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Abstract. Doc2Query — the process of expanding the content of a
document before indexing using a sequence-to-sequence model — has
emerged as a prominent technique for improving the first-stage retrieval
effectiveness of search engines. However, sequence-to-sequence models are
known to be prone to “hallucinating” content that is not present in the
source text. We argue that Doc2Query is indeed prone to hallucination,
which ultimately harms retrieval effectiveness and inflates the index size.
In this work, we explore techniques for filtering out these harmful queries
prior to indexing. We find that using a relevance model to remove poor-
quality queries can improve the retrieval effectiveness of Doc2Query by
up to 16%, while simultaneously reducing mean query execution time by
30% and cutting the index size by 48%. We release the code, data, and
a live demonstration to facilitate reproduction and further exploration.1

1 Introduction

Neural network models, particularly those based on contextualised language
models, have been shown to improve search effectiveness [3]. While some ap-
proaches focus on re-ranking document sets from a first-stage retrieval function
to improve precision [27], others aim to improve the first stage itself [4]. In this
work, we focus on one of these first-stage approaches: Doc2Query [29]. This ap-
proach trains a sequence-to-sequence model (e.g., T5 [33]) to predict queries that
may be relevant to a particular text. Then, when indexing, this model is used
to expand the document by generating a collection of queries and appending
them to the document. Though computationally expensive at index time [34],
this approach has been shown to be remarkably effective even when retrieving
using simple lexical models like BM25 [28]. Numerous works have shown that
the approach can produce a high-quality pool of results that are effective for
subsequent stages in the ranking pipeline [19, 20, 23, 40].

However, sequence-to-sequence models are well-known to be prone to gener-
ate content that does not reflect the input text – a defect known in literature
as “hallucination” [25]. We find that existing Doc2Query models are no excep-
tion. Figure 1 provides example generated queries from the state-of-the-art T5
Doc2Query model [28]. In this example, we see that many of the generated
queries cannot actually be answered by the source passage (score ≤ 1).
1 https://github.com/terrierteam/pyterrier_doc2query
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Original Passage: Barley (Hordeum vulgare L.), a
member of the grass family, is a major cereal grain. It
was one of the first cultivated grains and is now grown
widely. Barley grain is a staple in Tibetan cuisine and
was eaten widely by peasants in Medieval Europe. Bar-
ley has also been used as animal fodder, as a source
of fermentable material for beer and certain distilled
beverages, and as a component of various health foods.

Generated Queries: (1) where does barley originate
from · (2) what is the name of the cereal grain used
in tibetan cooking? · (3) what is barley used for · (1)
what is barley in food · (0) what is bare wheat · (3)
what family of organisms is barley in · (1) why is bar-
ley important in tibetan diet · (3) what is barley ·
(2) where is barley grown · (1) where was barley first
grown and eaten · (1) where was barley first used ...

Fig. 1. Example passage from MS MARCO and generated queries using the T5
Doc2Query model. The relevance of each query to the passage is scored by the au-
thors on a scale of 0–3 using the TREC Deep Learning passage relevance criteria.

Based on this observation, we hypothesise that retrieval performance of
Doc2Query would improve if hallucinated queries were removed. In this paper, we
conduct experiments where we apply a new filtering phase that aims to remove
poor queries prior to indexing. Given that this approach removes queries, we
call the approach Doc2Query-- (Doc2Query-minus-minus). Rather than training
a new model for this task, we identify that relevance models are already fit for
this purpose: they estimate how relevant a passage is to a query. We therefore
explore filtering strategies that make use of existing neural relevance models.

Through experimentation on the MS MARCO dataset, we find that our fil-
tering approach can improve the retrieval effectiveness of indexes built using
Doc2Query-- by up to 16%; less can indeed be more. Meanwhile, filtering nat-
urally reduces the index size, lowering storage and query-time computational
costs. Finally, we conduct an exploration of the index-time overheads introduced
by the filtering process and conclude that the gains from filtering more than make
up for the additional time spent generating more queries. The approach also has
a positive impact on the environmental costs of applying Doc2Query; the same
retrieval effectiveness can be achieved with only about a third of the compu-
tational cost when indexing. To facilitate last-metre, last-mile, and complete
reproduction efforts [36], we release the code, indices, and filtering scores.1 In
summary, we contribute a technique to improve the effectiveness and efficiency
of Doc2Query by filtering out queries that do not reflect the original passage.

2 Related Work

The classical lexical mismatch problem is a key one in information retrieval -
documents that do not contain the query terms may not be retrieved. In the
literature, various approaches have addressed this: query reformulation – includ-
ing stemming, query expansion models (e.g. Rocchio, Bo1 [1], RM3 [12]) – and
document expansion [9, 30, 35]. Classically, query expansion models have been
popular, as they avoid the costs associated with making additional processing
for each document needed for document expansion. However, query expansion
may result in reduced performance [11], as queries are typically short and the
necessary evidence to understand the context of the user is limited.
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The application of latent representations of queries and documents, such as
using latent semantic indexing [8] allow retrieval using to not be driven directly
by lexical signals. More recently, transformer-based language models (such as
BERT [6]) have resulted in representations of text where the contextualised
meaning of words are accounted for. In particular, in dense retrieval, queries
and documents are represented in embeddings spaces [14, 37], often facilitated
by Approximate Nearest Neighbour (ANN) data structures [13]. However, even
when using ANN, retrieval can still be inefficient or insufficiently effective [15].

Others have explored approaches for augmenting lexical representations with
additional terms that may be relevant. In this work, we explore Doc2Query [29],
which uses a sequence-to-sequence model that maps a document to queries that
it might be able to answer. By appending these generated queries to a docu-
ment’s content before indexing, the document is more likely to be retrieved for
user queries when using a model like BM25. An alternative style of document
expansion, proposed by MacAvaney et al. [19] and since used by several other
models (e.g., [10, 39, 40]), uses the built-in Masked Language Modelling (MLM)
mechanism. MLM expansion generates individual tokens to append to the docu-
ment as a bag of words (rather than as a sequence). Although MLM expansion is
also prone to hallucination,2 the bag-of-words nature of MLM expansion means
that individual expansion tokens may not have sufficient context to apply fil-
tering effectively. We therefore focus only on sequence-style expansion and leave
the exploration of MLM expansion for future work.

3 Doc2Query--

Doc2Query-- consists of two phases: a generation phrase and a filtering phase.
In the generation phase, a Doc2Query model generates a set of n queries that
each document might be able to answer. However, as shown in Figure 1, not
all of the queries are necessarily relevant to the document. To mitigate this
problem, Doc2Query-- then proceeds to a filtering phase, which is responsible
for eliminating the generated queries that are least relevant to the source doc-
ument. Because hallucinated queries contain details not present in the original
text (by definition), we argue that hallucinated queries are less useful for re-
trieval than non-hallucinated ones. Filtering is accomplished by retaining only
the most relevant p proportion of generated queries over the entire corpus. The
retained queries are then concatenated to their corresponding documents prior
to indexing, as per the existing Doc2Query approach.

More formally, consider an expansion function e that maps a document to n
queries: e : D 7→ Qn. In Doc2Query, each document in corpus D are concate-
nated with their expansion queries, forming a new corpus D′ = {Concat(d, e(d)) |
d ∈ D}, which is then indexed by a retrieval system. Doc2Query-- adds a filtering
mechanism that uses a relevance model that maps a query and document to a
real-valued relevance score s : Q × D 7→ R (with larger values indicating higher
2 For instance, we find that SPLADE [10] generates the following seemingly-unrelated
terms for the passage in Figure 1 in the top 20 expansion terms: reed, herb, and troy.
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relevance). The relevance scoring function is used to filter down the queries to
those that meet a certain score threshold t as follows:

D′ =
{

Concat
(
d,
{
q | q ∈ e(d) ∧ s(q, d) ≥ t

})
| d ∈ D

}
(1)

The relevance threshold t is naturally dependent upon the relevance scoring
function. It can be set empirically, chosen based on operational criteria (e.g.,
target index size), or (for a well-calibrated relevance scoring function) determined
a priori. In this work, we combine the first two strategies: we pick t based on
the distribution of relevance scores across all expansion queries. For instance,
at p = 0.3 we only keep queries with relevance scores in the top 30%, which is
t = 3.215 for the ELECTRA [31] scoring model on the MS MARCO dataset [26].

4 Experimental Setup

We conduct experiments to answer the following research questions:
RQ1 Does Doc2Query-- improve the effectiveness of document expansion?
RQ2 What are the trade-offs in terms of effectiveness, efficiency, and storage when

using Doc2Query--?

Datasets and Measures. We conduct tests using the MS MARCO [26] v1
passage corpus. We use five test collections:3 (1) the MS MARCO Dev (small)
collection, consisting of 6,980 queries (1.1 qrels/query); (2) the Dev2 collection,
consisting of 4,281 (1.1 qrels/query); (3) the MS MARCO Eval set, consisting of
6,837 queries (held-out leaderboard set); (4/5) the TREC DL’19/’20 collections,
consisting of 43/54 queries (215/211 qrels/query). We evaluate using the official
task evaluation measures: Reciprocal Rank at 10 (RR@10) for Dev/Dev2/Eval,
nDCG@10 for DL’19/’20. We tune systems4 on Dev, leaving the remaining col-
lections as held-out test sets.

Models. We use the T5 Doc2Query model from Nogueira and Lin [28], mak-
ing use of the inferred queries released by the authors (80 per passage). To the
best of our knowledge, this is the highest-performing Doc2Query model avail-
able. We consider three neural relevance models for filtering: ELECTRA5 [31],
MonoT56 [32], and TCT-ColBERT7 [16], covering two strong cross-encoder mod-
els and one strong bi-encoder model. We also explored filters that use the prob-
abilities from the generation process itself but found them to be ineffective and
therefore omit these results due to space constraints.

Tools and Environment. We use the PyTerrier toolkit [22] with a PISA [24,
17] index to conduct our experiments. We deploy PISA’s Block-Max WAND [7]
implementation for BM25 retrieval. Inference was conducted on an NVIDIA 3090
GPU. Evaluation was conducted using the ir-measures package [18].
3 ir-datasets [21] IDs: msmarco-passage/dev/small, msmarco-passage/dev/2,
msmarco-passage/eval/small, msmarco-passage/trec-dl-2019/judged,
msmarco-passage/trec-dl-2020/judged 4 BM25’s k1, b, and whether to
remove stopwords were tuned for all systems; the filtering percentage (p)
was also tuned for filtered systems. 5 crystina-z/monoELECTRA_LCE_nneg31
6 castorini/monot5-base-msmarco 7 castorini/tct_colbert-v2-hnp-msmarco
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Table 1. Effectiveness and efficiency measurements for Doc2Query-- and baselines.
Significant differences between Doc2Query and their corresponding filtered versions
for Dev, Dev2, DL’19 and DL’20 are indicated with * (paired t-test, p < 0.05). Values
marked with † are taken from the corresponding submissions to the public leaderboard.

RR@10 nDCG@10 ms/q GB
System Dev Dev2 Eval DL’19 DL’20 MRT Index

BM25 0.185 0.182 †0.186 0.499 0.479 5 0.71

Doc2Query (n = 40) 0.277 0.265 †0.272 0.626 0.607 30 1.17
w/ ELECTRA Filter (30%) *0.316 *0.310 - 0.667 0.611 23 0.89
w/ MonoT5 Filter (40%) *0.308 *0.298 0.306 0.650 0.611 29 0.93
w/ TCT Filter (50%) *0.287 *0.280 - 0.640 0.599 30 0.94

Doc2Query (n = 80) 0.279 0.267 - 0.627 0.605 30 1.41
w/ ELECTRA Filter (30%) *0.323 *0.316 0.325 0.670 0.614 23 0.95
w/ MonoT5 Filter (40%) *0.311 *0.298 - 0.665 0.609 28 1.04
w/ TCT Filter (50%) *0.293 *0.283 - 0.642 0.588 28 1.05

5 Results

We first explore RQ1: whether relevance filtering can improve the retrieval of
Doc2Query models. Table 1 compares the effectiveness of Doc2Query with var-
ious filters. We observe that all the filters significantly improve the retrieval
effectiveness on the Dev and Dev2 datasets at both n = 40 and n = 80. We also
observe a large boost in performance on the Eval dataset.8 Though the differ-
ences in DL’19 and DL’20 appear to be considerable (e.g., 0.627 to 0.670), these
differences are not statistically significant.

Digging a little deeper, Figure 2 shows the retrieval effectiveness of Doc2Query
with various numbers of generated queries (in dotted black) and the correspond-
ing performance when filtering using the top-performing ELECTRA scorer (in
solid blue). We observe that performing relevance filtering at each value of n
improves the retrieval effectiveness. For instance, keeping only 30% of expan-
sion queries at n = 80, performance is increased from 0.279 to 0.323 – a 16%
improvement.

In aggregate, results from Table 1 and Figure 2 answer RQ1: Doc2Query--
filtering can significantly improve the retrieval effectiveness of Doc2Query across
various scoring models, numbers of generated queries (n) and thresholds (p).

Next, we explore the trade-offs in terms of effectiveness, efficiency, and storage
when using Doc2Query--. Table 1 includes the mean response time and index
sizes for each of the settings. As expected, filtering reduces the index size since
fewer terms are stored. For the best-performing setting (n = 80 with ELECTRA
8 Significance cannot be determined due to the held-out nature of the dataset. Further,
due to restrictions on the number of submissions to the leaderboard, we only are able
to submit two runs. The first aims to be a fair comparison with the existing Doc2Query
Eval result, using the same number of generated queries and same base T5 model for
scoring. The second is our overall best-performing setting, using the ELECTRA filter
at n = 80 generated queries.
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Fig. 2. Effectiveness (RR@10) on the Dev set, compared with the total number of
indexed tokens. The generation phase is shown in dotted black (at various values of
n), and the ELECTRA filtering phase is shown in solid blue (at various values of p).

filter), this amounts to a 48% reduction in index size (1.41 GB down to 0.95 GB).
Naturally, such a reduction has an impact on query processing time as well; it
yields a 30% reduction in mean response time (30ms down to 23ms).

Doc2Query-- filtering adds substantial cost an indexing time, mostly due to
scoring each of the generated queries. Table 2 reports the cost (in hours of GPU
time) of the generation and filtering phases. We observe that ELECTRA filter-
ing can yield up to a 78% increase in GPU time (n = 10). However, we find that
the improved effectiveness makes up for this cost. To demonstrate this, we al-
locate the time spent filtering to generating additional queries for each passage.
For instance, the 15 hours spent scoring n = 5 queries could instead be spent
generating 6 more queries per passage (for a total of n = 11). We find that when
comparing against an unfiltered n that closely approximates the total time when

Table 2. Retrieval effectiveness comparison for comparable indexing computational
budgets (in hours of GPU time). Values of n without a filter are chosen to best approx-
imate the total compute hours or the Dev effectiveness of the corresponding filtered
version. Significant differences between in RR@10 performance are indicated with *
(paired t-test, p < 0.05).

GPU Hours RR@10
n Filter Gen+Filt=Tot Dev Dev2 Comment
5 ELECTRA 20 + 15 = 34 0.273 0.270
11 None 34 + 0 = 34 *0.261 *0.256 −4% Dev RR for sim. GPU hrs
31 None 99 + 0 = 99 0.273 0.265 ×2.9 GPU hrs to match Dev RR
10 ELECTRA 32 + 25 = 57 0.292 0.292
18 None 59 + 0 = 59 *0.270 *0.260 −8% Dev RR for sim. GPU hrs
20 ELECTRA 66 + 47 = 113 0.307 0.303
36 None 113 + 0 = 113 *0.275 *0.265 −10% Dev RR for sim. GPU hrs
40 ELECTRA 128 + 86 = 214 0.316 0.310
68 None 216 + 0 = 216 *0.279 *0.267 −12% Dev RR for sim. GPU hrs
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filtering, the filtered results consistently yield significantly higher retrieval effec-
tiveness. As the computational budget increases, so does the margin between
Doc2Query and Doc2Query--, from 4% at 34 hours up to 12% at 216 hours.

From the opposite perspective, Doc2Query consumes 2.9× or more GPU
time than Doc2Query-- to achieve similar effectiveness (n = 13 with no filter
vs. n = 5 with ELECTRA filter). Since the effectiveness of Doc2Query flattens
out between n = 40 and n = 80 (as seen in Figure 2), it likely requires a
massive amount of additional compute to reach the effectiveness of Doc2Query--
at n ≥ 10, if that effectiveness is achievable at all. These comparisons show that
if a deployment is targeting a certain level of effectiveness (rather than a target
compute budget), Doc2Query-- is also preferable to Doc2Query.

These results collectively answer RQ2: Doc2Query-- provides higher effective-
ness at lower query-time costs, even when controlling for the additional compute
required at index time.

6 Conclusions

This work demonstrated that there are untapped advantages in generating natural-
language for document expansion. Specifically, we presented Doc2Query--, which
is a new approach for improving the effectiveness and efficiency of the Doc2Query
model by filtering out the least relevant queries. We observed that a 16% im-
provement in retrieval effectiveness can be achieved, while reducing the index
size by 48% and mean query execution time by 30%.

The technique of filtering text generated from language models using rel-
evance scoring is ripe for future work. For instance, relevance filtering could
potentially apply to approaches that generate alternative forms of queries [38],
training data [2], or natural language responses to queries [5] — all of which
are potentially affected by hallucinated content. Furthermore, future work could
explore approaches for relevance filtering over masked language modelling ex-
pansion [19], rather than sequence-to-sequence expansion.
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