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Data-driven maintenance priority recommendations for civil aircraft engine
fleets using reliability-based bivariate cluster analysis

Hang Zhoua,b , Ajith Kumar Parlikadb , and Alexandra Brintrupb

aJames Watt School of Engineering, University of Glasgow, Glasgow, UK; bInstitute for Manufacturing, Department of Engineering,
University of Cambridge, Cambridge, UK

ABSTRACT
The modern civil aircraft engine is a type of highly complex engineering system in design,
manufacturing, and life-cycle management. They are constantly operated under extreme
and critical conditions, and yet, high reliability and safety are top priorities in the civil avi-
ation industry. To ensure top performance and efficiency in operations, engines follow a
modular design. This article intends to apply the data-driven cluster analysis to real-life
operation data for aircraft engine fleets, which provides a module maintenance priority rec-
ommendation solution to increase the efficiency of operations and best use of the
engine values.
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1. Introduction

The interest in the topic of fleet management has
been increasing in recent years, especially on major
transportation formats, including airplanes (Burke
et al. 2010), trains (Lu and Schnieder 2014), and auto-
mobiles (Nair and Miller-Hooks 2011).

The researches being carried out intend to solve
problems based on the functions of these transporta-
tion formats, as well as the efficiency and safety of the
assets within each managed fleet. One significant
improvement for fleet management comparing to con-
sidering each fleet member independently is the
increase of efficiency in task planning (Sohoni, Lee,
and Klabjan 2011), as well as saving costs on the fleet
life-cycle. This is particularly beneficial in fleet main-
tenance planning (Sheng and Prescott 2016), spare
parts procurement (Horenbeek et al. 2013), and ware-
house management (Accorsi et al. 2017). In order to
perform successful and effective fleet management, the
identification of similarities in performance character-
istics for member assets within fleets is vital. The
identification enables the concept of threating mem-
bers in the fleet as clusters.

A challenging problem that arises in this domain is
the evaluation of performances. Two popular
approaches on the evaluation of performance are: (1)
Probability of Failure (PoF) at a system level based on

time (Zhou, Lopes Genez, et al. 2022; Zhou, Li, et al.
2022). (2) Remaining Useful Life (RUL) of the system
where life is measured by time (Zhou, McGinty, and
Parlikad 2020). The research focus of this article, com-
plex systems in the aviation industry, is unique in the
measurement of life. Each aviation system in our data
collection is recorded for its life in a dual-time-scale
measurement, one being “hour” in time, the other one
being “cycle” in time (one cycle meaning one take-off
and one landing of an airplane). With the dual-time-
scale, by conventional system performance evaluation,
isolating and only considering either one of the two
time scales is not comprehensive to evaluate the avi-
ation systems. Also, to our knowledge, few studies
have yielded the evaluation of aviation systems by
combining both time scales. In this article, we propose
a novel performance profile index (PPI) for aviation
systems by jointly combining the dual-time-
scale evaluation.

Another primary problem in the aviation industry is
the standard of performance evaluation, which funda-
mentally leads to the datasets being collected. Due to
the complexity of the aviation systems, traditional sensor
data evaluation (Yedavalli and Belapurkar 2011) is well
performed on each single system independently. But,
due to the nature of large datasets, it is highly difficult
to assemble identical datasets for all members of systems
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within a fleet; therefore, it is difficult to establish a uni-
versal evaluation standard for fleet management with
identification of performance clusters. In this article, we
propose an effective framework by utilizing the min-
imum collection of data. This framework has significant
benefits in terms of high data quality, simplicity in data-
set assembling for industrial organizations, and the ana-
lysis results being highly trustworthy, highly explainable
and highly applicable.

There is a further problem with clustering for fleet
management, which is the most reasonable number of
clusters without pre-defined knowledge. Although
studies have provided statistical approaches for major
clustering algorithms, the reality of clustering results
is on case-by-case based varieties. There has been less
previous evidence for the clustering number determin-
ation for aviation systems; therefore, a new approach
is needed for the determination of applicable number
of clusters for performance evaluation of the systems.
The objective of this article is thus to provide the
solution of the clustering algorithm and to demon-
strate the feasibility of it. The feasibility is tested by
qualitative semantic concordance analysis utilizing the
natural language processing (NLP) skills for mainten-
ance and diagnostics logbook within the col-
lected dataset.

This article is organized as follows. In Section 2, a
literature review is provided on works related to fleet
management, as well as the existing clustering meth-
ods applied in different industrial backgrounds.
Section 3 provides the general data analysis workflow
and explained in details of each step. Section 4 is the
case study that focuses on the application of the meth-
odologies, especially the clustering methods to the
processed data, in order to determine the most rea-
sonable number of clusters and, therefore, perform
the clustering algorithm to obtain results. Section 5
provides a further application of this research in the
aviation industry. Finally, the conclusion and future
work is provided in Section 6.

2. Literature review

This literature review contains two major backgrounds
of this article, being the development in fleet manage-
ment and the clustering methods being applied in a
variety of research backgrounds.

2.1. Fleet management

Fleet management is the management of transporta-
tion assets including aviation machinery, rails,

commercial motor vehicles, or other non-powered
engineering assets including power generators and oil
rigs. The fleet management is beneficial in multiple
ways. Papadakos Papadakos (2009) applied the accel-
erated Benders’ decomposition in the sequential opti-
mization approach for airline fleet scheduling which
proves its value in significantly saving costs for the
airlines. Cacchiani and Salazar-Gonz�alez (2017) inte-
grated fleet assignment, aircraft routing, crew pairing,
and aircraft maintenance into solutions for real-world
dataset, and proves that the proposed arc-path method
performs well in fast achieving the optimal solutions.

Apart from scheduling of transportation, which is a
common problem fleet management approaches aim
to tackle, another aspect is on the planning of main-
tenance. Vujanovi�c et al. (2012) evaluated the
Decision Making Trial and Evaluation Laboratory
(DEMATEL) as well as the Analytic Network Process
(ANP) on fleet maintenance management of vehicles.
Feng et al. (Feng et al. 2017) proposed a heuristic
hybrid game method on the condition-based fleet
maintenance planning. The consideration on planning
maintenance as a fleet also leads to the fleet consider-
ation on spare parts procurement. Yongquan et al.
(2016) assumed a two-sample prediction for first fail-
ure time based on a Weibull distribution and a
Weibull process, thus proposed ordering spare parts
framework for a new fleet of aircrafts, however the
authors assumed a simple Weibull process in predict-
ing the failure time, which is based on the hours of
operation of aircrafts. As previously introduced in this
article from the introduction, it is not comprehensive
to predict failures of aviation systems by only consid-
ering the hours of operation. Similar evaluation in air-
craft performances exists in (Sheng and Prescott
2016), which only considers one time scale in measur-
ing the aviation systems’ lives.

2.2. Clustering methods

Clustering method is widely applied in many research
backgrounds and is considered as an important tool
and a fundamental initial data processing step to
reveal the structures and similarities within targeted
groups. Sohn et al. Sohn, Kim, and Harries (2008)
applied the concept of clustering in analyzing the
damage of the fiber-reinforced polymer (FRP) com-
posite materials which is a new and important new
material in civil engineering and construction. da
Silva et al. da Silva et al. (2008) examined the fuzzy
clustering methods and applied on structural health
monitoring for damage detection. Clustering is also
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widely applied in for example, the healthcare system
analysis (Wendt 2009), financial services and banking
(Tola et al. 2008), medical research (Soler et al. 2016;
Fava et al. 2012). These initial clustering all leads to
detection of similarities within each research back-
ground and established novel analytical results by fur-
ther studies on inner cluster phenomenon. The
literature review briefly described the advantage of
considering engineering systems as a fleet and devel-
opment management approaches based on clustered
similarities within members of clusters belonging to
fleets. By observation, it is highly beneficial to intro-
duce the clustering approaches into fleet management.
The similarities provided by clustering analysis pro-
vide deeper insights and understandings for the entire
fleet. This research is a continuous study of the initial
concept first introduced by Zhou et al. (Zhou,
Brintrup, and Parlikad 2021), while the case study
dataset was also provided in the existing literature
(Zhou, Lopes Genez, et al. 2022; Zhou et al.
Forthcoming).

3. Methodology

In this section, the procedure of the data analysis is
introduced. The procedure follows the flowchart pro-
vided in Figure 1. In this section, the detailed explan-
ation of each step is provided.

3.1. Defining dual-time scale measurement
performance profile index

One concept this article proposes is the performance
profile of a complex aviation system under dual time-
scale measurement. Due to the operation track-record
of each individual system, the final symptoms being
diagnosed from the system that enables an overhaul
are either contributed more by the hour-measurement
or more by the cycle-measurement, a representing
failure mechanism toward hour-measurement is the
physical degradation of creep for components operat-
ing under extreme high temperature, a general power
law description of the steady-state creep rate on pure
metal and alloy (Kassner and P�erez-Prado 2000) is

d�ss
dt

¼ A0 exp
�Qc

kT

� �
rss
E

� �n

(1)

Here, A0 is a constant, k is Boltzmann’s constant, E
is Young’s modulus, T is the temperature, rss is the
stress, �ss is the strain, and Qc is the activation energy
for creep, and n is an exponent constant dependent
on the creep mechanism. Under normal operation,

metal and alloy components within airplanes operated
under extreme high temperature suffer from potential
failures of materials due to operational time measured
in hours.

A representing failure mechanism toward cycle-
measurement is corrosion fatigue where components
are vulnerable with each take-off-landing cycle due to
cyclic loadings. A typical corrosion fatigue process for
aviation components starts by particles striking the
surface of the metal material, scratching the anti-cor-
rosive coatings and imitate pits on the material sur-
face. The pit initiation is followed by crack
propagation due to fatigue (Zhou et al. 2017; Zhou
et al. 2018), for which the crack propagation rate is
widely described by the Paris’ law (Sch€utz 1996):

da
dN

¼ CðDKÞm (2)

where a is the crack length, DK is the stress inten-
sity factor, which is related to the geometry shape of
the crack, and C and m are the constants related to

Figure 1. Procedure of maintenance priority recommendation
by maintenance logbook data analysis.
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material properties. The crack growth rate da
dN after

pit initiation is related to the loading cycles N.
With the above failure mechanism as potential

overhaul causes, and the operation of flight routes
with different hour/cycle ratio, the diagnosed symp-
toms for a system to go through an overhaul in this
article is evaluated by the contribution of hour-related
or cycle related degradation failure mechanisms.
Hence, the definition of dual-time scale measurement
performance profile. In order to determine the contri-
bution of the dual-time scale measurement, both the
data collected for Service Time Before Overhaul
(hour) and Service Time Before Overhaul (cycle) are
normalized, taking the largest value in the dataset as
the upper boundary and 0 as the lower boundary.
Assume there are n individual systems within the
dataset of a system family, and each of the individual
system going through an overhaul with a measure-
ment of hour hi and a measurement of cycle ci, where
i 2 ½1, n�: Among all the measurements, the maximum
service time measurement by hour is hmax and the
maximum service time measurement by cycle is cmax.
Therefore, we have

hi 2 0, hmax½ �, i 2 1, n½ �
ci 2 0, cmax½ �, i 2 1, n½ �

�
(3)

For each individual system with a performance
dual measurement Sysiðhi, ciÞ, the normalized dual
measurement is

Sys0i ¼
hi

hmax
,

ci
cmax

� �
, i 2 1, n½ � (4)

Each system, with the normalized values, is consid-
ered as a vector within the 2-dimentional coordinate
surface. This means each overhaul record contains a
direction and a magnitude referring to the original
point of O(0, 0), which is the system’s start of service.

The vector is represented as: OSysi
0���! ¼ hi

hmax
, ci
cmax

� 	
:

The Performance Profile Index (PPI) of an individ-
ual system within a family is thus defined as the mag-

nitude of the vector OSysi
0���!
:

PPIi ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

hi
hmax

� �2

þ ci
cmax

� �2
s

(5)

3.2. Survival analysis

The Kaplan–Meier estimator (Kaplan and Meier 1958)
is applied for the survival analysis of a family of sys-
tems:

ŜðPPIiÞ ¼
Y

i:0�PPIi�PPIn

1� di
si

� �
(6)

Here, di represents the total overhaul cases recorded

at vector OSysi
0���!
end point, within the area controlled by

the radius of PPIi: And si is the number of survival sys-
tems (systems that have not yet going through overhaul)
at PPi – in other words, the remaining healthy systems
at performance profile PPIi:

Sorting the data points within the dataset according
to its survival analysis, each data point contains three
types of information: the normalized hour value, the
normalized cycle value, and the fleet survival rate
value. These are represented as

Sys00i ¼
hi

hmax
,

ci
cmax

, ŜðPPIiÞ
� �T

(7)

With this calculation step, the dataset for the over-
haul data with performance profile calculation and
survival analysis of the entire fleet is expressed as

SRSystemFamily x ¼ Sys001 , Sys
00
2 , :::, Sys

00
n

� �

¼

h1
hmax

h2
hmax

� � � hn
hmax

c1
cmax

c2
cmax

. .
. cn

cmax

ŜðPPI1Þ ŜðPPI2Þ � � � ŜðPPInÞ

26666664

37777775
(8)

Here, in Eq. (8), the matrix SRSystemFamily x is a 3�
n dimensional matrix and x represents any system
family of the civil aircraft engine fleets being studied.

3.3. Principal Component Analysis (PCA)

In order to perform the clustering analysis, the three-
dimensional dataset of SRSystemFamily x is in need of a
dimensional reduction. One of the common dimen-
sionality reduction methods is the principal compo-
nent analysis (PCA). The purpose of performing PCA
in the dataset is that the clustering algorithm performs
better while the dataset maintains the most informa-
tion and the topological relationships among all the
data points. The data values are transferred into
another two-dimensional coordinate. This is specific-
ally a 3-dimensional to 2-dimensional transferring
problem, taking the following steps:

Step 1: Select the center of all the three-dimensional
data points from the dataset of SRSystemFamily x, each
value in tuple CSystemFamily x is also the average value
of each dimensionality.
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CSystemFamily x ¼
Xn
i¼1

hi
hmax

 !
=n,

Xn
i¼1

ci
cmax

 !
=n,

Xn
i¼1

ŜðPPIiÞ
 !

=n

 !T

(9)

Step 2: Each value of the matrix SRSystemFamily x

deducts the tuple value in CSystemFamily x, to form a
new 3� n dimensional matrix SRSystemFamily x0 :

Step 3: Calculate covariance matrix Cov ¼
1
n ðSRSystemFamily x0 ÞðSRSystemFamily x0 ÞT

Step 4: Calculate the eigenvalue and eigenvector of
matrix SR0

SystemFamily x:

Step 5: Sort eigenvalue from large to small, form the
eigenvectors into transforming matrix WSystemFamily x:

Step 6: SR00
SystemFamily x ¼ ðSR0

SystemFamily xÞWSystemFamily x

The data points in SRSystemFamily x after PCA transform-
ation is shown in Figure 3 for the values in the
matrix SR00

SystemFamily x:

3.4. Clustering methods

In order to reasonably cluster the processed overhaul
data from aviation systems into sub-groups, three
major clustering methods are explored and then eval-
uated for the clustering results.

3.4.1. Partitioning clustering
3.4.1.1. Clustering algorithm. K-means: The first clus-
tering algorithm being examined in this research is the
K-means algorithm. K-means is a hard-clustering
method where each data point is allocated to one sub-
group and one only. K-means classifies each data point
with its nearest cluster centroid by calculating the dis-
tances among them. The distance metrics being used the
most frequently are the Euclidean Distance (ED) and
the Manhattan Distance (MD). The two definitions of
the distance metrics are given in Eqs. (10) and (30) for
ED and Eqs. (11) and (31) for MD, assuming ai and bi
are each an n-dimensional vector.

lED ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXn
i¼1

ðai � biÞ2
s

(10)

lMD ¼
Xn
i¼1

jai � bij (11)

K-means requires a pre-defined number of clusters,
with random initiated centroids of clusters. This is followed
by optimizing the objective function of (Liao 2005):

min
C

Xm
j¼1

Xn
i¼1

l2ðxi, cjÞ (12)

where x ¼ ðx1, x2, :::, xn Þ are the observations in the
dataset, and C ¼ ðc1, c2, :::, cmÞ are the centroids of the

pre-defined number of clusters, and l is the distance
function in Eqs. (10) and (11).

3.4.1.2. Determination of cluster number. In order to
obtain the most reasonable number of clusters without
pre-defined knowledge, it is important to evaluate the
effects of the number of clusters in a mathematical and
statistical approach. For K-means partitioning clustering
method, the popular determination of cluster number is
the “elbow” method, and the silhouette statistic index.

The “elbow” method aims to calculate the Within-
Cluster-Sum of Squared Errors (WSS) for all the
potential values of the number of clusters, and choose
the value of the number when the WSS first start to
converge (Green, Staffell, and Vasilakos 2014).

The silhouette statistic index aims to measure the
similarity for a data point among its own cluster and all
the other clusters. Assume the number of data points in
the cluster Ci in which the data points originally belong
to is Cij j, the number of data points in the cluster the
data point does not belong Ck as Ckj j, where Ci 6¼ Ck,
and can be described as (Xu, Xu, and Wunsch 2012)

aðiÞ ¼ 1
jCij � 1

X
Ci, j2N, i6¼j

lði, jÞ

bðiÞ ¼ mink 6¼i
1

jCkj
X

Ck, j2N
lði, jÞ

sðiÞ ¼ bðiÞ � aðiÞ
maxfaðiÞ, bðiÞg

8>>>>>>>><>>>>>>>>:
(13)

Here, aðiÞ is the measurement of the fitness that the
data point belongs to its original cluster, bðiÞ is the data
point’s closest neighbor cluster, and is the data point’s
next best fit cluster, sðiÞ is the silhouette which meas-
ures the wellness this data point is classified. From the
definition, �1 � sðiÞ � 1: And the closer sðiÞ is to 1
the better clustered result has been achieved.

3.4.2. Fuzzy clustering
3.4.2.1. Clustering algorithm. Fuzzy C-means: The
fuzzy C-means clustering method is an extension of
the hard-clustering method of K-means. The major
difference is the inclusion of the fuzzy-partition
matrix. Hence, the objective is to optimize the func-
tion suggested by Liao (2005):

min
C

Xm
j¼1

Xn
i¼1

ðwijÞkl2ðxi, cjÞ (14)

The introduction of fuzzy-partition matrix wij ena-
bles the evaluation of the likelihood that a data point
belongs to each cluster, called the membership value.
While 1 � k � 1, the larger the fuzziness of k, the
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smaller the membership value is. wij is defined as (Liao
2005)

wij ¼ 1Pm
h¼1

lðxi, cjÞ
lðxi, chÞ
� 	 2

k�1

(15)

where ch is the centroids of clusters that are not clus-
ter cj, and ch 6¼ cj: The centroid calculated by the
fuzzy C-means algorithm is (Liao 2005)

cj ¼
Pn

i¼1 ðwijÞkxi
h i

Pn
i¼1ðwijÞk

, j ¼ 1, 2, :::,m (16)

3.4.2.2. Determination of cluster number. One of the
popular methods of determining the optimized num-
ber of clusters without pre-defined knowledge by
applying the fuzzy c-means clustering algorithm is the
fuzzy partition coefficient (FPC). This is defined
(Trauwaert 1988) as:

FmðWÞ ¼ 1
n

Xm
j¼1

Xn
i¼1

ðwijÞ2 (17)

where W is the fuzzy membership matrix. The defin-
ition determines the upper and lower boundaries of
the coefficient as 1

m � FmðWÞ � 1: The higher the
FPC, the more cleanly the data is described by the
clustering model.

3.4.3. Distribution Clustering
3.4.3.1. Clustering algorithm. The Gaussian Mixture
Model (GMM) allocates each observation in the data-
set to the distributions that are most likely to be the
same. With a set of observations, x ¼ ðx1, x2, , xnÞ and
a weighted sum of m clusters. The Gaussian mixture
density is defined as (Hedelin and Skoglund 2000)

fxjw, ĥ xjw, ĥ
� 	

¼
Xm
i¼1

wifxjĥ i xjĥi
� 	

(18)

where wi is the weight of each observation and the
observation densities are

fxjw, ĥ xjw, ĥ
� 	

¼ ð2pÞ�k
2detðRiÞ�

1
2e�

1
2ðx�liÞTRi

�1ðx�liÞ

(19)

Here, i represents mean vectors and Ri represents
the covariance matrices. The purpose of the GMM
clustering is to obtain the parameters of clustered
Gaussian distribution parameters:

ĥ ¼ w1,w2, :::,wm, l1, l2, :::, lm,R1,R2, :::,Rmf g (20)

In order to obtain the optimized values for the
parameters in the GMM, the purpose is to the

maximize the log-likelihood function given N inde-
pendent samples from the identically distributed sam-
ples of x observations (Hedelin and Skoglund 2000).

LðĥÞ ¼
XN
n¼1

ln
Xm
i¼1

wifxjĥ i xnjĥi
� 	

(21)

where the expectation-maximization (EM) algorithm
(Hedelin and Skoglund 2000; Dempster, Laird, and
Rubin 1977; Yang, Lai, and Lin 2012) is applied. The
EM algorithm can be described as two iteration steps:

Step 1 – Expectation step: Initiate the centroids of the
Gaussian distribution, calculate the log-likelihood
function value under the current set of Gaussian dis-
tribution parameters at the rth iteration (Hedelin and

Skoglund 2000) ĥ
ðrÞ

Z ĥ ĥ
ðrÞ


 	

¼ E
x, ĥ

ðrÞ LðĥÞ
h i�

(22)

Step 2 – Maximization step: Obtain the parameter set
that enables the maximum value of the following
definition (Yang, Lai, and Lin 2012):

ĥ
ðrþ1Þ ¼ arg max

h
Z ĥ ĥ

ðrÞ


 	�
(23)

3.4.3.2. Determination of cluster number. The com-
ponents of the clustering are determined by both the
Bayesian Information Criterion (BIC) and the Akaike
Information Criterion (AIC). This step is to determine
the most reasonable number of clusters within the
pre-set limit of number of clusters that best describe
the pattern of the dataset. This is to avoid overfitting
of the model, so that the model is applicable for pre-
diction.

BIC ¼ lnðnÞk� 2ln dLðhÞ� 	
AIC ¼ 2k� 2ln dLðhÞ� 	

8><>: (24)

Here, dLðhÞ is the maximized value of the likelihood

function of the GMM model where dLðhÞ ¼ pðxjĥ,MÞ,
M is the number of clusters in the GMM model and

ĥ is are the parameter values that maximize the likeli-
hood function. The minimum value of the BIC and
the AIC determines the component number within
the GMM model that describes the data set best and
also provides the best fit of the model for prediction
purposes. After the loop, the minimum values of the
BIC and AIC are determined, and thus the best model
of the GMM is determined. This is then applied to
the processed dataset to form the clusters.
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3.4.4. Fuzzy logic cluster number updating
However, a shortfall exists with the conventional clus-
ter number determination method—the initial cluster
number determination reflected the challenges in the
current general clustering algorithm approaches: with-
out pre-defined knowledge and especially when the
dataset contains high-complexity information, the
conventional clustering number determination can be
ineffective (de Amorim and Hennig 2015). The opti-
mal number of clusters is at the same time dependent
on the background of the problem and has to be
determined on a case-by-case basis. To resolve the
ineffectiveness of the conventional determination
methods, a technique is provided in this research for
clustering (particularly for the data collected from the
aviation industry). It starts by evaluating the sum of
intracluster distances for which the minimum value of
intracluster distances determines the most optimal
number of clusters for each of the clustering methods
mentioned above. This concept intends to combine
similar clusters by evaluating the characteristic simi-
larities of the clusters, for example, by the mean and
standard deviations. If it is determined that two or
more clusters have the similar characteristics, then the

Figure 2. Comparison of overhaul data collected from 4 families of systems.

Figure 3. Sorted overhaul performance profile with survival
analysis for System Family 1.
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centroids are grouped together to form the new clus-
ter (Lai et al. 2017). By introducing an unweighted
fuzzy logic decision making approach (Agrawal,

Panigrahi, and Tiwari 2008), the number of clusters
for each clustering algorithm is further updated. The
fuzzy logic membership function is defined as follows
(Agrawal, Panigrahi, and Tiwari 2008):

li ¼
1 , ifFi � Fi

max

Fi
max �Fi

Fi
max �Fi

min
, ifFi

max < Fi < Fi
min

0 , ifFi � Fi
max

8>><>>:
(25)

Here, li is the fuzzy logic membership value of the
ith objective function Fi: In this study, as the purpose
is to make a decision based on the balancing of simple
model with minimum number of clusters as well as
maintaining the low value in square intracluster dis-
tances, the number of objective functions is 2. The
number of clusters is set to be within 14 clusters from
the initial cluster number determination section,
which leads to the number of nondominated solutions
to be 14. Hence, the normalized membership function
for each nondominated solution is written as
(Agrawal, Panigrahi, and Tiwari 2008)

l h½ � ¼
Pp

i¼1li h½ �Pq
h¼1

Pp
i¼1li h½ � (26)

4. Case study

The data for evaluating the civil aviation system per-
formance profile are collected from the global over-
haul network locations. The aviation systems being
studied are labeled as system families. These systems
serve the same purpose but with different models
being designed and manufactured, providing the

Figure 4. Performance profile with survival analysis for System
Family 1 after PCA transformation.

Figure 5. “Elbow” method for optimal K number of clusters.

Figure 6. Silhouette statistic index method for optimal K num-
ber of clusters.

Figure 7. FPC determination of the optimal cluster number by
the fuzzy C-means algorithm.
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various ranges of flights in the civil aviation industry.
The dataset collected contains the following information
for each individual system, following the European
Union Aviation Safety Agency (EASA) guidance: the
model and identification code of each individual system,
the total safe service time before an overhaul measured
in hours, and the total safe service time before an over-
haul measured in cycles. Due to the differences in design
and service purpose of these systems, within each system
family, the overhaul records are markedly different. For
observation purposes, a sample of overhaul records data
collected is provided for 4 different systems within the
same hour and cycle time frame shown in Figure 2. For
Systems 1, 2, 3 and 4, the collected dataset contains
1429, 1277, 236, and 222 overhaul records independently.
It is worth noticing that although the data being col-
lected are real-life data, they are factorized up for confi-
dential reasons.

The data processing at this stage creates a 3-dimen-
tional dataset with fleet performance profile measure-
ment as well as the population survival analysis result.

This leads to the “Waterfall Model” shown in Figure 3
for System Family 1.

Performing the PCA transform on the PPI calcula-
tion results shown in Figure 3, the result is shown in
Figure 4 for System Family 1.

The cluster analysis is done on 4 fleets of aviation
systems for feasibility studies and for the purpose of
comparison in order to determine the most reasonable
clustering algorithm. Therefore determine the most
optimized clusters for industrial applications.

4.1. Numerical initial cluster number
determination

4.1.1. K-Means cluster number
In order to obtain the most reasonable number of clus-
ters, as stated in Section 3, both the “elbow” method and
the silhouette statistic index are applied. The “elbow”
estimation result on WSS is shown in Figure 5. And the
silhouette statistic index provides the results shown in
Figure 6. The dashed grey lines in Figure 5 and Figure 6

Figure 8. AIC & BIC method for GMM cluster number determination.
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marks the potential cluster numbers determined by the
’Elbow’ method and the Silhouette Statistic Index
method. The numbers are determined at the cutoff point
along the plot, where the increasing cluster numbers do
not significantly improve the performance evaluation by
percentage. This is on the purpose to balance the returns
and the additional cost of mathematical modeling
(Ketchen and Shook 1996).

The numerical approach here is that for a fleet of avi-
ation systems, it is generally not reasonable to cluster the
overhaul records into 1 group or simply 2 groups. From
both the “Elbow” method and Silhouette Statistic Index
method, the hard-clustering K-means algorithm does not
tend to complicate the number of clusters and the cluster
model. For System Families 1, 2, and 4, the optimal
value K is 3, while for System Family 3, the optimal
value K can be considered as 3 or 4.

4.1.2. Fuzzy C-means cluster number
The initial determination of cluster number by the
fuzzy C-means clustering algorithm applies the FPC

as stated in Section 3. The higher value of the FPC
means a clean description of the cluster number, as
shown in Figure 7. From the conventional calculation
of the FPC, where by the data-driven method of fuzzy
clustering, the most reasonable number of clusters is
determined when the FPC value is at the maximum.
This determination of cluster number is marked in
Figure 7 by grey dashed line. It can be observed that
the algorithm tends to choose the smallest number of
cluster possible—for all the System Families this tends
to be 3 clusters. Confirming that for the distance
measuring based clustering methods, K-means and its
extension of fuzzy C-means clustering both tend to
simplify the cluster numbers within the mathemat-
ical models.

4.1.3. Distribution Cluster number
The values of BIC and AIC are applied to initially
determine the number of clusters on the distribution-
based clustering method. The properties of the BIC
and AIC value determines that the extreme minimum
value of both values provides a foundation for the
most reasonable number of clusters, to best describe
the current dataset as well as keeping the model away
from overfitting so that the results can be applied to
other cases.

The optimal values of cluster number for the 4
System Families are shown in Figure 8. Compared to
the distance measuring based model, the distribution-
based clustering method is sensitive to the amount of
data observations within the dataset. At the same
time, due to the data properties for the aviation sys-
tem observations, the AIC values for four systems are
monotonically decreasing, which leads to no determi-
nisation of the most optimal cluster number by the
AIC evaluation. The BIC evaluation, however, pro-
vides the initial clustering numbers of 8, 10, 3, 4 to
the 4 System Families respectively. Here, in Figure 8,
the green dashed line is drawn to show the number of
clusters for System Family 4, the brown dashed line
shows the number of clusters for System Family 3, the
black dashed line shows the number of clusters for
System Family 1, and the red dashed line shows the
number of clusters for System Family 2.

4.2. Fuzzy logic decision on cluster
number updating

By definition, the optimal number of clusters refers to
the minimum normalized fuzzy membership value
(Agrawal, Panigrahi, and Tiwari 2008). The squared
intracluster distances for the four system families

Figure 9. Squared intracluster distance for four sys-
tem families.
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based on three mentioned clustering algorithms are
shown in Figure 9. The associated normalized fuzzy
membership values are shown in Figure 10.

It can be observed that the intracluster distances
follows the same trend for all three clustering meth-
ods—the more cluster there are, the less the combined
intracluster distances are. Based on the calculated nor-
malized fuzzy membership values shown in Figure 10,

the cluster number is given a ‘±1’ confidence interval,
as shown in Table 1.

The fuzzy logic decision solved two difficulties the
conventional determination methods face. First, the clus-
ter performances tend to unify with different clustering
method: even though the approaches are fundamentally
different, they all reach a certain agreement of the most
optimal cluster for a data being collected from each

Figure 10. Normalized fuzzy membership values for four system families.

Table 1. Summarized optimal cluster number.
System family 1 System family 2 System family 3 System family 4

K-Means 561 561 561 561
Fuzzy C-means 461 461 561 661
GMM 761 561 561 761
Optimal 6 5 5 6
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aviation system family. Second, the distribution based
clustering algorithm, the GMM, by the conventional
method, is sensitive with the size of the dataset. With the
fuzzy logic technique, the GMM clustering provides a
stable performance, which allows a stable decision mak-
ing in industry by applying the GMM in system per-
formance profile index clustering. Among the three
clustering approaches, the distribution-based clustering is
particularly suitable for partitioning the evaluations of
aviation system performance. It provides the information
that each data point has a hierarchy of probabilities to
be contained in a number of clusters. This property of
the GMM clustering approach is particularly an advan-
tage considering the complexity of the aviation system,

that when an overhaul is carried out, even though it is
majorly due to one diagnosed symptom of the system,
the potential failure mechanisms causing the diagnosed
symptom varies. The information concluded by GMM
clustering is important in the further determination of
maintenance policies and the supply-chain batch pro-
curement of spare parts. The GMM clustering method
for four system families is shown in Figure 11.

In Figure 11, each multiderivative Gaussian distri-
bution is plotted in ellipse with first, second and third
standard deviation area in light blue color. The data
points in each clustered are obtained with their ori-
ginal data label, in order to allocate each individual
aviation system into its associated PPI cluster.

4.3. Validation & maintenance priority
recommendations

In order to validate the clustering results proposed in
Section 5. It is important to identify the actual obvi-
ous characteristics within each determined cluster.
Within the collected datasets, we are able to achieve
maintenance logbooks information, the primary diag-
nostic symptoms and the root causes of each overhaul
event being collected for these systems. However,
these are all described in human language, without
obvious formats or language structures. In order to
identify the key performance characteristics, the step
of concordance analysis, essentially a qualitative
semantic analysis, on logbook natural language proc-
essing is performed (Anthony 2019). Analyzing words
and their patterns in context through a concordance—
a tabular display with the search word in the
middle—is a basic method of corpus linguistics; for

Figure 11. GMM clustering on four system families with the optimal number of determined clusters.

Figure 12. Qualitative semantic analysis on overhaul records
in natural language.
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example, see Wiegand (2019). The approach being
taken here follows the flowchart in Figure 12.

The results for the system family 1 are presented in
this article as an evidence to support the clustering
results. There are in total 10 key sub-systems being
identified as top priority overhaul root causes within
the entire collected dataset. The sub-systems associ-
ated with Sub 1 to Sub 10 are provided in Appendix
A. In Figure 13, the primary root causes that deter-
mine the characteristics of each cluster as well as the
additional minor causes within each cluster are shown
in both pie charts and frequency diagram side by side
for each cluster. It can be observed from Figure 13
that each of the clusters has one primary root cause
of the overhaul reason. This leads to the identification
of the primary characteristics for each speci-
fied cluster.

Furthermore, it is obvious that within each identi-
fied cluster, apart from the primary root causes for
overhauls, there are a few more non-primary root
causes exist. This further proves the choice of distri-
bution-based clustering algorithm is reasonable for
high complexity aviation systems.

At any period, the primary cause of the overhaul
determines the cluster each member of the fleet
belongs to, while there are still possibilities that other
symptoms exist that contributes to the primary causes.

This is because within a complex system, the failure
mechanisms are largely connected, and the primary
cause by observation is a combination of probability
of failure by the cooperation of multiple sub-systems.

The qualitative semantic concordance analysis
results presented in Figure 13 also proves the cluster-
ing method proposed in this article is highly valid and
reasonable. Each of the cluster is led by one primary
root cause, which clearly identified the similarities of
each member within one cluster.

5. An example of industrial application

The clustering results are a comprehensive input for
organizations managing the fleet of aviation assets.
One application rationale the clustering results pro-
vide is the estimation of overhaul time schedules and
the targeted sub-systems on which the maintenance is
most likely to be carried out. The targeted sub-sys-
tems at the same time, also determines the demands
of spare parts related to each overhaul event. Shown
in Figure 14 is a description of such rationale.

In Figure 14, results of System Family 1 are pro-
vided as an example. Based on the clustering results,
six cluster zones are obtained, cluster zone 2 and clus-
ter zone 4 are plotted in Figure 14. Here, in Figure
13, t12 is the projection of the first fleet shop visit

Figure 13. Primary root cause and additional cause of overhaul reasons within each cluster.

596 H. ZHOU ET AL.



overhaul data point within Cluster 2 on the X-axis,
which is the Normalized Hour, as the green dashed
line has shown its projection value on X-axis as t12.
And t14 is the projection of the first fleet shop visit
overhaul data point within Cluster 4 on the X-axis, as
the blue dashed line has shown its projection value on
X-axis as t14. With the boundaries determined by the
data points closest and furthest from the original
point. Assume one system model mu is classified into
cluster 2, and since the last overhaul toward mu, fol-
lowing its operational pattern, it has consumed hu
hours and cu cycles of its asset life. The system pro-
vider, based on the knowledge of clustering results,
shall decide that at time ðt12 � huÞ the spare parts for
overhaul service toward mu shall be ready at the over-
haul facility. The recommended spare parts to be
ordered in advance considering the lead time should
focus on the sub-systems of: Sub 2, Sub 1, Sub 8, Sub
9 and Sub 7, as priorities.

The advantage of determining maintenance schedules
with clustering results is that it significantly shortened
the range of “carry-on” time of spare parts storage with
uncertainties. The results also provided targeted failure
modes on a smaller selection of “high failure-potential”
sub-systems, which significantly increased the efficiency
on identification of high demand parts at a sub-system
level related to the performance profile of each individ-
ual civil aviation system.

6. Conclusion and future work

In this article, we proposed a novel framework to
combine the dual-time-scale measurements for avi-
ation systems, for a joint evaluation of the systems’
performances. This significantly extended the compre-
hensiveness of asset management in the aviation
industry, which enables a more close-to-reality consid-
eration when planning maintenance activities and
ordering spare parts for maintenance activities.

We also enabled the possibility of evaluating the
systems with minimum requirement of data collection.
The advantage of the simplicity in data assembling for
organizations is highly valuable. The reliability of sim-
pler dataset, as well as the exploitability of the results
developed from these datasets, enables high applicabil-
ity of this framework for industrial end users.

The clustering results are, furthermore, a highly valu-
able insight for organizations in the aviation industry.
The similarities in performance characteristics enable
multiple further developments which the authors will
consider in future work. These include the spare parts
demand predictions based on cluster results, the opti-
mization of vendor selection in a geographical zone, etc.

One defect in the current research is the identification
of specific spare parts, for those which appear to be the
most vulnerable in each of the clustered performance
characteristics. The current identification is on a sub-sys-
tem level. To enable the realization of spare parts demand
prediction, especially to reach an accuracy that is applic-
able in the industry, it is important to gather sufficient
data at a component level. The further data collection
and the prediction algorithm will also be further carried
out by the authors.
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