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An Algorithm to Find Ribbon Disks for Alternating Knots

Brendan Owensa and Frank Swentonb

aSchool of Mathematics and Statistics, University of Glasgow, Glasgow, UK; bDepartment of Mathematics, Middlebury College, Middlebury, VT, USA

ABSTRACT
We describe an algorithm to find ribbon disks for alternating knots, and the results of a computer imple-
mentation of this algorithm. The algorithm is underlain by a slice link obstruction coming from Donaldson’s
diagonalization theorem. It successfully finds ribbon disks for slice two-bridge knots and for the connected
sum of any alternating knot with its reverse mirror, as well as for 662,903 prime alternating knots of 21 or
fewer crossings. We also identify some examples of ribbon alternating knots for which the algorithm fails to
find ribbon disks, though a related search identifies all such examples known. Combining these searches with
known obstructions, we resolve the sliceness of all but 3276 of the over 1.2 billion prime alternating knots
with 21 or fewer crossings.

KEYWORDS
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1. Introduction

A knot is a smooth simple closed curve in the 3-sphere, considered up to smooth isotopy. A link is a disjoint union of one or more
knots. Knots and links are conveniently represented as diagrams, using projection onto a 2-sphere. A knot (or link) is said to be
alternating if it admits an alternating diagram, in which one alternates between overcrossings and undercrossings as one traverses
the knot. A great deal of geometric information may be gleaned from an alternating diagram: for example one may use it to easily
determine the knot genus [9, 24], whether the knot is prime or admits mutants [23], and whether it has unknotting number one [22].

A knot is said to be slice if it is the boundary of a smoothly properly embedded disk in the 4-ball. Slice knots were introduced by
Artin in the 1920s and have been studied extensively since the late 1950s. Applications include the definition of the knot concordance
group [14] and proofs of existence of exotic smooth structures on R4 [27].

The goal of this work is to find a method to determine from an alternating diagram whether a knot is slice, and in the affirmative
case, to explicitly exhibit such a slice disk. We will describe some partial progress toward this goal. In particular we will describe a
combinatorial algorithm that searches for slice disks for alternating knots. A knot is called ribbon if it bounds a slice disk to which
the radial distance function on the 4-ball restricts to give a Morse function with no minima. This is equivalent to the existence of a
sequence of band moves, n in number, which convert the knot to the unlink of (n + 1) components. Our algorithm finds such a disk
by following a sequence of band moves and isotopies which are compatible with certain factorizations of Goeritz matrices associated
to the alternating diagram. We call these disks and the knots which admit such disks algorithmically ribbon; as the following indicates,
these turn out to be quite common.

Theorem 1. All slice two-bridge knots are algorithmically ribbon, as are all connected sums K#−K of an alternating knot with its mirror
reverse and all but one slice prime alternating knot of 12 or fewer crossings. There are 662,903 algorithmically ribbon prime alternating
knots of 21 or fewer crossings.

An example of an algorithmic ribbon disk for the stevedore knot (61 in the Rolfsen table [28]) is shown in Figure 1. The figure
shows a band move and a sequence of isotopies resulting in a 2-component unlink. The decorations on the figure will be explained
later.

The algorithm is based on a slice obstruction for links coming from Donaldson’s diagonalization theorem [12], which applies
to links admitting certain special diagrams. This is well-known for alternating knots and has been used to great success by Lisca in
particular [20, 21]. Recall that the nullity η(L) of a link is equal to the first Betti number of its double branched cover, or equivalently to
the nullity of the Goeritz matrix of a connected diagram of the link. Nonsplit alternating links have nullity zero. In general the nullity
of a link is a lower bound for the number of nonalternating crossings in a connected diagram (Lemma 3.1). We consider the larger
class of minimally nonalternating links, where a link L is said to be minimally nonalternating if it admits a connected diagram with
η(L) nonalternating crossings. A ribbon disk for an alternating knot K is described by a sequence of band moves and isotopies from K
to an unlink. Each of the band moves increases nullity by one, and both K and the unlink are minimally nonalternating. Our algorithm
looks for such a sequence in which each intermediate diagram is minimally nonalternating and also bifactorizable. We say that a link
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2 B. OWENS AND F. SWENTON

Figure 1. The stevedore knot is algorithmically ribbon. Crossings which make each diagram nonalternating are marked with an asterisk.

diagram is bifactorizable if both of its Goeritz matrices admit a certain factorization described in Section 2. Bifactorizable diagrams
are always minimally nonalternating. Moreover, for minimally nonalternating diagrams, bifactorizability is equivalent to sliceness of
the link being unobstructed by Donaldson’s diagonalization theorem (Proposition 3.5). Each bifactorizable diagram admits a finite
set of band moves which preserve bifactorizability (Proposition 3.6). One of the key steps in our algorithm is to identify and test such
band moves. The other key step in the algorithm is to apply a sequence of simplifying isotopies to the diagram. These isotopies, called
generalized Tsukamoto moves, also preserve bifactorizability.

The algorithm may also be applied to alternating links of more than one component, or more generally to minimally nonalternating
links, to search for ribbon surfaces with prescribed Euler characteristic (Remark 2.6).

In Section 2 we describe the band moves and isotopies in more detail, and then in Section 3 we establish the underlying link
sliceness obstruction and provide some further background information. Section 4 contains proofs that all slice 2-bridge knots and
all knots of the form K# − K, for alternating K, are algorithmically ribbon, as well as a conjecture which says that alternating knots
which admit ribbon disks with a single saddle point are in fact algorithmically ribbon. Section 5 describes the implementation of
the algorithm, which is built into the software package KLO of the second author. This software, together with search results and
instructions for using the algorithm on examples, is available from www.klo-software.net/ribbondisks. Section 6 describes the results
of the algorithm when applied to alternating knots of small crossing number. Section 7 describes a search for escapees, which are
ribbon alternating knots which are not algorithmically ribbon, though they really want to be; combining this with obstructions due
to Fox-Milnor and Herald-Kirk-Livingston, the result is a resolution of the question of sliceness for all but 3276 of the over 1.2 billion
prime alternating knots of at most 21 crossings, including all such knots of crossing number at most 15.

www.klo-software.net/ribbondisks
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Figure 2. Coloring conventions. An alternating and a nonalternating crossing.

2. Algorithmic band moves and isotopies

In this section we describe some special embedded surfaces in the 4-ball called algorithmic ribbon surfaces, which will be realized as
sequences of moves applied to link diagrams.

Following Tait [32] and Goeritz [15], we make use of chessboard colorings of knot and link diagrams. As usual, a link diagram is
a 4-valent graph embedded in S2 with over- and undercrossings indicated at the vertices, which are then referred to as crossings. A
chessboard coloring of a link diagram is a coloring of the regions in the complement of the graph using two colors, white and black,
with the regions on either side of any edge having different colors. A chessboard-colored diagram of L gives rise to a spanning surface
Fb, called the black surface: this is obtained by gluing the black regions of the diagram, with a half-twisted band at each crossing.
For alternating diagrams we follow the coloring convention shown in Figure 2(a). In a general diagram we refer to crossings colored
as in Figure 2(a) as alternating crossings, and to crossings colored as in Figure 2(b) as nonalternating crossings, which we label with
asterisks. We define an alternating diagram to be one that admits a chessboard coloring without nonalternating crossings; Greene
and Howie have recently shown that the resulting black and white surfaces give rise to a topological characterization of nonsplit
alternating links [17, 19].

A chessboard-colored link diagram gives rise to two Goeritz matrices as we now recall, cf. [15, 16]. Choose a labeling R0, . . . , Rm
of the white regions of the diagram. To each crossing c in the diagram we associate a number ε(c) which is +1 if c is an alternating
crossing and −1 if c is a nonalternating crossing. We form a matrix Ĝ with m + 1 rows and columns whose entries are as follows:

gij =
{

−∑
ε(c), summed over crossings incident to Ri and Rj, if i �= j

−∑
k�=i gik, if i = j.

The black Goeritz matrix Gb of the diagram is then defined to be the matrix obtained by omitting the 0th row and 0th column of Ĝ.
A spanning surface for a link L in S3 is an embedded surface F, without closed components, bounding L in S3. An example is given

by the black surface of a chessboard-colored diagram. The Gordon-Litherland pairing on H1(F;Z) is given by

λ([a], [b]) = lk(a, τb),

where the linking number is taken between a and the double normal push-off τb of b. This agrees with the symmetrized Seifert
pairing if F happens to be orientable. We have the following result of Gordon and Litherland [16].

Theorem 2.1. The lattice (H1(F;Z), λ) is isomorphic to the intersection lattice of the 4-manifold XF given as the double cover of D4

branched along a copy of the surface F with its interior pushed inside the 4-ball.

In general a lattice � is a pair consisting of a finitely generated free abelian group together with a symmetric integer-valued bilinear
pairing. The rank of the lattice is the rank of the underlying group.

A basis for the first homology of a connected Fb is given by curves, each of which winds once around one of the white regions
R1,…,Rm as above. When Fb is disconnected, one or more of the white regions Ri may have more than one boundary component,
in which case the corresponding basis element is a multicurve in Fb with one curve for each boundary component of Ri, oriented as
the boundary of Ri. The black Goeritz matrix Gb is the matrix of the Gordon-Litherland form with respect to this basis. The lattice
�b := (H1(Fb;Z), λ) is called the black Goeritz lattice, or simply the black lattice, of the diagram.

We define the white Goeritz matrix Gw and the white lattice �w of the diagram to be equal to the black Goeritz matrix and lattice of
the mirror diagram, obtained by reversing every crossing in D, with black and white switched. By Theorem 2.1, �b is the intersection
lattice of the double cover of the 4-ball branched along the pushed-in black surface of D. Similarly �w is the intersection lattice of the
double cover of the 4-ball branched along the pushed-in white surface of D, with orientation reversed. Note that we have chosen our
conventions so that both Goeritz lattices of an alternating diagram are positive definite.

Recall that a μ-component link is a smooth embedding of the disjoint union of μ circles into S3. The diagram components of a
diagram of a link are the connected components in S2 of the given projection; thus, the number of diagram components is less than
or equal to the number of components of the link.
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Given a lattice � = (H, λ) we let �0 denote its nullspace; this is the subspace consisting of elements a ∈ H with λ(a, b) = 0 for all
b ∈ H. For a general chessboard-colored diagram, the Goeritz lattices may have nontrivial nullspaces. Quotienting each Goeritz lattice
by its nullspace gives rise to a lattice with a nondegenerate pairing. Let D be a chessboard-colored diagram with m + 1 white regions
and n + 1 black regions. We say that D is bifactorizable if each of these nondegenerate Goeritz quotients embeds as a finite-index
sublattice of a standard diagonal lattice. That is to say, D is bifactorizable if there exist lattice embeddings

�b/�
0
b → Zm′

, and

�w/�0
w → Zn′

,
(1)

where m′ = rk(�b/�
0
b) = m − rk �0

b and n′ = rk(�w/�0
w) = n − rk �0

w. We will see in Lemma 3.3 that these ranks can be read off
from the diagram as follows:

m′ = m − k − lw + 1, and
n′ = n − k − lb + 1,

where k is the number of nonalternating crossings in D and lb (respectively, lw) is the number of components of the black (resp.,
white) surface. In particular, for a connected alternating bifactorizable diagram, m = m′ and n = n′.

Such embeddings as in (1) are equivalent to a pair of lattice morphisms

�b → Zm′
, and

�w → Zn′
,

(2)

with finite-index images.
Choosing a basis of regions as above for each of the Goeritz lattices, and an orthonormal basis for each standard diagonal lattice,

we see that bifactorizability is equivalent to the existence of matrices A ∈ M(m′ × m,Z) and B ∈ M(n′ × n,Z) satisfying

Gb = ATA,
Gw = BTB,

the existence of which can be determined algorithmically, see, for example, [26]. We represent a bifactorization on a diagram as
follows. In each white region, representing a generator of �b, we write the corresponding element of Zm′ , in terms of the standard
basis e1, . . . , em′ ; the coefficients are the entries of the corresponding column of A. We similarly write an element of Zn′ , in terms of
the basis f1, . . . , fn′ , in each black region, using the entries of B; for an example, see Figure 1. Note that the lattice morphism is easily
extended to the region R0, which was excluded when calculating the Goeritz matrix, by noting that the lattice elements corresponding
to the white regions R0, . . . , Rm sum to zero.

A band move on a link L in S3 is represented by a smoothly embedded rectangle β in S3 with opposite ends attached to L and the
rest of the rectangle embedded in the complement of L. The result of the band move is the link L′ which is obtained by removing the
ends of the rectangle β from L and adding the other two sides, followed by smoothing. Suppose that we are given a diagram D for a
link L and a band move, in the form of a rectangle β , which we wish to apply to L. We may assume that β is put in standard position
on D, by which we mean that it is represented by an arc with endpoints on the diagram, intersecting the diagram transversely in a
number of crossings, and with no self-crossings, together with an integer on each component of the intersection of the arc with the
complement of the diagram. The arc is the core of the band. The integers count the number of half-twists relative to the blackboard
framing, and their sum is called the twist number of the band. Every band may be put in standard position as the reader may verify;
in particular, self-crossings may be successively replaced by pairs of crossings between the core of the band and D by isotopy. The
length of a band β in standard position is the number of regions it crosses, counted with multiplicity, or equivalently one fewer than
the number of intersections between the core and D. The first move in Figure 1 is a band move whose band has length and twist
number equal to one. The band shown on the left in Figure 3 has length one and twist number −1, and that on the right has length
two and twist number zero.

The following definitions describe some special band moves and isotopies which we will search for in order to find ribbon disks
for (some but not all) slice alternating knots.

Figure 3. Candidate algorithmic bands. For the length-one band, the twist is chosen such that the new crossing is non-alternating; for the length-two band, one of the two
crossings will be non-alternating, depending on the chessboard coloring of the diagram and whether the band crosses over or under.
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Figure 4. Flype. Here
∑

v (resp.,
∑

w) is a sum over all the white (resp., black) regions in the tangle. Vectors associated to white regions in the tangle are multiplied by −1
in this move; vectors associated to black regions in the tangle are unchanged. Note also that a special case of the flype is to move a connected summand past a crossing.

Definition 2.2. Let D be a bifactorizable diagram. An algorithmic band for D is a band β which is either

(1) of length 2 with twist number 0, or
(2) of length 1 with twist number ±1, with sign chosen so that the crossing introduced is nonalternating,

and for which the diagram obtained from D by applying the band move determined by β is bifactorizable.

Candidate algorithmic bands are shown in Figure 3. It is important to note that there are finitely many such bands in any diagram,
and that most such bands in a given bifactorizable diagram will not satisfy the bifactorizability condition.

In this paper we take a tangle diagram to mean part of a diagram which is contained in a disk. A tangle diagram replacement is
then a modification of a diagram preserving the part of the diagram outside that disk.

Definition 2.3. A generalized Tsukamoto move is a tangle diagram replacement �1 → �2 satisfying the following properties:

(1) isotopy: �2 is isotopic to �1 relative to boundary;
(2) crossings: �2 has at most as many crossings as �1, and the same sum of number of components plus number of nonalternating crossings

as �1;
(3) bifactorizability is preserved: any bifactorization of a diagram containing �1 gives rise to one for the diagram with �1 replaced by

�2, and vice versa.

Figures 4–9 contain examples of generalized Tsukamoto moves. In each case one may obtain further moves by reflecting the
diagram and switching black and white. Other versions of the 3-flype move in Figure 9 may be obtained by replacing the diagram on
the right as follows: first simplify the diagram on the left in the obvious way by undoing the half twist in three strands on either side of
the tangle, and turning the tangle over. Then place a “floating loop,” as shown in Figure 20, around the tangle, either entirely over or
entirely under the rest of the diagram, and resolve one of the three resulting nonalternating crossings. One can then obtain another
version from each of these by reflecting the diagram and switching black and white. We sometimes refer to generalized Tsukamoto
moves as AA-simplifications, where AA stands for “almost alternating.” We are grateful to Tatsuya Tsukamoto who suggested the move
shown in Figure 8. The moves in Figures 4–6 were shown by Tsukamoto in [34] to be sufficient to simplify any almost-alternating
diagram of the two-component unlink (see Theorem 3.7).

We briefly justify the preservation of bifactorizability in the case of one color for the flype move in Figure 4; the arguments are
similar for the other color and the other moves.

Lemma 2.4. If the labels on the black regions of the left hand diagram of Figure 4 extend to an embedding in Zn of the white lattice of a
diagram, then so do those in the right hand diagram.

Proof. Let Ri denote the black regions labeled by vectors wi for i ∈ {1, 2, 3} in the left hand diagram of the figure. We assume that
the regions R1 and R2 are distinct (if not the diagram is to be interpreted as associating the vector w1 + w2 to the common region).
First of all, any black region R′ not shown in the diagram has some vector w′ associated to it that remains unchanged for the diagram
on the right. Since R′ does not share any crossings with R2 or any region in the tangle, it follows that

w′ · w1 = w′ · (w1 + w2 +
∑

w),

w′ · w3 = w′ · (w2 + w3),

0 = w′ · (−w2 −
∑

w),

where
∑

w denotes the sum of vectors associated to all black regions in the tangle box. We see that this correctly matches the Goeritz
lattice pairings for the region R′.

Similarly for any black region R in the tangle box on the left hand diagram, we let w be the vector associated to it by the Goeritz
lattice embedding. Recalling that the sum of all black regions is zero in the Goeritz lattice, and noting that the only black regions
which may share crossings with R are the other regions in the tangle box together with R1 and R2, we conclude that

w · w3 = w · (w1 + w2 +
∑

w) = 0.
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Figure 5. Reidemeister moves preserving bifactorizability. Note that both moves preserve the sum of number of diagram components plus number of nonalternating
crossings. Note also that Reidemeister 3 moves change the number of nonalternating crossings and do not preserve bifactorizability.

Figure 6. Untongue move.

Figure 7. Almost-alternating clasp move.

From this we see that w · w1 = w · (−w2 − ∑
w) and w · w2 = w · (w2 + w3). Since the number of crossings between R and any

other black region in the tangle box is unchanged by the flype, we conclude that the labels on the right hand diagram give the correct
lattice pairings for the region R.

Finally we note that the region R2 has no crossings with any region outside of the portion of the diagram shown, from which it
follows that

w2 · (w1 + w2 + w3 +
∑

w) = 0
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Figure 8. Untongue-2 move.

Figure 9. The 3-flype move. Here
∑

v (resp.,
∑

w) is a sum over all the white (resp., black) regions in the tangle. Vectors associated to white regions in the tangle are multiplied
by −1 in this version of the move; black regions in the tangle are unchanged.

and hence

1 = w2 · w3 = −w2 · (w1 + w2 +
∑

w) = (−w2 −
∑

w) · (w1 + w2 +
∑

w).

We conclude that the vector labels on the right hand diagram represent an embedding of its Goeritz lattice as required.

We recall that a surface F in the 4-ball may be perturbed so that the radial distance function ρ restricts to give a Morse function on
F. This gives rise to an embedded handle decomposition or movie presentation of F, in which minima appear as split disjoint unknots,
maxima manifest as disappearing split unknots, and saddles appear as band moves. An isotopy of the link may be interpreted as an
embedded cylinder between two levels of ρ.

Definition 2.5. Let L be a nonsplit alternating link. An algorithmic ribbon surface for L is a surface embedded in the 4-ball which is
represented by a sequence of algorithmic band moves and generalized Tsukamoto moves, starting with a nonsplit alternating diagram of
L and ending with a crossingless unlink diagram. If such a surface exists, we say that L is algorithmically ribbon.

We note that algorithmic ribbon surfaces have Euler characteristic one: each algorithmic band move introduces one nonalternating
crossing and preserves the number of diagram components, and each generalized Tsukamoto move preserves the sum of the number
of nonalternating crossings plus the number of diagram components. It follows that the number of components of the unlink at the
end of the sequence in Definition 2.5 is equal to one plus the number of band moves in the sequence, so that the surface has Euler
characteristic one. If the starting point of the sequence is a knot diagram, then the sequence represents a disk, which we call an
algorithmic ribbon disk. Note also that given a sequence of candidate algorithmic bands and generalized Tsukamoto moves, starting
with a connected alternating diagram D and ending with a crossingless unlink diagram, one can work backwards from the crossingless
diagram to uniquely obtain a bifactorization of each diagram in the sequence, so that the sequence in fact represents an algorithmic
ribbon surface. One could thus search for such surfaces without checking the bifactorizability condition, but in practice such a search
would be very slow due to the large number of candidate algorithmic bands to consider.

For nonsplit alternating links with more than one component, algorithmically ribbon does not imply slice; rather it implies that
the link bounds a surface of Euler characteristic one, not necessarily orientable, with no closed components. Such links were called
χ-slice in [11].

Remark 2.6. The algorithm may be applied more generally to minimally nonalternating links, as defined in the next section. An
algorithmic surface for a minimally nonalternating link L of nullity η is a ribbon surface of Euler characteristic η + 1. If the number
of components of L is equal to η + 1, then an algorithmic surface for L consists of η + 1 disjoint disks.

Remark 2.7. Note that an algorithmic ribbon surface does not have to be orientable in general, and thus in particular algorithmic bands
do not respect link orientation. In the case of an alternating knot, however, an algorithmic surface is in fact a disk, and so a posteriori
we deduce that all of its algorithmic bands do in fact respect an orientation of the original knot. More generally one may observe, for
example using Turaev’s theorem relating spin structures on the double branched cover of a link and orientations [36], that the nullity of
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a link is bounded above by the number of components minus one. It follows from this, or from the previous remark, that if a minimally
nonalternating link has nullity equal to the number of its components minus one, then each successive algorithmic band must in fact
increase the number of components, and is thus compatible with any orientation of the link.

3. Obstructions and conjectures

Recall that the nullity η(L) of a link in S3 is the rank of the nullspace of a Goeritz matrix of a connected diagram of L. Equivalently,
it is the first Betti number of the double cover of S3 branched along L, noting that the Goeritz matrix is the intersection form of a
simply-connected 4-manifold bounded by the double branched cover. The following lemma gives a generalization of the fact that,
with our conventions from Section 2, both Goeritz matrices of a nonsplit alternating diagram are positive definite.

Lemma 3.1. Let L be a link in S3, and let D be a chessboard-colored diagram of L with l diagram components and k nonalternating
crossings. Then the nullity of L is bounded above by k + l − 1,

η(L) ≤ k + l − 1. (3)

Moreover, equality is attained in (3) if and only if both Goeritz matrices of D are positive semi-definite. In particular, if D is bifactorizable
then equality is attained in (3).

Proof. We will give a topological proof involving double branched covers; a proof along the lines of [17, Proposition 4.1] should
also be possible. Given any chessboard-colored diagram D of a link L, one may form the smooth closed oriented manifold X =
�2(S4, Fb ∪ Fw) that is the double cover of S4 along the union of the black and white surfaces, with the interior of the black surface
pushed into one hemisphere and the white into the other. We fix the orientation by specifying that the 3-sphere is the oriented
boundary of the hemisphere into which the black surface is pushed. By construction, this manifold splits along the double branched
cover of L into two pieces whose intersection lattices are the Goeritz lattices of D. In other words,

X = X1 ∪ X2,

where X1 is the double cover of the 4-ball branched along the pushed-in black surface of D, and X2 is the double-branched cover of
the white surface, with orientation reversed.

Consider first a one-crossing diagram of the unknot. Choose a chessboard coloring so that the black surface is a Möbius band and
the white surface is a disk. Then �2(S4, Fb ∪ Fw) is CP2 if the crossing is alternating and CP2 if the crossing is nonalternating (see,
for example, [4]).

Now consider a general diagram D as in the statement. If the diagram is disconnected, then one may apply a Reidemeister 2
move (reversing that shown in Figure 5). This reduces the number of diagram components by one and increases the number of
nonalternating crossings by one. It also leaves one Goeritz matrix unchanged and adds a zero row and column to the other, preserving
semi-definiteness for both. Thus it suffices to prove the lemma for a connected diagram. Assume therefore that D is a connected
diagram with k nonalternating crossings, and we wish to show that

η(L) ≤ k.

Removing a small ball around each crossing gives a diagram in a punctured disk whose black and white surfaces together form
a punctured unknotted sphere; the double branched cover is then a punctured S4. Filling in each puncture corresponds to taking
connected sum with the double branched cover arising from a one-crossing diagram. Thus, for a connected diagram with j alternating
crossings and k nonalternating crossings,

X = X1 ∪ X2 = �2(S4, Fb ∪ Fw) ∼= jCP2#kCP2.

From the Mayer-Vietoris sequence together with the fact that, since D is connected, X1 and X2 admit handlebody decompositions
consisting of one 0-handle and some number of 2-handles [3, 4], we see that the second Betti number of X is the sum of those of X1
and X2; also by Novikov additivity, the signature of X is the sum of those of X1 and X2. Moreover from the long exact sequence of the
pair (Xi, ∂Xi), we see that, for a connected diagram, the rank of the nullspace of H2(Xi) is η(L). This yields

j + k = b+
2 (X1) + b−

2 (X1) + b+
2 (X2) + b−

2 (X2) + 2η(L) and
j − k = b+

2 (X1) − b−
2 (X1) + b+

2 (X2) − b−
2 (X2),

from which we find

k = b−
2 (X1) + b−

2 (X2) + η(L).

This gives η(L) ≤ k, with equality if and only if both X1 and X2 are positive semi-definite.
For the last sentence of the statement, observe that if a diagram is bifactorizable, with lattice morphisms as in (2), then it follows

that both Goeritz lattices �b and �w are positive semi-definite.
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We say that a link diagram is minimally nonalternating if it attains equality in (3). By Lemma 3.1, this is equivalent to both Goeritz
matrices of the diagram being positive semi-definite, with our conventions from Section 2. We say a link is minimally nonalternating
if it admits a minimally nonalternating diagram. Minimally nonalternating links have been studied in unpublished work of the first
author with P. Lisca and L. Watson; they may be seen as a natural generalization of alternating links.

Remark 3.2. It would be interesting to know if the characterization of nonsplit alternating links due to Greene and Howie [17, 19] extends
to links with diagrams attaining equality in (3). In other words, is existence of a minimally nonalternating diagram for L equivalent to
existence of positive semi-definite surfaces in S3 for both L and its mirror?

We now confirm the rank formulae given in Section 2 for a bifactorizable diagram.

Lemma 3.3. Let D be a bifactorizable link diagram, with m + 1 white regions, n + 1 black regions, and k nonalternating crossings. Let lb
be the number of components of the black surface and let lw be the number of components of the white surface. The rank of the quotient
of the black Goeritz lattice by its nullspace is

rk(�b/�
0
b) = m − k − lw + 1,

and similarly

rk(�w/�0
w) = m − k − lb + 1.

Proof. As noted above, bifactorizability implies equality in (3) by Lemma 3.1. Also the nullity η of L is equal to the nullity of either
Goeritz form of any connected diagram. Note that the R2 move shown in Figure 5 changes the rank of �0

b by one but does not change
�w. By consideration of shading in each of a minimal sequence of R2 moves to transform D to a connected diagram, we find that

η = rk �0
b + lb − 1,

and also that the number of components of D is l = lb + lw − 1. Combining these identities with the equality in (3) yields the formula
for the rank of �b/�

0
b, and the same argument applies to the white lattice.

Proposition 3.4. Let F be a smoothly properly embedded surface in the 4-ball with no closed components and bounded by a link L in S3.
Then the Euler characteristic of F is bounded above by one plus the nullity of L,

χ(F) ≤ η(L) + 1. (4)

If equality is attained in (4) then the double cover �2(D4, F) of the 4-ball branched along F is a rational homology η(L)(S1 × D3).

Proof. This follows easily from the proof of [1, Proposition 3.1].

A μ-component link is said to be strongly slice if it bounds μ disjoint smoothly properly embedded disks in the 4-ball. Strongly
slice links with their slicing disks attain equality in (4). We note that the following proposition gives an obstruction for a minimally
nonalternating link to be strongly slice.

Proposition 3.5. Let L be a link in S3, and let D be a chessboard-colored diagram of L with l diagram components and k nonalternating
crossings. Suppose that L bounds a smoothly properly embedded surface � in the 4-ball with no closed components and with χ(�) = k+l.
Then D is bifactorizable.

Proof. Let X1 = �2(D4, Fb) be the double cover of the 4-ball branched along the black surface of the diagram D, and let X2 =
−�2(D4, �) be the double-branched cover of the surface �, with reversed orientation. Let Y = ∂X1 = −∂X2 denote the double
cover of S3 branched along L. The assumption that χ(�) = k + l shows that in fact equality is attained in both (3) and (4). By
Lemma 3.1, X1 is positive semidefinite, and by Proposition 3.4, X2 is a rational homology η(L)(S1 × D3).

By the long exact sequences of the pairs (Xi, Y) we have that the image of the inclusion-induced map H2(Y ;Z) → H2(X1;Z) is
the nullspace of the intersection lattice �b of X1, and the inclusion-induced map H1(Y ;Q) → H1(X2;Q) is an isomorphism. Then
the Mayer-Vietoris homology sequence with integer coefficients for X = X1 ∪ X2 shows that H2(X;Z) contains the quotient of �b
by its nullspace as a finite-index sublattice. It follows that X is a smooth closed positive-definite manifold, which then has a standard
intersection lattice by Donaldson’s diagonalization theorem [12], so that the inclusion map of X1 into X induces a finite-index lattice
embedding

�b/�
0
b → Zb2(X),

as required.
The same argument applied to the mirror of D with the other chessboard coloring yields a finite-index embedding of �w/�0

w in
a standard diagonal lattice.
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The results above guide our search for ribbon disks for alternating knots. An alternating knot has nullity zero, and a disk has Euler
characteristic one. More generally suppose we have a link L with a chessboard-colored diagram D, with m + 1 white regions, n + 1
black regions, k nonalternating crossings, and l diagram components, and admitting equality in (3), and we seek a slice surface � as
in Proposition 3.5 with equality in (4). We first check if the given diagram is bifactorizable; if not we know that no such slice or ribbon
surface exists. If it is bifactorizable we will attempt to find a ribbon surface � with χ(�) = k + l. Such a surface admits a movie
presentation in the form of a sequence of b band moves and isotopies applied to the initial diagram and ending up with a diagram of
the (b + k + l)-component unlink. A band move can change the nullity of a link by at most one, and the nullity of the unlink exceeds
that of L by b, and thus each band move increases the nullity by one. Each intermediate link in the sequence bounds the surface given
by attaching bands as 1-handles to the black surface for the diagram D. The double branched cover of this surface embeds in the
closed positive-definite manifold X = �2(S4, Fb ∪ −�) with b2(X) = m − k − l + 1 as in the proof of Proposition 3.5. A naive
approach, which yields success surprisingly often, is to ask that such an embedding exists for the double branched cover of the black
surface of the diagram obtained from D by applying the given band moves. A similar discussion applies to the white surface. Thus,
our algorithm seeks bands with the following property: they increase the nullity by one, and they preserve bifactorizability and also
the ranks of the target diagonal lattices as in (2). It turns out that there are only finitely many such bands in any given diagram.

Proposition 3.6. Let D be a bifactorizable diagram, and let β be a band in standard position with respect to D. Let D′ be the diagram
resulting from D by applying the band move determined by β. Let m + 1, n + 1, k, l, lb, lw (respectively, m′ + 1, n′ + 1, k′, l′, l′b, l′w) denote
the number of white regions, black regions, nonalternating crossings, diagram components, black surface components, and white surface
components of D (respectively, of D′). Suppose that D′ is bifactorizable and the nullity of D′ is one greater than the nullity of D, and that
the ranks as in (2) are preserved:

m′ − k′ − l′w = m − k − lw,
n′ − k′ − l′b = n − k − lb.

(5)

Then β has length one, two, or three, and has twist number zero. If β is of length one or three, then it disconnects two connected summands;
moreover if it is of length three, then it is isotopic via generalized Tsukamoto moves to an untwisted band of length one. If it is of length
two, then it is untwisted locally as well as globally, or in other words appears as in the right hand side of Figure 3.

Proof. A bifactorizable diagram gives rise to equality in (3). Thus, since the band move increases nullity by one, it follows that

k′ + l′ = k + l + 1. (6)

Disconnected diagrams may be converted to connected diagrams by R2 moves or by planar connected sum bands, each of which
also connects two components of one of the black and white surfaces; it follows as in the proof of Lemma 3.3 that

l = lb + lw − 1.

A similar argument combined with Euler’s formula for connected planar graphs shows that the crossing number of D is given by

cr(D) = m + n − l + 1.

Summing the equations in (5) then yields

cr(D′) − cr(D) = 2(k′ − k),

or in other words that the band β introduces an even number of crossings, half of which are nonalternating.
Suppose now that the band β has length λ > 1. This means that the band crosses arcs of the diagram D, over or under, λ − 1

times, giving rise to 2λ − 2 crossings, half of which are nonalternating. We claim that these are the only new crossings in D′, or in
other words that the band β has no twisting in any region. This follows from the fact that both Goeritz lattices of a bifactorizable
diagram are positive semi-definite. First note that the band β cannot have an alternating twist adjacent to a nonalternating twist, as
these would give rise to a 2-sided region having square zero in the Goeritz lattice, but nonzero intersection with two adjacent regions,
contradicting positive semi-definiteness. Now suppose there is any twisting in the band. This has to give rise to an equal number of
alternating and nonalternating crossings, so in particular there must be some nonalternating crossing within the band that is adjacent
to a crossing of the band over or under an arc of the diagram D; this gives rise to a triangular region with square −1 in the Goeritz
lattice, again contradicting positive semi-definiteness.

Thus, the band β introduces exactly 2(λ − 1) crossings, from which we conclude that k′ − k = λ − 1, and then from (6) we have

l − l′ = λ − 2.

In other words, if the length λ is greater than one, then the band reduces the number of diagram components by λ − 2.
Choose an orientation of the core of the band so that we may refer to regions on the left and on the right. Label the regions on the

left A1, A2, …, Aλ in order along the band, and label the regions on the right of the band B1, B2, …, Bλ. For 1 < i < λ, the regions
Ai and Bi are separated by a rectangle Ci in the band, as in Figure 10, which has two alternating crossings and two nonalternating
crossings and hence square zero in the Goeritz lattice. It follows from semi-definiteness that Ci cannot have nonzero pairing with any
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Figure 10. Regions around a band.

Figure 11. Regions around bands of length three.

Figure 12. An uninteresting band of length three.

other element of the lattice. We see that Ci shares a crossing with each of Ai−1, Bi−1, Ai+1, and Bi+1, from which it follows that these
four regions are not in fact distinct in the diagram; they are connected in such a way that the Goeritz pairings with Ci cancel out.

We now establish that this rules out bands of length greater than 3. If λ > 3, then we cannot have A1 and A3 being the same region,
as this would isolate A2 giving a nonzero pairing between A2 and C3, contradicting semi-definiteness. In the same way we cannot
have B1 = B3, A1 = B3, or A3 = B1. The only remaining way to have the regions connect to give zero pairing with C2 is to have
A1 = B1 and A3 = B3. The same argument applies along the band to show that in fact we must have Ai = Bi for i = 1, . . . , λ. This
implies that in fact the band reduces the number of diagram components by λ, which is a contradiction.

We next consider an untwisted band of length λ = 3. Label the regions as in Figure 11. Again we see there is a rectangular region
C2 in the band which has square zero and thus cannot have nonzero pairing with any other region. Suppose now that C2 has two
nonalternating crossings on the same side of the band (left or right), as in the first diagram in Figure 11. It follows that A1 = B1 and
A3 = B3 (and possibly all four are the same region). This implies that the band reduces the number of diagram components by at
least two, which is a contradiction.

Suppose then that we have a band of length 3 as in the second diagram in Figure 11, with one nonalternating crossing on each side
of the band. We again see that A1 = B1 implies A3 = B3 and the band reduces the number of diagram components by at least two.
We conclude that A1 = A3 �= B1 = B3, giving a band of the form shown in Figure 12, which disconnects two connected summands.
Moreover, this band can be isotoped to a length one band, as shown in Figure 12, by a sequence of generalized Tsukamoto moves
(two flypes and two R2 moves).

Finally we consider the case of length one. Label the regions adjacent to the band as in Figure 13. Note that as above the band must
introduce the same number of alternating and nonalternating crossings, and one cannot have two adjacent nonalternating crossings
as these would lead to a 2-sided region with negative square in the Goeritz lattice, contradicting positive semi-definiteness. Any two
adjacent crossings in the band then yield a 2-sided region of square zero, which cannot have nonzero pairing with any other region.
It follows that the band either has no twisting, with k′ = k, or has one alternating and one nonalternating crossing, with k′ = k + 1,
and the latter case can only occur if C1 = C2.

We first consider the case C1 = C2. As above, the band is either untwisted or has one alternating and one nonalternating crossing.
These two possibilities are related by an R2 move, and both have the effect of disconnecting a connected sum.
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Figure 13. Regions around a band of length one. The horizontal arc is the core of the band.

The second case to consider is A1 = B1. This implies l′ = l − 1 and then k′ = k + 2 by (6), which we have seen is impossible. The
final case is A1 �= B1 and C1 �= C2. This implies l′ = l and k′ = k + 1, but we have seen that this can only happen if C1 = C2.

The preceding proposition motivates the definition of algorithmic bands given in Definition 2.2. A couple of remarks are in order.
First of all, we do not include untwisted bands of length one or three which disconnect a connected sum, even though these appear in
the statement of Proposition 3.6. This is because, based in part on consideration of examples, we do not expect these to be useful in
finding ribbon disks. Algorithmic ribbon disks for prime alternating knots may indeed have intermediate links which are nonprime.
However, an algorithmic ribbon disk incorporating such a band β will include subsequent algorithmic bands which convert each of the
connected summands to unlinks, and we expect that these bands would suffice without the band move determined by β . Secondly, we
include bands of length one and twist number one, with one nonalternating crossing in the band, and for which the resulting diagram
D′ is bifactorizable. This is simply a computational short cut; such a band move is equivalent to a length two untwisted algorithmic
band followed by an R1 move.

Finally it is interesting to compare our resulting candidate algorithmic bands as in Figure 3 to those appearing in a slightly different
context in [6, Conjecture 11.2 and Figure 31].

We now recall a theorem of Tsukamoto and state a conjectured generalization of it. These are intended to offer some insight into
the success of the generalized Tsukamoto moves in the algorithm. These moves are typically necessary after each band move in order
to find the next band move, or to simplify to a crossingless diagram when a band move results in the unlink.

Tsukamoto used variants of the moves in Figures 4–6 to simplify almost-alternating diagrams of the unknot and 2-component
unlink [34, 35]. In particular, the main theorem of [34] implies the following. Here a k-almost alternating diagram is a diagram with
k nonalternating crossings.

Theorem 3.7. Every 1-almost alternating diagram of the 2-component unlink may be converted to the standard crossingless diagram by
a finite sequence of flypes, untongue moves, Reidemeister 1 moves and a single Reidemeister 2 move.

We conjecture a generalization of Tsukamoto’s result, which is relevant to the algorithm we describe later in this paper.

Conjecture 3.8. Let k be a natural number. Then there exists a finite set Uk of generalized Tsukamoto moves such that each k-almost
alternating diagram of the (k+1)-component unlink may be converted to the standard crossingless diagram by a finite sequence of moves
from Uk.

4. Examples

In this section we give some examples of algorithmically ribbon knots and links, and state a conjecture. Further examples may be
found on the accompanying web page at www.klo-software.net/ribbondisks.

A recent paper of Brejevs has made use of our algorithm in the study of alternating 3-braid closures [7]; he exhibits ribbon surfaces
with Euler characteristic one for several families of these. Although not explicitly verified there, it seems reasonable to conclude that
all alternating 3-braid closures which are currently known to be χ-slice are in fact algorithmically ribbon.

Proposition 4.1. Two-bridge links which bound smoothly embedded Euler characteristic one surfaces in the 4-ball without closed
components are algorithmically ribbon.

Proof. For the definition and notation for two-bridge links, see [20] or [25]. Two-bridge links which bound smoothly embedded
Euler characteristic one surfaces in the 4-ball without closed components were classified and shown to bound ribbon surfaces by
Lisca [20]. Up to mirroring, these may be divided into six families as follows:

(a) S(m2, mq ± 1), with m > q > 0 and (m, q) = 1;
(b) S(m2, mq ± 1), with m > q > 0 and (m, q) = 2;
(c) S(m2, d(m − 1)), with m2/(m − 1) > d and d divides 2m + 1;
(d) S(m2, d(m − 1)), with m2/(m − 1) > d and d odd divides m − 1;
(e) S(m2, d(m + 1)), with m2/(m + 1) > d and d odd divides m + 1;
(f) S(m2, d(m + 1)), with m2/(m + 1) > d and d divides 2m − 1.

www.klo-software.net/ribbondisks
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Figure 14. Two-bridge links and ribbon surfaces. Here s and t can be any nonnegative integers, while m/q = [a1, . . . , ak] := a1 − 1
a2 − . . . − 1

ak

and m/(m − q) =

[b1, . . . , bl].

A band move leading to a ribbon surface of Euler characteristic one is shown for each of these in Figure 14 (cf. [5, 20]). It remains
to verify that these surfaces are in fact algorithmically ribbon. This is shown in detail for family (d) in Figure 15; the other cases are
similar and left to the reader.

Proposition 4.2. Let L be an oriented nonsplit alternating link with a marked component, and let −L denote the mirror of L, with
reversed orientation. The connected sum −L#L, using the marked components to take connected sum, is algorithmically ribbon.

Proof. Draw an alternating diagram of −L#L as shown in Figure 16. We will describe a bifactorization of this diagram, or equivalently
lattice embeddings

�b → Zn, and
�w → Zn (7)

from the Goeritz lattices to diagonal unimodular lattices whose rank n is equal to the crossing number of L. Label the crossings in the
tangle � from 1 to n − 1, and label each crossing in the tangle � with the same label as its reflected image in �. Label both crossings
shown in Figure 16 with n. The embeddings (7) are given by summing local contributions in each region, where the crossing labeled
i gives the local contributions shown in Figure 17. One can alternatively reverse the steps in the sequence described in the proof and
recover the bifactorization step by step from that for the crossingless unlink, as discussed after Definition 2.5.

We now apply a sequence of band moves as shown in Figure 18, one for each of the n − 1 crossings in the tangle �. There are two
choices for where to apply the first of these, depending on which crossing in Figure 16 will take the role of the central crossing in the
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Figure 15. Algorithmic ribbon surfaces for 2-bridge knots and links, family (d). For s even, there is a minor modification to make in the fourth diagram. Note that one can
easily obtain the bifactorizations for each diagram by working back from the crossingless diagram at the bottom.

Figure 16. An alternating diagram of −L#L. The tangle marked � is the image of the tangle marked � under reflection in a plane perpendicular to the plane of the diagram.

Figure 17. Local contributions to lattice embeddings. The orientation on the overcrossing comes from that on −L#L.
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left side of Figure 18. Each such band move removes one crossing from the original tangle �, and symmetrically from �. Outside
the modified tangles, two new alternating crossings are introduced on either side of a previously alternating crossing, which becomes
nonalternating, as in Figures 18 and 19.

We need to see that we may apply n − 1 such bands and thus replace � with a crossingless tangle. Note from Figure 18 that a
subsequent band coming into �′ from one of the new nonalternating crossings outside �′ as in Figure 19 may turn right or left when
it comes to the site of any crossing removed by a previous band. It will then be constrained to follow a path through the original tangle
� which keeps black regions to the right and white regions to the left. We therefore need to see that every crossing in � is connected
to either the top or bottom incoming strand by a zig-zag path that turns right or left at each crossing it encounters, keeping black
regions on the right. First note that since L was assumed to be nonsplit, the tangle � has at most two diagram components, so that
every crossing is connected to either the top or bottom incoming strand by a path in the diagram. Then given any edge in such a path
with a white region on the right, replace it in the path by the rest of the edges of the same white region, which will then have black on
the right and white on the left.

The result of these n − 1 band moves is shown in Figure 19. We claim that this is in fact a diagram of the n-component unlink,
and converts to the crossingless diagram by a sequence of Reidemeister 1 and 2 moves as in Figure 5.

There are a total of 2n + 2 strands entering the crossingless tangle �′: one each on the right and left, and the rest on the top or
bottom. Suppose first that any pair of strands coming into the top are connected inside �′. Choose an innermost such pair, which
are necessarily adjacent. By symmetry the same pair of strands is connected inside �′ and we may apply a Reidemeister 2 move as
in Figure 5 to split off a crossingless unknot. The same applies to strands on the bottom; thus, after splitting off some crossingless
unknots, we may assume that all strands in �′ enter and leave by a different side of the tangle. The strand entering �′ from the left
then exits via the leftmost strand on the top or bottom, and the strand entering �′ from the right exits via the rightmost strand on
the top or bottom, and these choices completely determine �′. In each case we find the resulting diagram simplifies to a crossingless
unlink via two Reidemeister 1 moves and a number of Reidemeister 2 moves as in Figure 5.

The sequence described above, consisting of n − 1 algorithmic band moves, n − 1 untongue moves, n − 1 Reidemeister 2 moves,
and two Reidemeister 1 moves, represents an algorithmic ribbon surface for −L#L.

Figure 18. A band move. This is equivalent to composing a length two algorithmic band placed above or below the horizontal strand with an untongue move.

Figure 19. The result of band moves on −L#L. The tangle marked �′ is the image of the tangle marked �′ under reflection in a plane. After n − 1 band moves, the tangles
�′ and �′ are crossingless.
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Figure 20. The “floating loop” 3-flype move.

We conclude this section with an optimistic conjecture. This is based on experimental evidence1 and is perhaps encouraged by a
comparable theorem of McCoy about unknotting numbers of alternating knots [22].

Conjecture 4.3. Let L be an alternating link which bounds a ribbon surface with two minima and a single saddle point. Then L is
algorithmically ribbon.

5. Computer implementation

Code pertaining specifically to the algorithm described above (henceforth referred to as the Algorithm) was written in C++ as
a custom computational module for the Knot-Like Objects (KLO) software project by F. Swenton [31], which had preexisting
functionality for dealing with knots and bands on knots. Specific methods were coded for computing Goeritz matrices for a given
diagram, searching for factorizations of those matrices, and searching for algorithmic bands to add to a given knot such that the band
result has a bifactorization extending that of the original knot. Additionally, the generalized Tsukamoto moves, here referred to as
Almost-Alternating (AA) simplification moves, were implemented in order to algorithmically simplify the results of the bands, and
code was added to find all flyped forms of a diagram. Broadly, the Algorithm functions as a breadth-first search, as follows:
Input: A knot diagram (initially, of an alternating knot of a single component)

(1) Find both Goeritz matrices for the diagram.
(2) Declare the knot non-slice if either matrix does not factorize.
(3) Otherwise, for each flype-equivalent diagram:

(a) Find all factorizations of each of the two Goeritz matrices, up to Aut(Zn)-symmetries (note that a factorization of one flyped form allows direct
computation of those of the rest, greatly speeding up this step).

(b) For each candidate algorithmic band as in Figure 3:

(i) Test whether the band is algorithmic, i.e., whether the assignment of Goeritz Z-vectors for the faces of the diagram unaffected by the band can
be extended into a Goeritz bifactorization for the entire diagram resulting from the band operation.

(A) If so, AA-simplify the resulting diagram. If it simplifies to an unlink diagram with no crossings, declare a ribbon knot to be found; otherwise,
add the resulting diagram as a child of the starting diagram.

(B) If not, declare a dead-end at the resulting diagram.

Iterate the Algorithm on all children until a ribbon knot is declared to have been found or only dead ends remain.

Output: The knot is declared nonslice in Step (2) if the alternating diagram is not bifactorizable. If the initial diagram is bifactorizable, then if any
descendant is identified as ribbon, the precise sequence of flypes, algorithmic bands, and simplifications needed to produce an unlink from
the original diagram are exhibited, and the original knot is declared algorithmically ribbon. Otherwise, the knot is declared algorithmically
non-ribbon (we note that a comparatively small number of examples show this algorithm to be incomplete in its current form—i.e., some
alternating ribbon knots will be declared as algorithmically non-ribbon—which is why this distinction is made).

A few notes on this implementation are in order. First, checking all variants of the 3-flype move in Figure 9 in the original algorithm
would result in a branching of the search tree, so to simplify matters, a complete floating loop over the relevant 3-tangle is introduced
instead, as in Figure 20, which also preserves bifactorizability and only differs in that it has one additional crossing. As no subsequent
bands will connect to this loop, it is clear that any knot found to be algorithmically ribbon with the floating loop will still, in fact, be
ribbon (simply remove it). It is not a priori clear that, in general, this version of the 3-flype yields the same results in the Algorithm
as do the other versions of the 3-flype (or, indeed, that they produce the same results as one another), but it has been directly verified
that each of the knots encountering a 3-flype but not identified as ribbon in the computation below is also not algorithmically ribbon
via any of the non-loop versions of the 3-flype.

1It has been directly verified via KLO that no band of length at most 3 and absolute twist at most 2 on any non-algorithmically-ribbon alternating knot up to 17
crossings results in an unlink.
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Table 1. Computational results of the Algorithm.

crossings Prime Alternating Knots Square Determinant Bifactorizable AR Bands

to 11 563 36 28 28 128

12 1228 62 51 48 147 · 21

13 4878 175 138 118 1118

14 19,536 567 409 305 1301 · 24

15 85,263 1921 1245 850 1805 · 245

16 379,799 6888 3724 2330 12,033 · 2297

17 1,769,979 24,828 11,259 6513 15,384 · 21,129

18 8,400,285 91,486 34,197 19,071 113,731 · 25,333 · 37

19 40,619,385 349,453 99,429 52,325 135,270 · 217,039 · 316

20 199,631,989 1,322,355 287,923 150,408 187,623 · 262,301 · 3484

21 990,623,857 5,258,538 864,649 430,907 1225,985 · 2203,320 · 31,602

Total 1,241,536,199 7,056,273 1,303,024 662,903 1371,325 · 2289,469 · 32,109

In the rightmost column, ab indicates that b of these knots have algorithmic ribbon disks with not less than a band moves.

6. Results

The Prime Alternating Knot Generator (PAKG) [13] from Flint, Rankin, and de Vries was used to generate complete enumerations
of prime alternating knots up to 21 crossings; the Algorithm was applied to those having square determinant. Table 1 summarizes
the results of the computation, listing for each crossing range: the number of prime alternating knots up to reflection; the number of
these with square determinant; the number with Goeritz bifactorizations; the number found to be algorithmically ribbon (AR); and
the numbers of bands that the Algorithm takes to decompose these knots into unlinks (i.e., the number of index-one critical points
in the ribbon disk that the Algorithm exhibits for these knots).

The Algorithm thus directly yields 662,903 prime alternating ribbon knots up to 21 crossings, exceeding by far the previous state of
the art (see, for example, [8]). We note that the first occurrence of a knot requiring two bands is at 12 crossings, and the first requiring
three bands is at 18 crossings. Also, we see a diminishing proportion of Goeritz-bifactorizable knots being algorithmically ribbon as
the crossing number increases: this starts with 28/28 being algorithmically ribbon up to 11x and 48/51 at 12x—the three left out being
12a631 (ribbon, discussed in the next section), 12a360, and 12a1237 (both nonslice [8])—and ends with fewer than half at 21x.

7. Intermediate forms and escapees

The Algorithm explicitly exhibits any algorithmically ribbon knot as being, in fact, a ribbon knot; however, when the Algorithm’s
search fails, we have no absolute assurance that the knot in question is not ribbon. A small number of examples are known of
alternating ribbon knots that the Algorithm fails to identify as such—indeed, Seeliger [30] exhibits the knots 12a631, 14a6639, and
14a7977 as ribbon. These knots provide our first three examples of what we’ll call escapees [from the Algorithm]. We shall see that these
knots do not entirely escape the Algorithm—they just make a detour at the start of their journey (though a complete understanding
of this phenomenon has proved to be elusive).

A preliminary search for escapees began with the search data up to 18 crossings by extracting every non-split diagram of two
components obtained along a path (of flypes, bands, and AA-simplifications) from an alternating knot that was identified as ribbon,
resulting in a list of 17,739 diagrams. We then enumerated all fusion bands, of length up to 4 and absolute twist up to 2, on these knots
and tested the results of these bands for hyperbolic isometry with all hyperbolic prime alternating knots up to 18 crossings that were
potential escapees (i.e., Goeritz-bifactorizable but not algorithmically ribbon).

In the course of this preliminary search, it was noted that all escapees so identified were obtainable via certain escape bands of
length 3, proceeding as in Figure 21, either entirely over or under with no twist (left) or over and under with an alternating half-twist
(right). It is worth noting that these band types introduce into an alternating knot exactly two non-alternating crossings, and thus they
are not quite algorithmic, though they are as close as possible to being so. While the diagrams immediately resulting from these bands
cannot bifactor,2 sequences of Reidemeister moves were found for each diagram that transform it into a bifactoring 2-component link
diagram that the Algorithm identifies as ribbon.

It should be stressed that the Algorithm is entirely combinatorial and that it bypasses any issue of knot (or unlink) identification,
because the Algorithm terminates either when an unlink diagram—i.e., a diagram with no crossings—is obtained or when all of a
knot’s descendants in the Algorithm are dead ends having no algorithmic bands. Our search for escapees lacks this advantage, so we
used geometric methods as an aid.3 Of the 662,903 algorithmically ribbon knots identified, 371,325 require just one band, i.e., after

2One of the Goeritz lattices of the diagram resulting from an escape band is positive semi-definite, and it follows from Donaldson’s theorem that if this band
is part of the sequence for a ribbon disk then the quotient of this lattice by its nullspace admits a finite-index embedding in a diagonal lattice. Thus, the
methods of this paper can be applied to obstruct some escape bands; however, after applying unobstructed escape bands, one does not obtain a minimally
nonalternating diagram and the methods described up to now do not apply.

3All computations involving hyperbolic structure and hyperbolic knot isometry were performed via the SnapPea kernel [37], which is included in the KLO
software.
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Figure 21. Escape bands.

Table 2. Escapees identified and unresolved knots remaining.

Crossings Non-AR Obstructed Candidates Escapees Bands Unresolved

12 3 2 1 1 21

13 20 20
14 104 100 3 3 23

15 395 394 1 1 21

16 1394 1365 29 23 223 6
17 4746 4699 47 46 246 1
18 15,126 14,999 127 91 291 36
19 47,104 46,795 309 262 2257 · 35 47
20 137,515 136,537 978 482 2480 · 32 496
21 433,742 430,231 3511 821 2814 · 37 2690

Total 640,149 635,141 5006 1730 21,716 · 314 3276

one algorithmic fission, they AA-simplify to an unlink. The remaining 291,578 each produce a bifactorising link of two components
requiring one or (far less frequently) two more bands in the Algorithm before an unlink is produced. Filtering the 2-component
results of the first bands on these algorithmically ribbon knots yields 22,477 distinct 2-component hyperbolic intermediates, which
provide targets for results of escape bands.

To identify candidates for escapees, all 640,149 Goeritz-bifactorising prime alternating knots to 21 crossings not identified as
ribbon by the Algorithm were checked against two known obstructions to sliceness. First, the Fox-Milnor condition on the Alexander
polynomial [14] was checked via KLO, with explicit factorizations found that demonstrate 237,909 of these knots not to be slice. The
remaining knots were tested for the Herald-Kirk-Livingston obstruction [18], as implemented in SnapPy [10] and SageMath [33],
for a range of pairs (p, q) of primes, eliminating 393,793 more knots; additionally, one knot at 14 crossings is the closure of the
3-braid (σ1σ

−1
2 )7, which is not ribbon [2, 29].4 This leaves 5006 as neither identified as ribbon by the Algorithm nor obstructed

from sliceness; we enumerated all escape bands on each of these knots. The escape band results that were hyperbolic were tested
for hyperbolic isometry with those (if any) of the hyperbolic intermediates of the appropriate hyperbolic volume, and the bands
producing such matches were recorded.

The results of this escapee search are summarized in Table 2, which includes for each crossing range up to 21x: the number
of Goeritz-bifactorizable prime alternating knots not identified as ribbon by the Algorithm; the number of these obstructed from
sliceness; the number of true candidates thus remaining; the number of escapees identified, with the numbers of bands required for
these; and the number of knots whose sliceness remained unresolved. A few remarks regarding the escapees and the searches for
them are in order: first, the Algorithm is not known to fail on any alternating knot requiring just one band to split to an unlink.
While this is inherent in the search outlined above, other escapee searches (all results of which are captured by the search described
above) only identified escapees requiring at least two bands, as well. Second, some escape bands on an alternating knot of n crossings
can result in an intermediate 2-component link for an algorithmically ribbon knot having strictly more than n crossings, whose
intermediate forms might not be among our 22,477 targets. Indeed: two escapees at 17x are identified only due to intermediate forms
resulting from algorithmically ribbon knots of 21 crossings. Finally, non-hyperbolic intermediate 2-component links are inherently
missed during this search, so potential additional escapees would be missed should escape bands produce only intermediate forms
that are non-hyperbolic; the remedy for this is a fundamentally different knot-identification method not relying solely on hyperbolic
geometry.

In sum, this resolves the sliceness of all but 3276 of the over 1.2 billion prime alternating knots to 21 crossings. Details
including diagrams of unresolved knots are available from www.klo-software.net/ribbondisks. As of the time of publication, no prime
alternating knots of 21 crossings or fewer are known to be slice that are not identified either by the Algorithm or the escapee search;
it is expected that a number of these 3276 will be escapees requiring intermediate forms resulting from AR knots at 22 crossings or
more. Further work on identifying ribbon disks for these knots or obstructing their sliceness in some manner continues.

4 The specific obstructions for all non-escapees are recorded at the site containing the search results.

www.klo-software.net/ribbondisks
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