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Photonic neuromorphic computing has emerged as a promising approach to building a low-latency and energy-efficient
non-von Neuman computing system. A photonic spiking neural network (PSNN) exploits brain-like spatiotem-
poral processing to realize high-performance neuromorphic computing. However, the nonlinear computation of
a PSNN remains a significant challenge. Here, we propose and fabricate a photonic spiking neuron chip based on
an integrated Fabry–Perot laser with a saturable absorber (FP-SA). The nonlinear neuron-like dynamics including
temporal integration, threshold and spike generation, a refractory period, inhibitory behavior and cascadability are
experimentally demonstrated, which offers an indispensable fundamental building block to construct the PSNN hard-
ware. Furthermore, we propose time-multiplexed temporal spike encoding to realize a functional PSNN far beyond
the hardware integration scale limit. PSNNs with single/cascaded photonic spiking neurons are experimentally
demonstrated to realize hardware-algorithm collaborative computing, showing the capability to perform classifica-
tion tasks with a supervised learning algorithm, which paves the way for a multilayer PSNN that can handle complex
tasks. © 2023 Optica Publishing Group under the terms of the Optica Open Access Publishing Agreement
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1. INTRODUCTION

Current conventional electronic processors based on von
Neumann’s architecture have more and more difficulty main-
taining Moore’s law. Inspired by the network architecture and
principles of the human brain, neuromorphic computing has
become one of the promising candidates to overcome the von-
Neumann bottleneck to handle certain tasks such as pattern
recognition, nonlinear optimization and learning, big data analy-
sis, and decision-making [1]. Compared to the conventional
continuous-value-based artificial neural network (ANN) and the
convolutional neural network (CNN), the brain-inspired spiking
neural network (SNN) provides a more biologically plausible
way to implement neuromorphic computing and is believed to

be much more powerful and have lower power consumption due
to its rich temporal information and event-driven manner [2]. In
recent years, significant progress has been achieved in electronic
neuromorphic computing processors [3–5], such as SpiNNaker
[6], Neurogrid [7], TrueNorth [8], Darwin [9], Loihi [10], and
Tianjic [11], but they suffer from the limitations of computational
speed and power consumption.

As an alternative, photonic technology offers much promise
for next-generation neuromorphic processers, due to fascinat-
ing advantages such as high speed, wide bandwidth, massive
parallelism, and low power consumption [12–18]. Free-space
[19,20] and the integrated photonics architectures [15,16] are
two mainstream approaches for the photonic implementation of

2334-2536/23/020162-10 Journal © 2023 Optica Publishing Group

https://orcid.org/0000-0002-1698-2083
https://orcid.org/0000-0002-1486-3646
https://orcid.org/0000-0001-8405-8389
https://orcid.org/0000-0001-9158-6681
mailto:yuechun-shi@ylab.ac.cn
mailto:syxiang@xidian.edu.cn
https://doi.org/10.1364/OA_License_v2#VOR-OA
https://doi.org/10.1364/OPTICA.468347
https://crossmark.crossref.org/dialog/?doi=10.1364/OPTICA.468347&amp;domain=pdf&amp;date_stamp=2023-01-24


Research Article Vol. 10, No. 2 / February 2023 / Optica 163

neural networks. Due to the potential of a compact size and high
reliability, an integrated photonics architecture is a promising
approach and significant advancements have been achieved in
recent years [21–29]. To use integrated photonics for neuromor-
phic computing, linear and nonlinear computation elements are
indispensable fundamental building blocks of equal importance.
The linear computation was successfully realized optically by a
Mach–Zehnder interferometer (MZI) [21,30,31], microring
resonator (MRR) weight bank [22], phase-change material (PCM)
integrated on a waveguide [23,24], and a semiconductor optical
amplifier (SOA) [27]. However, among the majority of the existing
photonic neural network chips, the nonlinear computation was
implemented electronically rather than optically [21,24,27–31].
Thus, the optical implementation of nonlinearity remains one of
the most challenging for optical neural networks.

A photonic spiking neural network (PSNN) has been demon-
strated that can solve pattern recognition tasks, sound detection,
and recognition of handwritten digits from the Modified National
Institute of Standards and Technology (MNIST) database
[25,26,32–34]. In a PSNN, the nonlinear computation is accom-
plished by the photonic spiking neuron. The spiking neuron is
much more powerful than the continuous-value nonlinear acti-
vation due to the rich information represented with spikes based
on the spatiotemporal processing mechanism. So far, the optical
spiking neurons have been predicted numerically or demonstrated
experimentally based on discrete devices [35–39] and integrated
schemes [40–46]. In addition, inspired by the Izhikevich model,
event-driven optoelectronic laser spiking neurons without a
requirement for a continuous laser pump have been recently
proposed, which offers exceptionally high energy efficiency
[33]. These approaches, however, also face some limitations. For
instance, the PCM-based spiking neuron lacks a temporal inte-
gration function, which is crucial to spike processing [23,42]. The
output power of a micropillar laser neuron is relatively low, which
may require additional amplification to compensate for the loss
when applied to a multilayer or deep PSNN [43,44]. The inte-
grated distributed feedback laser neuron requires optic-electronic
conversion, which may cause increased system complexity and
power consumption [45]. To pave the way for the practical appli-
cation of PSNNs, it is still highly desirable to explore a novel
photonic spiking neuron chip that can take full advantage of the
temporal encoding feature and can be easily applied to multilayer
or deep PSNNs to handle complex tasks.

Here, for what we believe, to the best of our knowledge is
the first time, we have proposed and fabricated a photonic spiking
neuron chip based on an integrated Fabry–Perot laser with an intra-
cavity saturable absorber (FP-SA) that could form an integral part
of the PSNN hardware. Besides, to avoid the currently available
photonics integration scale limit, we proposed time-multiplexed
temporal spike encoding in different time windows by using a sin-
gle photonic spiking neuron, which enabled the implementation
of a large-scale PSNN far beyond the hardware integration scale
limit. Furthermore, hardware-algorithm collaborative computing
based on a PSNN consisting of a single and two cascaded photonic
spiking neurons were experimentally demonstrated to perform
a pattern classification task with a modified supervised learning
algorithm. We believed this represents a major step forward toward
the practical application of PSNNs. Our experimental demon-
strations present a promising avenue toward hardware–software
co-design and optimization of large-scale multilayer PSNNs to

solve complex tasks, and could be promising for wide applications
such as in machine learning, artificial intelligence, data centers,
edge computation, and autonomous driving.

2. EXPERIMENTAL SETUP AND METHOD

A. Design and Fabrication of Integrated FP-SA Laser
Chip

The nonlinear computation functions are accomplished by the
proposed photonic spiking neuron, which mainly include tem-
poral integration, threshold, spike generation, and a refractory
period, as presented in Fig. 1(a). In our work, the photonic spik-
ing neuron chip based on the integrated FP-SA was designed,
optimized, and fabricated. The integrated FP-SA laser chip
includes two electrical isolation sections; i.e., a gain region and
a saturable absorber (SA) region. Figure 1(b) shows the micro-
scopic image of the fabricated laser. The total length of the chip
is L cavity = 1500 µm, the width of the laser chip is 300 µm, and
the ridge waveguide width is 2.5 µm. After optimization, we
designed and fabricated the devices with four different SA lengths:
LSA = 25 µm, 30 µm, 75 µm, and 90 µm. The SA section side
facet and gain section side facet are coated with reflections of 95%
and 30%, respectively. For the FP-SA with different SA lengths, we
packaged several devices to demonstrate uniformity. The material
used in this work is a p-i -n diode structure grown based on the
AlGaInAs/InP material system with an epitaxial layer structure
similar to that described in [47].

B. Time-Multiplexed Spatiotemporal Spike Encoding
Mechanism

To take advantage of the temporal information of SNN, we pro-
posed time-multiplexed temporal spike encoding with a single
photonic spiking neuron. Note that, different from the time-
multiplexing concept that reuses the photonic neural chip many
times [28,29], a time-multiplexed spike is realized by temporal
encoding in different time windows by using the photonic spiking
neuron chip only one time. The classification task is to distinguish
four simple number patterns (i.e., 1, 2, 3, and 4), with a 5× 4 pixel
matrix, as presented in Fig. 1(c). As shown in Fig. 1(d), we consider
a small PSNN with four presynaptic (PRE) neurons and four post-
synaptic (POST) neurons. Each column in the matrix of five pixels
is encoded with a PRE neuron (see Supplement 1, Note 1, for more
detail). All the PRE spikes are weighted and then propagated to
four POSTs. The weight matrix consists of ωij, which represents
the synaptic weight between the j -th PRE and the i -th POST.
Note that the weights are trained with a supervised algorithm in a
computer, and only the inference process is accomplished in the
hardware in the present work.

The spatiotemporal pattern of the target response is shown in
Fig. 1(e), and is defined as target= [1, 0, 0, 0; 0, 1, 0, 0; 0, 0, 1, 0;
0, 0, 0, 1]. Here, one row represents one POST, and one column
denotes the target response of four POSTs corresponding to a spe-
cific input pattern. For simplicity, we use 1 and 0 to indicate that
the POST fires and doesn’t fire a spike, respectively. For instance,
for pattern “1”, the target is that POST1 fires a spike, and the rest
three POSTs do not fire a spike. Thus, the first column [1, 0, 0,
0] represents the target response of pattern “1”. For pattern “2”,
the target is that only POST2 fires a spike, and the target response
corresponds to the second column [0, 1, 0, 0]. Similarly, the target
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Fig. 1. Operational principle of PSNN for pattern recognition. (a) Nonlinear computation mechanism of a photonic spiking neuron chip and (b) chip
layout of the integrated FP-SA chip. (c) Input patterns with 5× 4 pixel matrix. (d) PSNN with four input nodes and four output nodes and (f ) proposed
time-multiplexed spike encoding to realize the spatiotemporal spike encoding with a single FP-SA neuron. (e) Spatiotemporal target output response for
recognition of different input patterns and (g) target output response for different input patterns. PRE, pre-synaptic spiking neuron; POST, post-synaptic
spiking neuron.ωij is the synaptic weight between the j -th PRE and the i -th POST, which is trained with a supervised learning algorithm.

responses of patterns “3” and “4” correspond, respectively, to the
third column [0, 0, 1, 0] and the fourth column [0, 0, 0, 1].

In our proposed scheme, we used only one POST neuron to
achieve the same functions of four POSTs of the entire layer of
the PSNN by the time-multiplexed temporal spike encoding
mechanism. Note that each hardware connection represents four
different weights; namely, the synaptic weights must be dynami-
cally updated in different time windows. As presented in Fig. 1(f ),
one POST neuron has four response time windows corresponding
to four virtual POSTs to respond to a specific input pattern. For
example, as shown in Fig. 1(g), for pattern “1”, the POST only
fires a spike in the first time window and does not fire in the rest of
the three time windows. Thus, the response of the POST can be
represented as [1, 0, 0, 0]. For pattern “2”, “3”, and “4”, the POST
only fires a spike in the second, third, and fourth time windows,
and the response of the POST can be denoted, respectively, as [0, 1,
0, 0], [0, 0, 1, 0], and [0, 0, 0, 1].

C. Experimental Setup for Photonic Spiking Neuron

The experimental setup of an FP-SA neuron to emulate the
neuron-like dynamics is presented in Fig. 2(a). An arbitrary wave-
form generator (AWG; AWG70001A, Tektronix) produced
the electronic stimulus. A tunable laser (TL; AQ2200-136 TLS
module, Yokogawa) provided the optical carrier. The electro-
optical conversion was realized with an Mach–Zehnder modulator
(MZM). Here, the half-wave voltage of the MZM was 1.9 V. The
modulated optical stimulus was then injected into the facet of
the gain section of the FP-SA via an optical circulator. The gain
region was forward biased with a laser diode controller (LDC;
LDC3724B, ILX Lightwave) that provided low-noise bias current
and precise temperature control. The SA was reverse biased with
the voltage source (VS). A variable optical attenuator (VOA) was
used to adjust the power of the injected signal from the MZM
and erbium-doped fiber amplifier (EDFA). Here, the EDFA is
used to compensate for the relatively high insertion loss (8.3 dB)
of the available MZM in our experiment. The polarization con-
trollers (PC1 and PC2) were employed to match the polarization
state. The output of the FP-SA neuron was analyzed by an optical
spectrum analyzer (OSA; Q8384, Advantest), was detected by a

photodetector (PD; 11982A, Agilent/HP) and then recorded by an
oscilloscope (OSC; DSOV334A, Keysight) and an RF spectrum
analyzer (FSW85, Rohde & Schwarz).

In the experiment, when the temperature was fixed at 25◦C,
the power current (PI) curves for free-running FP-SA lasers are
presented in Figs. 2(b1) and 2(b2) under different cases of reverse
bias of the SA region. The PI curves for four FP-SA lasers with
different LSA are similar. Here, only the PI curves for FP-SA with
LSA = 25 µm and LSA = 30 µm are presented. For both devices, it
can be seen that the threshold of the gain current is IG = 30 mA for
a reverse voltage VSA = 0 V. An increase in the SA reverse voltage
raises the threshold current and reduces the slope efficiency as a
result of an increase in the interband and exciton absorption.

D. Model and Algorithm

To design the supervised learning algorithm and realize the
hardware-algorithm co-design, we use rate equations based on
the Yamada model [25,26]:

d Si,o

dt
= 0a g a (na − n0a )Si,o + 0s g s (ns − n0s )Si,o −

Si,o

τph
+ βBr n2

a ,

(1)

dna

dt
=−0a g a (na − n0a )(S −8pre,i −8post,o )−

na

τa
+

Ia

e Va
,

(2)

dns

dt
=−0s g s (ns − n0s )Si,o −

ns

τs
+

Is

e Vs
, (3)

where Si,o represents the photon density in the cavity. The sub-
scripts i and o represent the PRE and POST neuron, respectively.
na (ns ) is the carrier density in the gain (absorber) region. 8pre,i

represents the external stimulus signal received by a PRE neuron.
8post,o denotes the stimulus signal received by a POST neuron,
which is the weighted sum of the output spikes from the neurons in
the previous layer. The parameters used in simulations are the same
as those in [26] (see Supplement 1, Note 2, for more detail). Note
that, according to our experimental measurements for different
pattern recognition tasks, we find that even with these simple
single-mode rate equations, the trained weight can be accurately
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Fig. 2. Experimental setup, PI curves, and the self-pulsation output characteristics of the FP-SA neuron. (a) Experimental setup to test the FP-SA
neuron. AWG, arbitrary waveform generator; VS, voltage source; TL, tunable laser; OI, optical isolator; VOA, variable optical attenuator, PC1 and PC2,
polarization controllers; MZM, Mach–Zehnder modulator; OC1 and OC2, optical couplers; CIRC, circulator; PD1 and PD2, photodetectors; PM,
power meter; OSC, oscilloscope; OSA, optical spectrum analyzer; LDC, laser diode controller; and DUT, device under test. PI curve of FP-SA with
(b1) LSA = 25 µm and (b2) with LSA = 30 µm. (c1) Optical spectra and (c2) RF spectrum of free-running FP-SA with LSA = 75 µm, IG = 95 mA,
VSA =−3.05 V. The output power is 5.6 mW for the mode-locked regime. (d1) Time series, (d2) optical spectra, and (d3) RF spectrum of free-running
FP-SA with IG = 100 mA, VSA =−4.49 V. The output power is 2.6 mW for the Q-switching regime (see Visualization 1 and Visualization 2).

mapped to the multimode FP-SA hardware to obtain successful
pattern recognition, which is helpful to reduce the training time.

During the PSNN training process, a modified tempotron-like
ReSuMe supervised learning algorithm is used [48,49], and can be
described as

1ωij =


∑

ti≤tmax
K (tmax − ti ), if nd

= 1, no
= 0

−
∑

ti≤tout
K (tout − ti ), if nd

= 0, no
= 1

0, if nd
= no

, (4)

ωij(x + 1)=ωij(x )+ω f ×1ωij. (5)

The K function can be expressed as

K (t)= V0 ·

(
exp

(
−t
τm

)
− exp

(
−t
τs

))
, (6)

in which V0 = 2.1165, τm = 1 ns, and τs = τm/4. The learning
window only considers spikes ti ≤ t . ωij(x ) and ωij(x + 1) are the
synapse weights at the x -th and (x + 1)-th learning epochs, respec-
tively. ω f is the learning rate and is set as 0.4× 108. It denotes the
maximum change in synaptic efficacies.1ωij represents the weight
update amount. nd and no are the number of spikes, respectively,
from the desired and the actual output spike trains. The algorithm
updates its weights whenever the neuron fails to respond as the
same desired state as the teacher. When nd

= 1 is presented to the
POST, it should fire a spike. However, once the actual response of
POST is no spike (no

= 0), the synaptic weight should be strength-
ened. On the other hand, when nd

= 0 is presented to the POST,
it should keep silent. If the actual response of POST fires a spike
(no
= 1), the synaptic weight should be depressed. Here, the shape

of the learning window follows kernel K and the changing amount
of the weight depends on the time difference between ti , tout and
tmax, in which ti is the pre-synaptic spike time, tout is the actual
output spike time, and tmax denotes the time at which the neuron
reaches its maximum output power value in the time domain.

3. RESULTS

A. Self-Pulsation Regimes of FP-SA

Note, for the free-running FP-SA, when the gain current IG

and reverse voltage VSA are sufficiently large, two different stable
pulse operation regimes can be observed; i.e., pure mode-locking
and self-pulsation regions. For example, for the FP-SA with
LSA = 75 µm, when IG = 95 mA and VSA =−3.05 V, the optical
spectrum and RF spectrum are shown in Figs. 2(c1) and 2(c2).
Multiple longitudinal modes with clear and deep modulation
(maximum modulation>45 dB) can be seen, and the mode spac-
ing is about 0.24 nm. This corresponds to a frequency spacing of
28.9 GHz, which is equal to c/(2ng L cavity). Here, ng = 3.46 is
the group refractive index of the ridge waveguide of the FP-SA
chip, and c is the speed of light in a vacuum. The RF spectrum
shows that the FP-SA emits pulses with a fundamental frequency of
28.9 GHz and their high-order harmonic components. When the
reverse voltage is fixed at VSA =−3.05 V, the FP-SA emits around
28.9 GHz pulse trains for the gain current range from 89.2 to
98 mA. These spectra properties indicate that the FP-SA operates
at the pure mode-locking regime with 100% modulation. In addi-
tion, when we further increase the IG and VSA, the FP-SA enters
the self-pulsation regime. For VSA =−4.49 V, the frequency varies
from 1.49 to 1.95 GHz when IG is increased from 100 to 120 mA,

https://doi.org/10.6084/m9.figshare.20103659
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Fig. 3. Experimental demonstration of neuron-like dynamics and the corresponding optical spectrum: (a) threshold, (b) temporal integration, and
(c) refractory period. (a1)–(c1) represent the stimulus signal of the laser neuron, (a2)–(c2) denote the response of the FP-SA neuron. Temporal maps
plotting the response of laser neuron to the arrival of 100 consecutive external stimuli, (d1) corresponds to stimulus in (a1), (d2) corresponds to stimulus
in (b1), and (d3) corresponds to stimulus in (c1). (e) The optical spectra for the FP-SA operate as a photonic spiking neuron. IG = 56.2 mA, VSA =−3 V,
λinj = 1561.48 nm, and Pinj = 75.15 µW for testing the threshold and temporal integration, and Pinj = 117 µW for testing the refractory period (see
Visualization 3 and Visualization 4).

which is due to the Q-switching mechanism. The time series,
optical spectrum, and RF spectrum are presented in Figs. 2(d1)–
2(d3) for IG = 100 mA. Compared to the pure mode-locking, the
optical spectrum widens while its modulation depth decreases. In
our experiments, we find that the two different pulse regimes are
more critical to the VSA, but can be maintained for a relatively wide
range of IG that is greater than the pulse threshold.

For all the considered FP-SA lasers, two pulse regimes can be
observed, but with slightly different IG and VSA ranges. Note that,
to emulate the neuron-like dynamics with the FP-SA, the bias cur-
rent and reverse voltage should be set below the Q-switching pulse
threshold. In such a case, a small external input light perturbations
can trigger the FP-SA to produce a single pulse [50].

B. Nonlinear Neuron-Like Dynamics of Photonic
Spiking Neuron Based on the FP-SA

We designed the perturbation signal generated by the AWG to
demonstrate the complex nonlinear neuron-like dynamics of the
photonic spiking neuron. Here, we only present the results for the
FP-SA with LSA = 30 µm. Note that we found that the results
for other FP-SAs with different SA lengths are similar through
extensive experimental measurements. Nonetheless, a FP-SA with
larger SA length usually requires higher IG due to stronger absorp-
tion. As shown in Figs. 3(a1) and 3(a2), the perturbation signal
includes three pulses with different power. Only the first injected
pulse triggers the FP-SA neuron to generate a neuron-like spike.
The responses of the FP-SA neuron to the second and the third
perturbation pulses are negligible, which indicates the excitability
threshold. We also designed three types of pulse stimuli to demon-
strate the temporal integration effect, as shown in Figs. 3(b1)
and 3(b2). The first pulse with a high input power elicits a spike
generation of the FP-SA neuron, the second pulse burst with

three closely spaced weak pulses with an interspike interval (ISI)
of 0.5 ns, also triggers a spike generation, while the third single
sub-threshold perturbation pulse does not elicit the response spike.
In other words, even a single sub-threshold pulse cannot reach
the spike threshold, the three closely spaced sub-threshold pulses
are temporally integrated and thus exceed the threshold, which
demonstrates the temporal integration function of the FP-SA
neuron. As presented in Figs. 3(c1) and 3(c2), we designed and
generated a burst of pulse (ISI is 0.4 ns) with a relatively high inten-
sity and a separate single reference pulse. We found that the first
perturbation pulse can elicit a response spike, indicating that the
single perturbation pulse power exceeds the threshold. However,
the second perturbation pulse cannot trigger another response
spike because the gain is not fully recovered in the gain section
[51]. The bursts of five pulses only trigger three response spikes,
which indicates that the refractory period is between 0.4 and 0.8 ns
[43]. The refractory period means that the spiking neuron cannot
produce another response spike to the stimulus in a short time
due to the carrier recovery process, if it just responded with a spike
to the preceding stimulus. The refractory period is associated
with the carrier recovery process, and the values we observed also
included 0.3, 0.4, and 0.5 ns under different conditions in our
experiments (see details in Supplement 1, Note 3). Note that the
maximum spiking response rate (∼3.3 GHz) is limited by the
inverse of the refractory period. Obviously, the response speed is
much faster than the biological counterpart. In Figs. 3(d1)–3(d3),
we further present the experimental color-coded temporal maps
plotting superimposed time series of the responses corresponding
to 100 consecutive arriving stimuli events. For the three cases, the
same spiking response is obtained for every single one of the 100
incoming stimuli. Hence, reproducible spiking responses can be
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Fig. 4. Training process and simulation results based on the PSNN. (a) Training process for each pattern, (b) Weight after training convergence, (c) and
(d) Inputs of each POST for the pattern “3” and “4”, respectively, and (e) and (f ) Response of each POST corresponding to (c) and (d). ωij denotes the
synaptic connection weight between j -th PRE and i -th POST.

obtained in our fabricated FP-SA neuron. In addition, the inhibi-
tory dynamics is also demonstrated, as detailed in Supplement
1, Note 4. The optical spectrum for the optically injected FP-SA
that operates as a photonic spiking neuron is further presented in
Fig. 3(e). Here, the injection wavelength is away from the peak
wavelength. Note that the neuron-like dynamics can be observed
when the injection wavelength λinj matches or is slightly longer
than one of longitudinal mode wavelengths of the FP-SA that is
away from the peak region. Provided that the injected wavelength
satisfies the above-mentioned condition, the minimum injected
power required to realize the neuron-like dynamics is relatively
high for a larger separation between the injection wavelength
and the peak wavelength. An additional discussion can be found
in Supplement 1, Note 5. Note that, external optical injection
could also lead to excitability based on homoclinic bifurcation
in the injection locking range [52], which also motivates further
investigation on the neuron-like dynamics of FP-SA based on the
homoclinic bifurcation mechanism.

C. Training Process Based on Modified Supervised
Learning Algorithm

The training process and simulation results are shown in Fig. 4 (see
details in Supplement 1, Note 6). For this task, the training conver-
gence is achieved at the 106th epochs. Here, the accuracy reached
100% during the training process. For pattern “1” only POST 1
emits a spike, while the rest of the three POSTS emit no spike, and
the timing is the maximum of the training window. Similarly, for
patterns “2”, “3”, and “4”, the training convergence agrees well
with the defined target. The weights after the training convergence
are presented in Fig. 4(b). After the training convergence, the spike
encoding output of each PRE is multiplied by the trained weight

matrix. To intuitively present the insight into the weight process,
the weighted signals that are injected into each POST for patterns
“3” and “4” are shown in Figs. 4(c) and 4(d). The corresponding
responses of each POST for patterns “3” and “4” are shown in
Figs. 4(e) and 4(f ). Obviously, only POST 3 emits a spike for
pattern “3”. For pattern “4”, only POST 4 generates a spike. Note
that, to realize the time-multiplexed temporal spike encoding, as
shown in Fig. 1(f ), the weighted additions are combined to obtain
a single stimulus signal that is imported to the hardware photonic
spiking neuron. Because this work focuses on the hardware imple-
mentation of a photonic spiking neuron, the combined weighted
signal is directly mapped to the output of the AWG.

D. PSNN Hardware Implementation Based on Single
FP-SA

After training convergence, the weighted signal for each POST
is mapped to a time-multiplexed signal that can be generated
by the AWG. The electronic output of the AWG is modulated
by the MZM and injected into the fabricated FP-SA to realize
a photonic spiking neuron. When the input pattern is “1”, the
time-multiplexed input for the POST is presented in Fig. 5(a1).
As seen in Fig. 5(a2), only one spike appears in the first time win-
dow (i.e., “1” state), while the FP-SA laser neuron responds with
a low-intensity sub-threshold oscillation during the rest of the
time windows (i.e., “0” state), which agrees well with the target
output denoted in Fig. 1(e). Because the triggered high-intensity
spike in the desired time window can be easily distinguished from
the low-intensity response from the of the rest time windows,
we regard it as an accurate pattern recognition. A larger power
ratio (i.e., max .P1/max .P0) implies a better pattern recognition
performance. Hence, pattern “1” is successfully recognized by the
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Fig. 5. Response of the fabricated photonic spiking neuron for differ-
ent input patterns after weight is applied. (a1) Time-multiplexed input
of the photonic spiking neuron for pattern “1” and (a2) corresponding
response; (b1) and (b2) correspond to pattern “2”; (c1) and (c2) cor-
respond to pattern “3”; and (d1) and (d2) correspond to pattern “4”.
IG = 59.4 mA and VSA =−2.503 V.

spatiotemporal dynamics of the single photonic spiking neuron.
When the input pattern is “2”, the time-multiplexed weighted
addition signal presented in Fig. 5(b1) is quite different from
that of pattern “1”, and the FP-SA laser neuron responds with a
high-intensity spike during the second time window, as shown
in Fig. 5(b2). Similarly, as shown in Figs. 5(c1)–5(d2), when the
input pattern is “3” or “4”, the FP-SA laser neuron responds with
a high-intensity spike during the third or fourth time window.
Thus, both the temporal integration and threshold properties
contribute to the spike generation in a desired time window,
and the inference process of the classification task is successfully
demonstrated in the hardware. It is worth pointing out here that
the hardware-algorithm collaborative computing based on PSNN
with time-multiplexed temporal spike encoding is realized for what
we believe is the first time, to the best of our knowledge.

Note that the electronic noise is inevitable in the AWG, PD,
and OSC, as well as the environment variation and the FP-SA
laser neuron’s noise, and the same spiking response is obtained for
each pattern; thus, the inference process is robust to noise to some
degree (see more details in Supplement 1, Note 7).

E. Hardware Implementation of Multilayer PSNN with
Two Cascaded Photonic Spiking Neurons

We further cascade two hardware photonic spiking neurons
to study the cascadability property and multilayer PSNN.
As presented in Fig. 6(a), FP-SA1 represents the first photonic
spiking neuron, and FP-SA2 denotes the second photonic spiking
neuron. The injection path of the FP-SA1 is simplified, as it has

Fig. 6. Cascaded photonic spiking neurons and the cascadability.
(a) Schematic diagram of cascaded two hardware photonic spiking neu-
rons. M represents the monitor port of the injected power, O denotes
the output port of FP-SA2. The cascadability of (b) the threshold and
(c) the temporal integration. Vin means the input of FP-SA1, Vout1 denotes
the response of FP-SA1, and Vout2 represents the response of FP-SA2. For
FP-SA1, IG = 60.5 mA and VSA =−2.34 V; for FP-SA2, IG = 58.4 mA
and VSA =−2.56 V.

been described in Fig. 2(a). The output of FP-SA1 is optically
injected into FP-SA2, and the injected optical power should be
carefully adjusted by a PC and VOA between them to realize
the cascadability. A 90:10 optical coupler is further introduced
before the FP-SA, and 10% of the injected power is monitored
to determine the injected power. Note that two FP-SAs are set
to operate in the neuron-like dynamics regime (see Supplement
1, Note 8, for the details of the optical spectra for both FP-SAs).
As shown in Figs. 6(b) and 6(c), the neuron-like threshold and
temporal integration property can be achieved in both FP-SAs,
which demonstrates that the cascadability of a biological neuron is
successfully emulated.

With the cascaded configuration, we also consider the pattern
recognition tasks. Here, two pattern recognition tasks that include
“XDU” and “NJU” images are considered. The input spike encod-
ing and training process are described in detail in Supplement 1,
Note 9. The inference performances of “XDU” and “NJU” are
presented in Fig. 7. Here, the target responses of POST1, POST2,
and POST3 are, respectively, [1, 0, 0], [0, 1, 0], and [0, 0, 1]. After
the training convergence, the weight matrix is multiplied by the
spike output of PREs, and then the modulated time-multiplexed
temporal spike encoding signal is optically injected into the FP-
SA1, and the output of FP-SA1 is optically injected into FP-SA2.
For both tasks, three input patterns can be successfully recognized
by two cascaded photonic spiking neurons based on the FP-SA
with a desired spike emission window.

Interestingly, we find that better recognition performance
can be achieved by the FP-SA2; that is, the FP-SA2 provides an
additional threshold effect, and thus, the spike event in the desired
time window (i.e., “1” state) becomes more distinguishable from
the rest time windows with subthreshold oscillation or noise level
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Fig. 7. Pattern recognition of the patterns with cascaded photonic spiking neurons: (a)–(c) “X,” “D,” and “U,” and (d)–(f ) “N,” “J,” and “U.” For the
XDU task, IG = 59 mA and VSA =−2.477 V for FP-SA1, IG = 60.7 mA, and VSA =−2.409 V for FP-SA2. For the NJU task, IG = 61 mA and VSA =

−2.434 V for FP-SA1, IG = 62.1 mA, and VSA =−2.446 V for FP-SA2 (see Visualization 5).

fluctuation (i.e., “0” state). On one hand, from the physical per-
spective, such better neural computation performance may take
advantage of the combined saturable absorption effects of two FP-
SAs. On the other hand, from the neural network perspective, this
may be because the cascaded configuration exhibits a multilayer
PSNN because each FP-SA represents an entire layer of spiking
neurons with the time-multiplexed temporal spike encoding.
Namely, the first FP-SA1 can be regarded as the hidden layer, and
FP-SA2 can be regarded as the output layer.

4. DISCUSSION AND CONCLUSION

In summary, we fabricated, what we believe, to the best of our
knowledge, is a novel photonic spiking neuron chip based on an
integrated FP-SA that has a simple structure and can be easily inte-
grated on large scale with a commercially mature semiconductor
process. The controllable and reproducible complex nonlinear
neuron-like dynamics such as temporal integration, threshold
and spike generation, refractory period, and inhibitory behavior
were demonstrated experimentally and are much faster than their
biological and electronic counterparts. The proposed approach
offers an indispensable fundamental building block to realize the
PSNN hardware, and will be a key foundation for large-scale inte-
grated PSNN chips. Furthermore, we proposed time-multiplexed
temporal spike encoding to mimic the brain-like spatiotemporal
processing, and realized the hardware implementation of the infer-
ence process for pattern classification tasks with a single photonic
spiking neuron based on a modified supervised learning algorithm.
Note that the time-multiplexed temporal spike encoding enabled
the implementation of a large-scale functional PSNN far beyond
the hardware integration scale limit. A multilayer PSNN with
two cascaded photonic spiking neurons was also experimentally
realized. Both the cascadability performances and the pattern
recognition inference tasks were successfully demonstrated.
We believe the first experimental demonstration of hardware-
algorithm collaborative computing based on a photonic spiking
neuron represents a major step toward the practical application

of an integrated PSNN chip, and proves the potential to build a
large-scale, multilayer PSNN chip to address complex tasks.

In our experiments, we found that temperature plays a key role
in neuro-inspired computing because it determines the frequency
detuning between the injected light and the longitudinal mode of
the FP-SA laser neuron. Hence, temperature management should
be emphasized when considering the large-scale photonic spiking
neuron array. To further improve the inference performance, the
hardware-software co-design and optimization of the PSNN are
highly desirable in a future iteration.

Finally, we also discussed the energy efficiency, spiking process-
ing speed, and potential scalability (see details in Supplement 1,
Note 10). The energy efficiency of the FP-SA neuron is estimated
at about 7.329 fJ/spike. In electronic approaches, the methods
to benchmark based on calculating the conventional multiply-
accumulate (MAC) operation show 1300 pJ/MAC in TrueNorth
and 226 pJ/MAC in Loihi [33]. In addition, by considering the
MZM modulator that accomplishes the weighting function, the
calculated energy efficiency is about 5.16 pJ/MAC.

In our experiment, the FP-SA can process an input stimulus
pulse with rate of 10 GHz, and its maximum spiking response
rate is estimated at about 3.3 GHz, which is the inverse of refrac-
tory period. Note that the FP-SA can be easily integrated into a
large-scale bar array, which is interesting for real-scale problems.
For our fabricated chips, each bar contains about 83 chips; thus,
it is promising to realize a large-scale photonic spiking neuron
array. The scalability of a photonic spiking neuron array is mainly
limited by the available packaging technique. As a further attempt,
it is highly desirable to integrate the III-V laser neuron chip with
silicon-photonics-based weight devices such as an MRR or an MZI
network, or InP-based weight devices such as an SOA. There have
been many experimental demonstrations of the vector-matrix
multiplication in the past few years [15]. A hybrid III-V/silicon
integration may be a promising solution for the implementation
of the entire on-chip PSNN [53,54]. In addition, the fast time-
varying weight that can be dynamically updated also deserves
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further innovation to take full advantage of the time-multiplexed
temporal spike encoding mechanism of a photonic spiking neuron.
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