers and can alleviate the over-smoothing problem
by reducing the over-smoothness of user/item embeddings.

2 Related Work

In this section, we discuss the related methods and techniques to our con-
ducted study, namely graph-based recommendation, graph positional encoding
and graph contrastive learning for recommendation.
Graph-based Recommendation: Graph-based recommenders [10,20,29] typ-
ically exploit the message passing scheme in the user-item graph by propagat-
ing information from local neighbours and integrating the collaborative signals
into a user/item representation. However, the existing approaches (e.g., Light-
GCN [10]) follow the original message passing scheme, which is known to suffer
from over-smoothing due to its repeated aggregation of local information. As a
result, the existing graph recommenders only propagate homogeneous features
(e.g., IDs) from the original neighbours, which are not expressive enough to dis-
tinguish the users/items with the same neighbours after stacking several graph
convolution layers. Unlike prior works, we leverage the positional representation
of each user/item that relies on positional features (e.g., Laplacian eigenvectors)
and inject the learned positional encodings into each feature propagation layer
of the existing graph recommenders so as to enhance their expressive power.
Graph Positional Encoding: The notion of positional encodings (PEs) in
graphs is not a trivial concept, as there exists no canonical way of ordering
nodes [14]. Various studies [3,5,14,18,8,28,36] have exploited positional encodings
on graphs to improve the expressiveness of GNNs. Many earlier studies [21,23]
used index positional encoding to enhance conventional GNNs in terms of their
associated model expressiveness. For example, GRP [23] devised a positional
encoding by assigning to each node an identifier that depends on the index or-
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dering. This approach can be computationally expensive as it needs to account
for all n! node permutations to guarantee a higher expressiveness. Therefore,
some prior studies (e.g., [16,37]) have applied a more efficient distance posi-
tional encoding to enhance the model expressiveness of GNNs. For example,
P-GNN [37] enhanced the model expressiveness by projecting the distances be-
tween a target node and randomly sampled nodes into a position-aware embed-
ding. However, a large number of sampled nodes will include most of the nodes
on the graph, thus leading to insufficient positional embeddings. DEGNN [16]
modeled a distance positional encoding by capturing distances between nodes
using landing probabilities of random walks. However, this approach cannot scale
to large-scale graphs because of the cost of computing the power matrices. Al-
ternatively, Laplacian eigenvectors [1] have been shown to be good candidates
for graph positional encoding, since Laplacian eigenvectors form a meaningful
local coordinate system while preserving the global graph structure. In partic-
ular, we can pre-compute the Laplacian eigenvectors/eigenvalues and provide a
unique ID for each node, which solves the scalability issue on the user-item graph
in a recommender system and further enhances the pre-existing node features
by merging Laplacian eigenvectors/eigenvalues. Another alternative approach
used by APPNP [13] provided an improved graph feature propagation scheme
with Personalised PageRank [9], which particularly addresses the over-smoothing
problem in a random walk manner. In this paper, we leverage the Laplacian
eigenvectors and the random walk operator to define a new relative positional
encoding in recommender systems. Unlike the above prior works, we allocate the
learned positional encodings to a separate message passing function to generate
the user/item positional embedding from the neighbours’ positional information.
Graph Contrastive Learning for Recommendation: Recently, graph-based
recommendation approaches [19,32,35,38] have benefited from contrastive learn-
ing, because its ability to extract contrastive signals from the raw data is well-
aligned with the recommender systems’ needs for more collaborative filtering
signals. SGL [32] adopted different augmentation operators such as edge dropout
and node dropout, which aim to capture the essential information of the original
user-item bipartite. The authors of SimGCL [40] claimed that graph augmenta-
tions highly distort the original graph and applied a more effective noise-based
augmentation on a user/item representation level. As discussed above, we aim
to inject the learned positional encodings into the node features to enhance the
final user/item embeddings. Hence, applying a representation-level augmenta-
tion is more reasonable than perturbing the graph structure. To the best of our
knowledge, our proposed PGCL model is the first graph-based recommendation
model to enhance user/item representations by contrasting augmented user/item
embeddings with a learned graph positional encoding.

3 Model Architecture

In this section, we first present the personalised recommendation task in Sec-
tion 3.1. We describe our proposed PGCL model, the architecture of which is
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Fig. 1: The architecture of our PGCL model

illustrated in Figure 1. In Section 3.2, we define the graph positional encoding.
Next, we illustrate the motivation of decoupling the positional encoding from the
conventional message passing function in Section 3.3. In Section 3.4, we apply
contrastive learning for effectively learning the positional encoding and optimise
our PGCL model jointly with a pairwise ranking loss.

3.1 Preliminaries

In this paper, we focus on addressing the ranking-based recommendation task.
Conceptually, we consider a recommender system with a user set U and an
item set I. In order to facilitate the description of graph recommenders, we use
G “ pV, Eq to denote an interaction graph, where the node set V “ UYI includes
all users and items. E is the set of edges. eu denotes the user feature for user
u and ei denotes the item feature for item i. In addition, pu and pi denote the
positional feature of the user and item, respectively. The layers are indexed by
ℓ, where ℓ “ 0 denotes the input layer. For a given user u or item i, there is a
positional feature pu or pi on an interaction graph G. We aim to estimate the
users’ preferences through a graph encoder f , which can recommend the top-K
items for a target user u.

3.2 Definition of Initial Graph Positional Encoding

As mentioned Section 2, we aim to use the Laplacian eigenvectors and the ran-
dom walk operator to define the positional encoding (PE) in recommendation. In
this section, we define the initial positional encoding of a given user u or item i.

Laplacian PE: Laplacian PE (LapPE) is a spectral technique that embeds
graphs into an Euclidean space, and is defined via the factorisation of the graph’s
Laplacian ∆ “ I ´ D´1{2AD´1{2 “ UTΛU , where I is the identity matrix, A is
the adjacency matrix, D is the degree matrix, and matrices Λ and U correspond
to the Laplacian eigenvalues and Laplacian eigenvectors of a graph, respectively.
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In this work, we consider the Laplacian eigenvector as the initial graph positional
encoding, which is defined as follows:

pLapPE
i “ rUi1, Ui2, ¨ ¨ ¨ , Uiks P Rk (1)

As a consequence, LapPE is expected to provide a unique ID for each user/item
representation and is distance-sensitive w.r.t. the Euclidean norm.

Random Walk PE: Apart from LapPE, we also investigate the random walk-
based method [5] to generate the graph positional encoding. Hence, we use Ran-
dom Walk PE (RWPE), which is a method based on the random walk diffusion
process. Formally, RWPE is defined with k-steps of random walks as follows:

pRWPE
i “

”

RWi,RW
2
i , ¨ ¨ ¨ ,RWk

i

ı

P Rk (2)

where RW “ AD´1 is the random walk operator. As such, RWPE provides a
unique node representation under the condition that each user/item has a unique
k-hop topological neighbourhood [16] for a sufficiently large k.

Finally, the initial graph PE of the network is obtained by projecting LapPE
or RWPE into a d-dimensional feature vector with a Multi-Layer Perceptron
(MLP) network:

pℓ“0
i “ MLP

`

pPE
i

˘

“ W 0pPE
i ` b0 P Rd, (3)

where W 0 P Rdˆk and b0 P Rd are the learned parameters of the MLP network.
As illustrated in Figure 1, we leverage LapPE or RWPE to generate the initial
positional encoding through a MLP network.

3.3 Feature Propagation with Learned Positional Encoding

Figure 1 illustrates how PGCL concatenates the graph PE and the pre-existing
node feature X 1 which is generated by user/item IDs. As discussed in Section 2,
we aim to decouple the graph PE from the conventional message passing func-
tion. Hence, we propose a message passing function for the graph PEs. The layer
update equations is defined as follows:

pℓ`1
u “ Tanh

´

AGG
´

pℓu,
␣

pℓi
(

iPNu

¯¯

, (4)

where Tanh is the activation function, and AGG is an aggregation function that
combines the positional information of the adjacent item nodes. Since the graph
positional encoding is interpreted as a unique positional ID of a given node (see
Section 2), we expect to use the message passing scheme to exploit high-order
positional information of the positional features through the aggregation op-
eration. Next, we aim to integrate the graph PE pi into user representations.
Analogously, we can obtain the updated positional embeddings of the items.
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As illustrated in Figure 1, we concatenate the graph PE – which is generated
by Equation (4) – with the existing node feature X, similar to the Transform-
ers [27] network structure:

eℓ`1
u “ AGG

˜

„

eℓu
pℓu

ȷ

,

"„

eℓi
pℓi

ȷ*

iPNu

¸

(5)

where eu and ei denote the representations of user u and item i, respectively,
Nu is the neighbourhood of the user u, and pu & pi denote the position repre-
sentations of user u and item i, respectively. We use LightGCN [10] to aggregate
the concatenated result of the pre-exiting item feature ei and with the item po-
sitional feature pi. Hence, the feature propagation equation is defined as follows:

eℓ`1
u “

ÿ

iPNu

1
a

|Nu|
a

|Ni|

„

eℓi
pℓi

ȷ

, (6)

with pℓi “ Tanh

˜

W1p
ℓ´1
i `

ÿ

iPNi

1
a

|Nu| |Ni|

`

W1p
ℓ´1
u ` W2

`

pℓ´1
u d pℓ´1

i

˘˘

¸

(7)
where W1 and W2 are trainable weight matrices. The main difference of our
feature propagation layer with the standard graph recommenders is a separated
message passing function for the graph PE, which injects the graph PE into
each propagation layer. For this reason, we expect PGCL to provide less over-
smoothed user/item embeddings, thereby alleviating the over-smoothing prob-
lem of the existing graph recommenders.

3.4 Self-augmented Learning

As discussed in Section 2, since a graph perturbation has the possibility to distort
the user-item bipartite graph, applying a representation-level augmentation on
the learned graph PE is more rational than perturbing the graph structure. Fol-
lowing Yu et al. [40], we apply a noise-based augmentation on the representation
level for both the integrated user and item embeddings. For example, given a user
embedding eu, which integrates its graph positional feature pu, we can generate
an augmented user representation by adding a noise vector ∆u as follows:

e1
u “ eu ` ∆1

u, e
2
u “ eu ` ∆2

u, eu P Rd (8)

with ∆u “ ex d sign peuq d ϵ, ex P Rd „ Up0, 1q (9)

where e1
u and e2

u are two augmented user representations, ex is a vector that is
generated by random numbers from a uniform distribution, and ϵ is a hyper-
parameter to control the strength of the user representation perturbation with
a range in r0, 1s. Goodfellow et al. [7] have also shown that a linear pertur-
bation in high-dimensional spaces can generate sufficient samples. As such, in
addition to applying the noise-based augmentation, we also aim to enforce that
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the integrated user/item representations further spread out in the entire embed-
ding space so as to fully exploit the expressive power of the embedding space.
In the graph contrastive recommendation scenario [32,40], the target is to gen-
erate a better user/item representation via data augmentations. Hence we use
InfoNCE [24], to maximise the agreement of two augmented representations:

Luser
cl “ ´ log

exp
´

e1
u

J
e2
u{τ

¯

řn
i“1 exp

´

e1
u

Jen{τ
¯ (10)

where en is the embedding of a different user, and τ is a hyper-parameter that
adjusts the dynamic range of the resulting loss value. Analogously, we can calcu-
late the contrastive loss of a target item Litem

cl . Therefore, we obtain a combined
contrastive loss that acts as an auxiliary loss for top-K recommendation tasks
as follows: Lcl “ Luser

cl `Litem
cl . To better mine the user/item representations in

recommendation, we adopt a multi-task training strategy to jointly optimise the
widely used pair-wise ranking objective, namely Bayesian Personalised Ranking
(BPR) [26], and the contrastive learning objective Lcl:

L “ λ1Lcl `
ÿ

pu,i,jqPDs

ln σpyui ´ eu
Teiq ` λ2 }Θ}

2
2 (11)

where the second term is the BPR loss, eu is the user embedding, ei denotes
the positive item embedding and yui is the ground truth value, which indi-
cates whether the paired user and item have interacted, Ds “ tpu, i, jq|pu, iq P

R`, pu, jq P R´u is the set of the training data, R` indicates the observed in-
teractions and R´ indicates the unobserved interactions; σp¨q is the sigmoid
function, Θ is the set of model parameters in the BPR loss, while λ1 and λ2

are hyper-parameters to control the strengths of the contrastive learning and
L2 regularisation, respectively. Through propagating the integrated user/item
representations in multiple feature propagation layers with Equation (6), we ob-
tain multiple user/item embeddings from each layer, then we concatenate each
user/item embedding eℓu, so that the final embedding collectively contains in-
formation from each layer. Hence, we can estimate the relevant score between a
user and item by minimising the multi-task learning loss in Equation (11).

4 Experiments

We now examine the performance of PGCL through experiments on three real-
world datasets, in comparison to four existing state-of-the-art graph recommen-
dation models. To demonstrate the effectiveness of PGCL, we conduct experi-
ments to answer the following three research questions:

RQ1: How does the PGCL model perform in top-K recommendation compared
with existing baselines?
RQ2: How do different positional encodings and augmentation methods impact
the recommendation performance?
RQ3: Is our PGCL model more expressive than LightGCN thereby alleviating
the over-smoothing problem compared to the baselines based on LightGCN?
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Table 1: Statistics of the used datasets.
Dataset Users Items Interactions Density

Gowalla 39, 657 31, 211 1,072,325 0.087%

Yelp2018 28,361 43,142 1,481,472 0.121%

Amazon-Kindle 116,417 72,439 1,643,646 0.019%

4.1 Datasets and Evaluation Protocol

We evaluate our PGCLmodel using three real-world datasets, namely Yelp2018 ,1

Gowalla 2 and Amazon-Kindle.3 Table 1 shows the statistics of these datasets.
Following He et al. [10] and Wang et al. [29], we randomly split the above
datasets into training, validation, and testing sets with a 7:1:2 ratio. We use
two commonly used evaluation metrics: Recall@K and NDCG@K to evaluate
the performance of top-K recommendation. We follow [40] in setting K = 20
and report the average performance achieved for all users in the testing set. We
use the Adam [12] optimiser in both our PGCL model and the four baseline
models. We apply early-stopping during training, terminating the training when
the validation loss does not decrease for 50 epochs. To determine the hyper-
parameters in both PGCL and the baseline models, we apply a grid search on
the validation set. Specifically, we tune our PGCL model by varying the learn-
ing rate in

␣

10´2, 10´3, 10´4
(

. The learning rates of the baseline models are also
tuned according to the suggested ranges in [10], for a fair comparison. Similarly,
we also tune each of λ1, λ2 and ϵ within the range of t0, 0.1, 0.2, ..., 1.0u. A de-
tailed analysis of the models’ performance with different layer settings is shown
in Section 4.5.

4.2 Baselines

We compare the effectiveness of PGCL4 with four existing strong baselines. In
the following, we briefly describe these baselines: (1) NGCF [29] is a clas-
sical GNN-based model that first captures the high-order connectivity infor-
mation in the embedding function by stacking multiple embedding propaga-
tion layers. (2) LightGCN [10] is another GNN-based model that has evolved
from NGCF. It simplifies the design in the feature propagation by removing the
non-linear activation and the transformation matrices. This approach has been
widely used as a strong graph recommender for top-K recommendation [6]. (3)
SGL [32] leverages contrastive learning for GNN-based models. With Light-
GCN as the encoder of the users/items, SGL adopts different augmentation
operators such as edge dropout and node dropout, on the pre-existing features
of the users/items. This approach can implicitly identify the important nodes
from different augmentations [41]. (4) SimGCL [40] is effective in improving
LightGCN with different augmentations, which is similar to SGL. It removes the

1 https://www.yelp.com/dataset
2 https://snap.stanford.edu/data/loc-gowalla.html
3 https://jmcauley.ucsd.edu/data/amazon/
4 Source code is available at: https://github.com/zxy-ml84/PGCL

https://www.yelp.com/dataset
https://snap.stanford.edu/data/loc-gowalla.html
https://jmcauley.ucsd.edu/data/amazon/
https://github.com/zxy-ml84/PGCL
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dropout-based augmentations from SGL and devises a noise-based augmentation
on the user/item representation level with an increased recommendation perfor-
mance. In addition, to examine the effectiveness of the Laplacian positional en-
coding (see Equation (1)), we compare PGCL to a variant called PGCLw{oCL.
Different from PGCL, PGCLw{oCL only concatenates the positional encoding
(from Equation (7)) with the pre-existing users/items’ features from LightGCN,
without applying contrastive learning (Equation (10)).

4.3 Performance Comparison with Baselines (RQ1)

Table 2 compares our proposed PGCL model with four used baselines. We par-
ticularly compare PGCL to the strongest baseline, whose performance is high-
lighted with an underline in the table. From the table, we observe that for all
three datasets, PGCL outperforms all the baseline models on all metrics, and
statistically significantly in most cases according to the paired t-test with Holm-
Bonferroni correction. This result demonstrates the rationality and effectiveness
of injecting graph PE to the graph feature propagation layer and incorporating
the augmented positional and pre-existing node features (i.e. IDs). For a given
GNN-based method (NGCF, LightGCN, PGCLw{oCL, PGCL), we evaluate the
usefulness of leveraging the graph PE in enriching the user/item representations.
Comparing NGCF, LightGCN and PGCLw{oCL, we observe that PGCLw{oCL

performs generally better than both NGCF and LightGCN on all three used
datasets. This result demonstrates the benefit of injecting the learned positional
encoding into the pre-exiting users/items’ features to estimate the users’ prefer-
ences. On the other hand, as can be observed in Table 2, PGCLw{oCL performs
worse than PGCL on all three used datasets. This result illustrates the impor-
tance of contrastive learning in providing additional supervised signals during
training. For the contrastive learning method, we also evaluate the usefulness of
different augmentations by comparing our PGCL model with SGL and SimGCL.
Table 2 shows that the noise-based methods (SimGCL, PGCL) markedly out-
perform the dropout-based method (SGL) on both the Yelp2018 and Amazon-
Kindle datasets. This result shows the marginal effect of graph perturbation
and the effectiveness of using noise-based augmentation. Moreover, Table 2 also
shows that PGCL outperforms SimGCL by a large margin on all metrics (signifi-
cantly on Gowalla), which demonstrates that graph PE can enrich the user/item
representations as an additional feature. Hence, in answer to RQ1, we conclude
that our proposed PGCL model can effectively leverage both the graph positional
feature and the augmented user/item representations, thereby enhancing the ex-
isting graph recommender models with significant performance improvements.

4.4 Ablation Study (RQ2)

To investigate the impact of each component of our PGCL model and different
graph positional encodings (PE), Table 3 shows how the performance of PGCL
changes when we start with LightGCN as the basic graph encoder and apply
contrastive positional encoding on top of it so as to conclude on the effectiveness
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Table 2: Experimental results for PGCL in comparison to other baselines. The
best performance is highlighted in bold and the second best result is highlighted
with underline. ˚ denotes a significant difference compared to the result of PGCL
using the paired t-test with the Holm-Bonferroni correction for p ă 0.01.

Dataset Yelp2018 Gowalla Amazon-Kindle

Methods Recall@20 NDCG@20 Recall@20 NDCG@20 Recall@20 NDCG@20

NGCF 0.0502˚ 0.0417˚ 0.0889˚ 0.0592˚ 0.1893˚ 0.1285˚

LightGCN 0.0542˚ 0.0437˚ 0.0996˚ 0.0635˚ 0.2230˚ 0.1644˚

SGL 0.0563˚ 0.0449˚ 0.1071 0.0671 0.2331˚ 0.1726˚

SimGCL 0.0577 0.0466 0.1068˚ 0.0664˚ 0.2425 0.1801
PGCLw{oCL 0.0581˚ 0.0477˚ 0.1059˚ 0.0675˚ 0.2420˚ 0.1803˚

PGCL 0.0608 0.0501 0.1122 0.0699 0.2572 0.1934

%Improv. 5.37% 7.51% 4.76% 4.17% 6.06% 7.38%

of graph PE and contrastive learning. Table 3 shows that the PGCLLapPE vari-
ant, which uses the Laplacian eigenvalue and a representation level augmentation
achieves the best performance on all datasets. This promising result is due to
the addition of the unique learned positional features of the users/items and an
effective representation learning on the users/items’ embeddings. Specifically, we
observe from Table 3 that both LightGCNRWPE and LightGCNLapPE achieve
an effectiveness gain compared with LightGCN. This result demonstrates the
effectiveness of graph PE. One possible reason is that the graph PE denotes a
unique positional information to the user/item embedding in each feature prop-
agation layer. For the PGCLRWPE and the LightGCNRWPE variants, which
use a random walk operator in Table 3, there is a performance reduction com-
pared with PGCLLapPE and LightGCNLapPE , which indicates that a global ID
(LapPE) is more beneficial than a local ID (RWPE) for the user-item interaction
data in recommender systems. Moreover, we also observe that there is an effec-
tiveness improvement from LightGCNLapPE to PGCLLapPE . This suggests that
both the PE and the pre-existing users/items’ features provide an additional
supervised signal through contrastive learning. Hence, in answer to RQ2, we
conclude that PGCL successfully leverages graph positional encodings to learn
effective user/item representations in a contrastive learning scheme.

4.5 The Over-smoothing Problem (RQ3)

After showing that PGCL is effective in improving LightGCN, we now study the
characteristics of graph PE in terms of their usefulness against over-smoothing.
In this section, we investigate the over-smoothing problem by comparing PGCL
and LightGCN with different layer settings in Table 4. As shown in Table 4,
both PGCL and LightGCN reach their best effectiveness within 5 graph layers. In
addition, all PGCL variants are effective in improving LightGCN under different
layer settings on all used datasets. The largest improvements are observed on
the Amazon-Kindle dataset where PGCL can remarkably improve LightGCN
by 15.6% on Recall and 17.9% on NDCG with a 4-layer setting. Specifically,
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Table 3: PGCL performance in terms of Recall@20 and NDCG@20 on the used
datasets. ˚ denotes a significant difference compared to the result of PGCL using
the paired t-test with the Holm-Bonferroni correction for p ă 0.01.

Dataset Yelp2018 Gowalla Amazon-Kindle

Methods Recall@20 NDCG@20 Recall@20 NDCG@20 Recall@20 NDCG@20

LightGCN 0.0542˚ 0.0437˚ 0.0996˚ 0.0635˚ 0.2230˚ 0.1644˚

LightGCNRWPE 0.0556˚ 0.0458˚ 0.1014˚ 0.0631˚ 0.2303˚ 0.1713˚

LightGCNLapPE 0.0581˚ 0.0477˚ 0.1059˚ 0.0675˚ 0.2420˚ 0.1803˚

PGCLRWPE 0.0583˚ 0.0486˚ 0.1068˚ 0.0674˚ 0.2451˚ 0.1815˚

PGCLLapPE 0.0608 0.0501 0.1122 0.0699 0.2572 0.1934

Table 4: Performance comparison between PGCL and LightGCN at different
layers. The peak performance for each method is highlighted in bold.
Dataset Yelp2018 Gowalla Amazon-Kindle

Layers Methods Recall@20 NDCG@20 Recall@20 NDCG@20 Recall@20 NDCG@20

1 Layer
LightGCN 0.0531 0.0433 0.0982 0.0622 0.2214 0.1635

PGCL 0.0570 p`7.3%q 0.0477 p`10.2%q 0.109 p`11.0%q 0.0677 p`8.8%q 0.2553 p`15.3%q 0.1917 p`17.2%q

2 Layers
LightGCN 0.0519 0.0421 0.0993 0.0630 0.2225 0.1641

PGCL 0.0582 p`12.1%q 0.0493 p`17.1%q 0.1106 p`11.4%q 0.0686 p`8.9%q 0.2561 p`15.1%q 0.1921 p`17.1%q

3 Layers
LightGCN 0.0536 0.0435 0.0996 0.0635 0.2230 0.1644

PGCL 0.0580 p`8.2%q 0.0488 p`12.2%q 0.1112 p`11.6%q 0.0692 p`9.0%q 0.2565 p`15.0%q 0.1927 p`17.2%q

4 Layers
LightGCN 0.0542 0.0437 0.0991 0.0632 0.2224 0.1640

PGCL 0.0595 p`9.8%q 0.0496 p`13.5%q 0.1115 p`12.5%q 0.0697 p`10.3%q 0.2572 (+15.6%) 0.1934 (+17.9%)

5 Layers
LightGCN 0.0538 0.0427 0.0987 0.0630 0.2217 0.1637

PGCL 0.0608 (+13.0%) 0.0501 (+14.6%) 0.1122 (+13.7%) 0.0699 (+11.0%) 0.2562 p`15.6%q 0.1925 p`17.6%q

PGCL continues to reach a higher recommendation performance on the Gowalla
and Amazon-Kindle datasets with more layers while LightGCN already reaches
its peak performance at 3-layer. This result indicates that injecting the learned
graph positional encoding (PE) can benefit the general message passing scheme
by encoding the graph PE as additional features and can improve the expressive
power of LightGCN with an increased models’ depth. On the other hand, as can
be seen in Table 4, PGCL does not reach its peak performance at the highest layer
on the Amazon-Kindle dataset. This observation indicates that our PGCL model
tends to suffer from over-smoothing when using a higher number of layers. We
leave the investigation of the over-smoothing problem as a future work direction.

To further examine the effectiveness of the graph PE, we conduct a fur-
ther analysis on the over-smoothness values for both the 2-layer PGCL and
all 2-layer baselines. We use the over-smoothness of second-order embedding
to evaluate the PGCL’s capability of alleviating the over-smoothing problem.
Following He et al. [10], we calculate the users’ over-smoothness that have an
overlap on the interacted items. In particular, as in [10], we use a smoothness
metric to evaluate the over-smoothness of the users/items. A higher value in-
dicates less over-smoothing. Similarly we can also obtain the over-smoothness
for the item embeddings. Table 5 shows the over-smoothness values of PGCL
and the various used baseline models. The results show that our PGCL model
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obtains the largest O-Smoothnessu and O-Smoothnessi values, which indicate
that more effective user/item embeddings are generated with the learned graph
PE. Comparing LightGCN and PGCLw{oCL, we note that the graph positional
encoding exhibits a large gain on O-Smoothnessu and O-Smoothnessi while im-
proving the recommendation performance at the same time. We also compare the
impact of using the noise-based augmentation in addressing the over-smoothing
problem. According to the results in Table 5, PGCL outperforms PGCLw{oCL

both in over-smoothness and recommendation performance by a large margin,
which demonstrates the effectiveness of mining augmented user/item embeddings
through contrastive learning. Hence, in answer to RQ3, we conclude that PGCL
successfully alleviates the over-smoothing problem by injecting the learned graph
positional encoding to each feature propagation layer. This further shows that a
graph positional encoding learned with a separate message passing function can
lead to a more expressive graph recommender.

Table 5: Over-smoothness comparison of the 2-layer user/item embeddings be-
tween PGCL and the baselines. O-Smoothnessu and O-Smoothnessi represent
the over-smoothness of users/items, respectively. A higher over-smoothness value
indicates less over-smoothing (i.e. a higher value is better).

Dataset Yelp2018 Gowalla

Methods O-SmoothnessuÒ O-SmoothnessiÒ Recall@20Ò O-SmoothnessuÒ O-SmoothnessiÒ Recall@20Ò

LightGCN 10747.4 8318.5 0.0542 14634.6 6314.2 0.0996
SimGCL 12187.5 9932.3 0.0577 15043.1 6939.1 0.1068

PGCLw{oCL 13317.8 10177.4 0.0581 15257.4 7192.5 0.1063

PGCL 13978.4 11748.1 0.0608 16462.3 7936.8 0.1122

5 Conclusions

In this work, we proposed the PGCL model to tackle the over-smoothing prob-
lem of graph recommenders by leveraging graph positional encoding. Specifi-
cally, we used Laplacian eigenvector as graph positional encoding to endow the
user/item embedding in each feature propagation layer. In particular, we up-
dated the learned graph positional encoding with a separated message passing
function and merged it with the pre-existing users/items’ features. We further
encoded users/items’ preferences by contrasting the augmented user/item rep-
resentations with the learned graph positional encodings. Our results on three
benchmark datasets showed that PGCL effectively leverages graph positional
encoding along with the commonly-used graph recommenders and provides a
significant improvement in comparison with the existing baselines. Moreover, we
conducted an ablation study to investigate the effect of using different positional
encodings for our PGCL model and concluded that the Laplacian eigenvector is
more beneficial for the user-item interaction data. Furthermore, we showed that
PGCL is more expressive because it can stack more layers with an improved
recommendation performance while reducing the over-smoothness of user/item
embeddings compared to the baselines.
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