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Does Interactive Conditioning Help Users Better
Understand the Structure of Probabilistic

Models?
Evdoxia Taka, Sebastian Stein, and John H. Williamson

Abstract—Despite growing interest in probabilistic modeling approaches and availability of learning tools, people are hesitant to use
them. There is a need for tools to communicate probabilistic models more intuitively and help users build, validate, use effectively or
trust probabilistic models. We focus on visual representations of probabilistic models and introduce the Interactive Pair Plot (IPP) for
visualization of a model’s uncertainty, a scatter plot matrix of a probabilistic model allowing interactive conditioning on the model’s
variables. We investigate whether the use of interactive conditioning in a scatter plot matrix of a model helps users better understand
variables’ relations. We conducted a user study and the findings suggest that improvements in the understanding of the interaction
group are the most pronounced for more exotic structures, such as hierarchical models or unfamiliar parameterizations, in comparison
to the understanding of the static group. As the detail of the inferred information increases, interactive conditioning does not lead to
considerably longer response times. Finally, interactive conditioning improves participants’ confidence about their responses.

Index Terms—Brushing-and-linking, empirical study, interactive conditioning, prior distribution, probabilistic models, scatter plot matrix.

✦

1 INTRODUCTION

P ROBABILISTIC modeling is a form of statistical modeling
that has increased in popularity lately especially in the

context of Bayesian analysis. The emergence of Probabilistic
Programming Languages (PPLs) (e.g. Stan, PyMC) made
probabilistic modeling accessible to a broader audience.
Despite the growing interest, these methods are not widely
adopted. Non-experienced researchers who conduct exper-
iments and analyze data do not feel confident to use such
methods for the analysis [1, 2] even when they have access
to learning and exploration tools [3]. Users, who need to
rely on such models to do their job, might find it difficult to
understand their structure. Decision-makers with moderate
statistical background might make uninformed and poten-
tially risky decisions because they cannot understand the
effect of intervening on a variable upon other variables in a
model. The mathematical definition of probabilistic models
can be complex, unintuitive and hard to understand even
for more experienced users [4].

Understanding the relations among variables in a prob-
abilistic model given definitions of the model in textual
languages or graphs [5–8] (Fig. 1) is very much depen-
dent on users’ statistical knowledge. For example, variable
b in Model 1 (Fig. 1a) controls the mean value of vari-
able temperature. Increasing b’s value would increase
temperature’s mean value. In models where relations
are governed by more complex statistical or mathematical
associations, it requires good statistical knowledge to tell
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what the effect of a variable on others would be. There
is a need for tools to communicate variables’ relations in
probabilistic models more intuitively and help users build,
validate, use effectively or trust probabilistic models.

Variables’ relations in a probabilistic model can be vi-
sualized through visualizations of variables’ inherent un-
certainty. Scatter plot matrices present variables’ pairwise
distributions conveying existing correlations. IPME [9] is
a graphical representation with nodes corresponding to
models’ variables and showing the KDE (Kernel Density
Estimation) plot of the variable (Fig. 2l-s). It uses interac-
tive conditioning implemented as a brushing-and-linking
interactivity on KDE plots to enable a form of “sensitivity
analysis” of the variables and reveal their relations.

Various visualization designs were explored in the liter-
ature to facilitate reasoning about unintuitive mathematical
concepts like uncertainty [10–12] and Bayes’ rule [13–19].
Brushing-and-linking [20–22], although it is often present
in scatter plot matrices to help with the exploration of
multidimensional data, is rarely evaluated for its efficiency
with real test subjects [23, 24].

In this paper, we introduce an interactive pair plot (IPP)1

which is a classical scatter plot matrix that integrates IPME’s
interactive conditioning with some additional sample high-
lighting. We conducted a user study to investigate whether
users make better inferences about variables’ relations pre-
sented in a scatter plot matrix when they use interactive
conditioning in comparison to simply observing a static
scatter plot matrix. We focused on which levels of detail
of variables’ relations (Section 2.2) and which probabilistic
model designs (e.g. hierarchical structures, complex param-
eterizations of variables’ distributions) (Section 6.1) inter-

1. https://github.com/evdoxiataka/ipme/releases/tag/ipp

https://github.com/evdoxiataka/ipme/releases/tag/ipp
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Fig. 1. Visual representations of Model 1 of user study. Definitions in Textual Languages: (a) Probabilistic statements. For example, the first
statement reads: ”Random variable a follows (∼) a uniform probability distribution with the lower bound α = 80 and the upper bound β = 100”. (b)
PPL code (PyMC) of model for Bayesian inference. A likelihood is defined for the observed variable temperature to account for the list temp list of
N observed temperatures for a set of years. Graphs: (c)-(f) Transcriptions of model in various graph types.
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Fig. 2. Visualizations of variables’ relations in Model 1 of user study. Joint & Marginal Distributions: (a)-(c) The prior and posterior joint (3D surface
plots) and marginal distributions (line plots on cube faces) of variables temperature, and b, a, or c, respectively. The yellow stars represent the
observations in temp_list. Scatter Plots: (d)-(k) Samples and contours of variables’ pairwise prior joint distributions. Conditioning facilitates the
interpretation of scatter plots’ shape. For example, conditioning on b in sequential increased ranges in (e)-(g), increases the mean value (white
dot) of temperature’s distribution. Interactive Conditioning with IPME: (l)-(s) IPME-like representation. Interactive conditioning is applied on the
prior marginal distributions of b, a, or c and the conditional marginal distributions are drawn (in orange).

active conditioning can be more beneficial for. We used
IPP as the visualization instance and measured participants’
accuracy, response times, and confidence.

2 BACKGROUND

Illustrations in Fig. 1 and 2 accompany the text in Sections
2 and 3. Model 1 of the user study is used as a unifying
example in these figures to present various representations
of the model with varying levels of information.

2.1 Probabilistic Models

Probabilistic models consist of random variables that each
follow a probability distribution. Model 1 in Fig. 1a consists
of the a, b, c, and temperature random variables. Variable
temperature follows a normal distribution having two
parameters, the µ and σ. The probability density function
(pdf) of a normal distribution is a function of the value the
random variable can take given the parameters; f(x|µ, σ) =

1
σ
√
2π

e−
1
2 (

x−µ
σ )2 . The parameters of a distribution can be

random variables, as well. The µ and σ parameters of
temperature are set by the b and c random variables.
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The probability distributions of the random variables in
a probabilistic model are the marginal distributions of the
model’s multi(k)-variate joint distribution. In Model 1 k = 4.

Probabilistic models’ variables are either observed, re-
ferring to directly observed or measured variables, or la-
tent, referring to unobserved hidden variables. In Model 1,
temperature is an observed variable and a, b, and c are
latent variables. This categorization is important in Bayesian
analysis. The model’s distribution called prior, because it
encodes the prior knowledge and experience (e.g. possible
value ranges) before seeing any observation, gets updated
to reflect the posterior beliefs about the model’s variables
in the light of observed data. The model’s distribution after
this update is called posterior distribution. Fig. 2a presents the
prior (in blue color) and posterior (in cyan color) marginal
(line plots on cube faces) and joint (3D surface plots) distri-
butions of temperature and b variables. The prior and
posterior distributions of an observed variable are called
predictive, because samples drawn from them form possible
data-sets before or after observing the data.

To estimate the posterior distribution of a model, a likeli-
hood function of the probability distribution of the observed
variables is defined to account for the observed data, and
Bayes’ rule is applied. The likelihood is a function of the
distribution’s parameters. In the definition of Model 1 in
PyMC code in Fig. 1b, a normal likelihood is defined for the
temperature observed variable. The mathematical tran-
scription of the PPL-defined likelihood for temperature
would be L(µ, σ|x) = 1

σ
√
2π

e-
1
2 (

x-µ
σ )2 , where x is set by the

list of observations temp_list.

2.2 Relations of Probabilistic Models’ Variables
Two variables in a probabilistic model are related when one
is used for setting the distribution’s random-valued (non-
fixed) parameters of the other. We propose to define three
levels of detail, from lowest to highest, to characterize these
relations among variables in a model. We use these levels
in our user study to evaluate users’ understanding in the
different levels of detail as we explain in Section 5.

L1 Existence. Are variables related? Variable
temperature is related to b and c, but not to
a in Model 1 (Fig. 1a).

L2 Polarity. What is the sign (positive or negative) of
the polarity of the effect one variable has on another?
The µ parameter of temperature’s distribution in-
creases when the value of b increases in Model 1
(positive polarity), while it would decrease if it was
set equal to -b (negative polarity).

L3 Quantification. How are variables related? A rela-
tion is quantified by the specific statistical associ-
ations (which parameters of a distribution are af-
fected by a variable) and formula (mathematical
transformation or equation) that sets it. Variable b
sets temperature’s µ parameter through a simple
assignment. A transformation exp(b) or an equation
5− 2 ∗ b could be more complex ways to do so.

The following section reviews existing visual representa-
tions of probabilistic models and visualizations of variables’
relations, and explains which of these levels of detail could
be retrieved from them, and how.

3 RELATED WORK

3.1 Visual Representations of Probabilistic Models
Textual Language Definitions. Variables’ relations (L1) and
their quantification (L3) are retrievable through an at-a-
glance observation of the model’s definition in probabilistic
statements (Fig. 1a) or PPL code (Fig. 1b). Retrieving the
polarity of variables’ effects (L2) is dependent on the ability
of the user to interpret the mathematical details.

Graphs. Graphs can hide the mathematical details of
probabilistic models, while preserving some structural in-
formation. Bayesian networks (Fig. 1c) are informationally
minimal having nodes corresponding to model’s variables,
and edges (directed arrows) from one variable to another
indicating the direction of the relation. Some PPLs produce
more informed graphs like the DoodleBUGs’ graph [6]
where nodes contain information about variables’ dimen-
sions (Fig. 1d), or PyMC’s graphs [7] where nodes contain
the name of the prototype distribution of the variables
(Fig. 1e). The Kruschke-style diagram [8] (Fig. 1f) elaborates
the graph with the iconic “prototypes” of the variables’ dis-
tribution on each node and annotations for the parameters
of distributions being set by variables in the model.

Given a graph, users could view relations among vari-
ables (L1) at a glance (through the existence or absence
of edges). In the case of the more informed graphs like
Kruschke diagrams, users could even observe the exact
statistical associations or mathematical equations (L3). But
inferring the polarity of the effect of a variable on other
variables (L2) is still very much dependent on the ability of
the users to understand the mathematical details.

3.2 Visualizations of Variables’ Relations
To convey relations’ polarity (L2) visually, we need to incor-
porate representations of the model’s real-data uncertainty.

Joint & Marginal Distributions. A model’s joint dis-
tribution is multivariate. We could represent the pairwise
joint or marginal distributions of the variables (Fig. 2a-c).
While KDE (Kernel Density Estimation) plots are a common
way of representing marginal distributions, 3D surfaces are
rarely used for representing the pairwise joint distributions
especially in the context of probabilistic modeling. Con-
tour and scatter plots are more commonly used for this
instead. There are various existing visualization libraries
to create such representations for Bayesian analysis (ArviZ
[25], bayesplot [26], tidybayes [27], shinystan [28]).

Variables’ relations (L1), their polarity (L2) and aspects
of their quantification (e.g. statistical associations) (L3) are
conveyed by the shape of scatter and contour plots. Condi-
tioning could help interpreting the shapes of these plots in
regards with these three aspects of variables’ relations, and
retrieving them from KDE plots alone, as we explain below.

Scatter Plots. The shape of a scatter plot of samples and
contours representing a 2D distribution can reveal relations
between the two variables. For example, the well-elongated
elliptical shape of the scatter plot of temperature and
b in Fig. 2d implies the existence of a relation, while the
rectangular shape of the scatter plot of temperature and
a the absence of a relation (L1). In the first case, increasing
values of b lead to higher mean value of the distribution
of temperature, while in the later, increasing values of a
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do not affect the distribution of temperature. The shape
of the scatter plot reveals the polarity of the relation (L2)
and the statistical associations (b controls the µ parameter of
temperature’s distribution) (L3). The effect becomes more
evident if we divide the sample set into subsets of samples
for sequential increasing ranges of b (Fig. 2e-g).

Interactive Conditioning with IPME. Interactive condi-
tioning has also been used to convey information about vari-
ables’ relations through KDE plots. Taka et al. [9] suggest the
interactive conditioning of the marginal distributions and
the presentation of the conditional marginal distributions of
the variables in their IPME tool. For example, comparing
the marginal distribution of temperature (drawn in blue)
with its three sequential conditional marginal distributions
(drawn in orange) in Fig. 2m-o while conditioning on b
in three increasing and sequential ranges, we could infer a
relation such that increasing values of b lead to higher mean
value of the distribution of temperature (reveals L1, L2,
and statistical associations in L3). Conditioning is applied
by the user by dragging a fixed-height and variable-width
selection box in KDE plot corresponding to the conditioning
variable. A video demonstrating IPME’s interactivity can be
found in [29].

Scatter Plot Matrix. A Scatter plot matrix (or pair plot)
presents the pairwise joint and marginal distributions of a
model’s variables. ArviZ offers the ArviZ Point Estimate
Pairplot (APEP) [30], which presents variables’ joint samples
and contours of the pairwise distributions on the bottom
corner of the matrix and the KDE plots of the marginal dis-
tributions on the diagonal. Scatter plot matrices usually offer
selection tools for applying data filtering (conditioning). We
introduce in this paper the Interactive Pair Plot (IPP), an
interactive scatter plot matrix like APEP that incorporates
IPME’s [9] interactive conditioning on the KDE plots to
present the conditional marginal distributions. We present
IPP in more detail in Section 4.

3.3 Evaluation of Visualization in Bayesian Reasoning

The effect of problems’ representations on people’s ability to
reason about difficult and unintutive mathematical concepts
has been investigated in the existing literature. A character-
istic example is Bayesian reasoning where people seem to
perform poorly when they have to update their believes in
the light of new data (apply Bayes’ rule) [19].

People’s performance in Bayesian reasoning seemed to
have been benefited when graphical displays (contingency
tables, signal detection bar, detection bar, probability map
or double-tree diagram) [19, 31] or iconic pictorial repre-
sentations [18] or interactive frequency grids with check
boxes [17] were combined with a textual description of the
Bayesian reasoning problem. Expanding the sample through
crowd-sourcing [15, 16] led to inconsistent findings with
that previous work possibly because the wording of textual
descriptions could significantly impact users’ accuracy [14].
Ottley et al. [14] showed that (text-only or) visualization-
only designs were more effective than those which blend
text and visualization.

Interaction is believed to enable the communication be-
tween users and visual systems and support cognitive pro-
cessing. However, it is not clear how beneficial interaction

could be when added to a static representation. There are
few studies having investigated this effect on users’ perfor-
mance in contexts like Bayesian reasoning, and the findings
were unexpected. Mosca et al. [13] found no improvement
in people’s Bayesian reasoning by adding interactivity to
static icon arrays through check boxes. Khan et al. [31]
found that adding interactivity to double tree diagrams
through dragging and dropping to increase users’ active
engagement significantly decreased users’ performance in
Bayesian reasoning. Khan et al. [31] suggest that people’s
worse performance when using interaction might result
from the cognitive overload caused to them by interacting.
The existing work about the added value of interaction on
static visualizations is little and thus, conclusions about this
contradiction cannot be easily drawn.

Brushing-and-linking is an interactive approach usually
used on static visualizations of multivariate data like scatter
plot matrices. This method is useful in many tasks like
analyzing subsets of multivariate [24, 32–34] or hierarchi-
cal [23] data, solving conditioning problems or conducting
sensitivity analysis [9], which could not easily be conducted
through static visualizations. The added value of brushing-
and-linking to static visualizations is rarely the main focus
of evaluation user studies. For example, Nguyen et al. [32]
found that an interactive version of a scatter plot visual-
ization improved the accuracy of users in data exploration
compared to static versions of it. The effect of brushing-
and-linking alone could not be evaluated through this study
design because the provided interactivity was ranging from
choosing the number of plot panels to brushing-and-linking.

We designed a user study to investigate whether users
can infer structural information about probabilistic mod-
els presented in scatter plot matrices. We followed a
visualization-only design as it seems more effective based
on the existing literature; the questions were including the
visualization and no textual or mathematical (e.g. proba-
bilistic statements) description of the model. We investi-
gated the effect of adding interactive conditioning through
brushing-and-linking like in IPME [9] to the scatter plot
matrix. We aimed to provide context for the added value
of brushing-and-linking in the exploration of multidimen-
sional spaces of uncertainty.

4 INTERACTIVE PAIR PLOT

We designed an interactive pair plot (IPP) (Fig. 3) by com-
bining elements from the designs of APEP and IPME visual-
izations, and adding some extra highlighting. We replicated
the design of the APEP for the outlook of the pair plot.
The scatter and contour plots of variables’ pairwise joint
samples and distribution are presented on the columns and
rows of the matrix’s lower triangle, and the KDE plots of the
variables’ marginal distributions on the diagonal.

IPP was built on IPME’s framework inheriting its de-
sign elements (e.g. plot’s style and attributes like the grey
background, color palettes, rug plots’ inclusion of variables’
samples on the KDE plots, side interactive toolbar, and the
interactive conditioning’s mechanism and design) and limi-
tations (e.g. inflexibility in rerunning online (prior) sampling
or inference to get more samples in sub-ranges of model’s
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Fig. 3. IPP of Model’s 1 variables. A selection box is dragged and drawn
on the KDE plot of variable b restricting its range to [12 − 20]. The
conditional marginal distributions of the variables are drawn (in orange)
in the KDE plots on the diagonal and the samples in the restricted
sample space are highlighted (in orange) in the scatter and rug plots.

sample space with few or no samples, or applying multiple
conditions on a single variable).

The interactive conditioning’s design in IPP replicates
IPME’s corresponding brushing-and-linking interactivity.
The KDE plots (on the diagonal) can be interactively
conditioned by dragging and drawing a fixed-height and
variable-width selection box (brushing) and the KDE and
rug plots are updated (linking) with the KDEs of the
conditional distributions being drawn and samples in the
restricted sample space being highlighted in orange exactly
like in IPME. The choice of the selection box was limited by
the offered options of the Bokeh visualization library used
in the backend. We enhanced the interactive conditioning’s
design in IPP by adding the highlighting of the joint samples
in the scatter plots (linking) in orange color for consistency.
We aimed to replicate the typical linking effect encountered
in scatter plot matrices. A video demonstrating IPP’s inter-
activity can be found in [29].

We kept in IPP both the discrete (scatter plots, rug plots)
and continuous (KDEs, contours) representations of model’s
distribution encountered in APEP and IPME to comple-
ment each other. The contours and KDEs illustrate how the
density of the samples change with the value of the vari-
ables. Without these plots, identification of high probability
density value ranges would be difficult especially in cases
of high-density sampling that creates visual overlaps of
samples. The scatter plots and rug plots of samples provide
a discretized form of the continuous representations, which
according to existing literature could better support people’s
reasoning for uncertainty [10, 11].

IPP’s API considers subsets of variables of interest to
deal with the quadratic scaling in area of the scatter plot
matrix with the number of variables. This would be espe-

cially useful, for example, when users might want to inspect
only an aspect of complex models with many variables or
deep-hierarchy structures.

5 RESEARCH QUESTIONS, TASKS & CONDITIONS

Does interactive conditioning when used on pair plots
help users understand the structure of probabilistic mod-
els more accurately, faster, and with more confidence? We
aimed to investigate how efficient interactive conditioning
is in the comprehension of probabilistic models and when
it can be beneficial. Are there levels of detail of variables’
relations or model designs for which interactive condi-
tioning is beneficial? We determined three types of tasks
in the user study, T1, T2, and T3, each accounting for the
L1, L2, and L3 level of detail, respectively. We explored
various model designs as described in Section 6.1. Table 1
summarizes the study’s tasks and models.

We designed a between-subject user study with two
conditions; the static pair plot and the interactive pair plot
(IPP). Participants in both conditions were viewing the same
pair plot designed as described in the previous section, but
participants in the static condition were not able to use the
interactive conditioning. Fig. 4a presents a T2 task of the
user study with a static pair plot shown to participants in
the static group (SG) and an interactive pair plot (Fig. 4b)
shown to participants in the interaction group (IG) instead.

Participants had to look at the static scatter plot matrices
(in SG), or interact with them and look at the additional
highlights (in IG) to perform the tasks. For example, par-
ticipants in SG could determine the direction of relation
between b and temperature in task t3 (Fig. 4a) based
on the shape of the scatter plot. Participants in IG could
use interactive conditioning on increasing ranges of b and
observe the changes in the highlighted visual elements of
variable temperature. The fourth training video used in
the user study (more about training in Section 6) presents a
demonstration of task examples and how they could be an-
swered by each group based on the presented visualization.

This design of the pair plot allows a fair comparison of
the two conditions in regards with the amount of presented
information. The changes in the interactive condition refer
to two new types of visual elements added to the static
visualization; firstly, a highlighting of visual information
already existing in the static case (of dots in the scatter plots
or vertical lines in the rug plots), and secondly the inclusion
of the conditional marginal distributions in the KDE plots.
These visual additions are informationally equivalent to
scatter plots as the first does not insert new information,
and the second represents existing information (in scatter
plots’ shape) in a different format (marginal distribution).

6 USER STUDY’S DESIGN

The study was approved by the institution’s ethics review
board (approval number: 300200319) and conducted online.
It consisted of three parts; training, tasks, and demographic
questions. The training consisted of 4 videos (find links in
supplemental material) presenting the aim and structure
of study, an introduction to basic probabilistic concepts,
an explanation of assigned version (static or interactive) of
visualization, and some example tasks.
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Model Graph Task
id

T Question

Model 1

a ∼ Uniform(α = 80, β = 100
b ∼ Normal(µ = 2, σ = 10)
c ∼ Half-Normal(σ = 10)
temperature ∼ Normal(µ = b, σ = c)

temperature

μ σ

~      

        

cba

t1 T1 Which of the parameters a, b and c are related
to temperature?

t2 T2 How is parameter a related to temperature?
t3 T2 How is parameter b related to temperature?
t4 T2 How is parameter c related to temperature?
t5 T3 How would you describe the effect of parame-

ters a, b and c on temperature?
Model 2

a ∼ Normal(µ = 0, σ = 10)
b ∼ Half-Normal(σ = 10)
c ∼ Half-Normal(σ = 20)
random number ∼ Uniform(
α = a− c,
β = a+c)

random_number

a

a a

~      

      

cb

βα

        
−c +c

t6 T1 Which of the parameters a, b and c are related
to random_number?

t7 T2 How is parameter a related to
random_number?

t8 T2 How is parameter b related to
random_number?

t9 T2 How is parameter c related to
random_number?

t10 T3 How would you describe the effect of parame-
ters a, b and c on lower_bound?

t11 T3 How would you describe the effect of parame-
ters a, b and c on upper_bound?

Model 3

c ∼ Normal(µ = 100, σ = 150)
e ∼ Half-Normal(σ = 150)
f ∼ Normal(µ = 10, σ = 100)
g ∼ Half-Normal(σ = 100)
h ∼ Half-Normal(σ = 200)
ai ∼ Normal(µ = c, σ = e)
bi ∼ Normal(µ = f, σ = g)
sigmai ∼ Half-Normal(σ = h)
d ∼ Normal(µ = 0, σ = 10)
reaction time i ∼ Normal(
µ = ai +day · bi,
σ = sigmai)

reaction_time i

μ

~      

        

d b

c
    

μ

+b∗day

a

a
σ

t12 T1 Which of the parameters a, b, c and d are
related to reaction_time?

t13 T1 Which of the parameters b, c and d are related
to a?

t14 T2 How is parameter a related to
reaction_time?

t15 T2 How is parameter b related to
reaction_time?

t16 T2 How is parameter c related to
reaction_time?

t17 T2 How is parameter d related to
reaction_time?

t18 T3 If reaction_time, a and c lie on a graph,
what is the structure of the graph?

t19 T3 How would you describe the effect of parame-
ters a, b and day on reaction_time?

TABLE 1
Summary of probabilistic models and tasks used in the user study. The models’ definitions and graphs are presented in the first two columns

and the task id, task type (T), and question asked in the rest columns in the order presented to participants.

Submit

The visualization presents the uncertainty of the predicted temperature and parameter b.
How is parameter b related to the predicted temperature?
Single selection allowed. Remember, you can interact with the pair plot.
Higher values of parameter b lead to 

more uncertainty about the value of the predicted temperature
less uncertainty about the value of the predicted temperature
higher average value of the predicted temperature
lower average value of the predited temperature
They are not related to each other

1 (not at all)
2 (slightly)
3 (somewhat)
4 (fairly)
5 (completely)

How confident are you about your answer?

(a) (b)

Fig. 4. (a) Task t3 (Model 1 - T2) of user study. Participants in SG were shown a static pair plot. (b) The interactive pair plot participants in IG were
shown instead. Both pair plots showed the minimum necessary subset of model’s variables.

The study tasks were split into three parts, each corre- sponding to a different probabilistic model of increasing
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Fig. 5. Demographic statistics of participants in the user study. Both groups of participants (SG and IG) comprised of more older participants (D1).
There was a slight gender imbalance between the groups with IG having more males and SG more females (D2). The educational background was
generally well-balanced between the groups (D3), while participants in SG had a slightly higher former training in Statistics (D4, D5).

complexity. A set of questions of all three task types (Ts) was
created for each model. Table 1 presents a summary of the
3 models and 19 tasks used in the study. The supplemental
material provides a detailed description of the models and
screenshots of all tasks. The models were presented in
increasing complexity and the tasks in increasing level of
structural detail, and in the same order to all participants
(from t1 to t19). The version of the scatter plot matrix was
only varying among participants.

All questions were multiple-choice. Multiple selections
were allowed for the T1 tasks, and single selection for the
rest. Each available option was graphically illustrated in the
cases of T2 and T3 questions. Participants’ confidence was
input in a five level Likert scale.

At the end participants recorded their age, gender, high-
est educational level completed, former training in Statistics
and knowledge of Bayes’ rule. Fig. 5 presents participants’
demographic statistics. We randomly assigned 26 partici-
pants in the IG and SG (13 participants in each). Participants
were recruited through mailing lists and social media of the
institution and personal contacts without any requirement
regarding their statistical background. They each received a
£10 worth online shopping voucher as a compensation.

6.1 Task Models’ Design
We aimed to include different models of increasing com-
plexity in the study. That was achieved by increasing the
number of variables used for setting parameters of the
observed variable’s distribution in each model, combin-
ing various mathematical operations (+,-,*) for the assign-
ment of distributions’ parameters, and the use of hierarchy
(Model 3). We aimed to include both typical (Model 1 and 3)
and more exotic (Model 2) model designs to account for any
possible prior familiarity of participants with certain statisti-
cal structures, and the use of a variety of distribution types.

Model 1 was the simplest probabilistic model used in
the user study and is a typical one; a normal distribution
for the observed variable with the mean and variance being
directly set by two other (latent) parameters of the model.

Model 2 used a parameterization to set the bounds
of the observed variable’s uniform distribution through a
deterministic transformation: α = a−c and β = a+c. This
parameterization broadens the visual effects we can explore.
The combination of a uniform (temperature) and normal
(a) or half-normal (c) distribution creates unusual shapes of
the pairwise scatter plots. The interpretation of the changes
in the conditional marginal distribution while interacting is
different in this model in comparison to previous model,
because it is the bounds of the distribution that change here.

Model 3 was the most complex model representing a
typical hierarchical linear regression model with a normal
distribution for the observed variable, an often encountered
structure in probabilistic modeling. The mean of the distri-
bution was set as µ = a + b ∗ day and there were hyper-
priors set for the priors of the a and b parameters. The
hierarchy of the latent parameters in this model is an added
complexity in comparison to previous models.

The observed random (or deterministic) variable
in each model had a semantically meaningful name
(temperature, random_number, reaction_time, day
(deterministic)). The unidentified parameters were named
with letters a,b,c etc. to avoid revealing information about
variables’ relations through their names (e.g. sigma, mu).
Each model had an unidentified parameter which was un-
related to the rest of variables. We used a variety of prior
distributions for the unrelated parameters; a uniform for
parameter a in Model 1, a half-normal for parameter b in
Model 2, and a normal for parameter d in Model 3.

Models’ prior distributions were used in the study. Prior
distributions reflect directly models’ structure. As observa-
tions come into a model and the prior beliefs are updated,
the initial structure of the model can be overwhelmed in the
posterior distribution. For a clearer experimental protocol,
we focused on the prior space.

6.2 Implementation Details

Irrelevant interactive elements (zoom tools, hovering-over
tooltips, tabs, drop-down menus) were removed from pair
plots in study tasks to isolate the conditioning-related in-
teractivity as the focus of the study was on that. The pair
plot was showing the minimum necessary subset of model’s
variables in every task to avoid overwhelming participants
with irrelevant information. The unidentified variables were
appearing in alphabetical order across the diagonal of the
matrix with the observed variable presented at the bottom
to create a consistent view across participants and tasks
and avoid any possible extra cognitive load of participants
having to search for a variable in a randomized matrix.

The task models were specified and in-
terpreted in PyMC3. PyMC3’s prior sampling
(pymc3.sample_prior_predictive) was used to
generate prior samples for models’ variables. For example,
for Model 1 specified in PyMC3 in Fig. 1b, we generated
samples from the prior joint distribution of temperature
and b represented by the blue surface in Fig. 2a. We used
this set of samples to create the scatter and KDE plots in
Fig. 2d-g and l-o, Fig. 3, and Fig. 4a,b.
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7 ANALYSIS AND RESULTS

7.1 Evaluation Measures

Participants’ accuracy, response time and confidence were
evaluated in the user study. Accuracy was measured as the
number of correct selections in the multiple-choice input
by each participant in every task. Participants’ selections in
the multiple-choice input were transformed into a binary
representation with 0 indicating a wrong and 1 a correct
selection. The binary representation of each response in
T1’s tasks (multiple selections were allowed) consisted of as
many binary digits as the available options of the multiple-
choice input, excluding the “none” option, while for T2 and
T3 tasks (single selection was allowed) consisted of a single
digit. Participants’ performance in each task was computed
as the number of occurrences of digit 1 in their response.

Participants’ response time was measured (in seconds)
from the moment the task was displayed until the answer
was submitted. Participants were rating their confidence in
each task on a 1-5 scale with increasing level of confidence
(1: not at all, 2: slightly, 3: somewhat, 4: fairly, 5: completely).
We remapped this to the {−2,−1, 0, 1, 2} set to center the
parameterization.

7.2 Data & Bayesian Modeling of Responses

Data. The data was split into sub-sets based on the condition
(IG and SG). No participant or response was excluded. We
did not consider the multiple blank registrations of some
participants, who accidentally clicked the ”Register” button
multiple times. Accuracy data consisted of numbers of par-
ticipants’ correct selections in the multiple-choice input in
every task. Response time data consisted of times (in sec).
Confidence data consisted of ordinal values. A Bayesian
analysis of the collected data was conducted on the level
of the individual tasks.

Accuracy Analysis Models. Each group’s performance
in every task was modelled by a binomial likelihood (that
was reduced to a bernoulli likelihood for T2 and T3 tasks).
The posterior probability of success θ of the binomial distri-
bution was estimated for each group. This probability ex-
presses the propensity of a participant in the corresponding
group to make a correct selection in each task. The two
groups were compared in terms of accuracy by taking the
difference of each group’s posterior distribution of θ.

accuracyIG

~

thetaIG

accuracySG

~

diff_of_thetas

diff_of_thetas = thetaIG thetaSG

p

n

thetaSG

p

n

−

α ,β α ,β

(a) Accuracy in T1 tasks

p

accuracyIG
~

thetaIG

accuracySG

~

diff_of_thetas

diff_of_thetas = thetaIG− thetaSG

thetaSG

p

α ,β α ,β

(b) Accuracy in T2-T3 tasks

Fig. 6. Kruschke-style diagrams of the accuracy analysis models.

Response Time Analysis Model. Each group’s response
time in every task was modelled by a normal likelihood. The
posterior distribution of effect size (Cohen’s d) was estimated

{rt,conf}IG

μ μσ σ

~

groupIG_stdgroupIG_mean

{rt,conf}SG
~

groupSG_stdgroupSG_mean

diff_of_means

diff_of_means = groupIG_mean− groupSG_mean

effect_size

effect_size=diff_of_means /√((groupIG_std2+ groupSG_std2)/2 )

Fig. 7. Kruschke-style diagrams of the response times and confidence
analysis models.

for the comparison of the two groups to normalise for the
varying duration (and thus typical variances) of the tasks.

Confidence Analysis Model. Each group’s confidence in
every task was modelled by a normal likelihood. We made
the simplifying assumption that the ordinal values could be
treated as if they lay on a common continuous scale; hence
the normal likelihood. A more sophisticated analysis could
have inferred a (potentially per-subject) monotonic relation-
ship between ordinal responses and “true” confidence. The
posterior mean confidence level was estimated for each group
as confidence takes ordinal values and there was no need to
normalise. The difference of the mean confidence posterior
distribution of each group for every task were estimated to
compare the two groups.

7.3 Results
Fig. 8a presents the results of inference in a set of forest
plots. Comparing the two groups (IG and SG) based on
the differences of the posterior distributions, an effect of the
interactive conditioning is more likely given the data as the
value 0.0 (reference line in columns 3-5 of Fig. 8 indicating
no difference) becomes less likely under the difference of the
posterior distributions (horizontal posterior highest density
interval bars). That’s the highest density intervals of the
posteriors in the forest plots presenting the differences are
pulled away from the reference value towards the right. The
effect of interactive conditioning becomes less likely when
the highest density intervals of the posteriors are pulled
towards the reference value.

Accuracy. Participants’ performance overall was good
in both groups with the inferred probability θ of giving a
correct answer being over 0.5 in most tasks with greater
certainty for tasks of lower level of structural detail (T1-
T2) (columns 1-2 of Fig. 8a). Participants’ accuracy in tasks
t3-4, t11, t19 in IG and t19 in SG was around 0.5, while
in tasks t9-10 in IG and t7-11, t18 in SG was the lowest
than other tasks (< 0.5). The lower accuracy concerned tasks
with instances of more complicated statistical modeling; the
parameterization of the bounds of a uniform distribution in
t7-11 (Model 2) and a hierarchical structure of a hyper-
prior and prior in t18 (Model 3).

The effect of interactive conditioning is revealed by the
differences of θs. The effect is strong in t6-8 (Model 2), and
t18 (Model 3) and weaker in t10-11 (Model 2) (column 3
of Fig. 8a) clearly showing the benefit of interactive condi-
tioning in more sophisticated model designs.

Tasks t2 (Model 1), t8 (Model 2), and t17 (Model 3)
concerned unrelated variables. We observe a strong effect
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Fig. 8. Results. (a) Forest plot (94% highest density intervals) of the posterior distributions of the probability of correct answer for IG (thetaIG) and
SG (thetaSG), difference of θs (diff of thetas), effect size of response times (effect size) between IG and SG (normalised difference of duration),
and difference of the estimated mean confidence of participants about their responses (diff of means). Tasks are presented vertically grouped
per model. (b) Pair plot of mean values of the posterior distributions of diff of thetas for the accuracy, effect size for the response times and
diff of means for the confidence. The fitted linear regression line is drawn with a 90% bootstrap confidence interval in each scatter plot.

of interactive conditioning in t8 (Model 2) and not in the
rest (columns 3 of Fig. 8a). The square and full-gaussian
shapes of the scatter plots in t2 and t17 respectively were
more accurately interpreted as “absence of relation”, while
the half-gaussian shape of the scatter plot in t8 confused
participants in SG regarding the existence of a relation (see
relevant screenshots of tasks in supplemental material). This
shows the benefit of interactive conditioning in identifying
relations in cases of peculiar shapes of scatter plots resulting
from unusual combinations of prior distributions.

Response Times. Participants using interactive condi-
tioning needed more time to complete tasks overall with
the effect being strong in tasks t1-3 (Model 1), t6-7 and
t10 (Model 2), t12-14 (Model 3) (column 4 of Fig. 8a).
The differences in response time between groups are pulled
towards the reference line (0.0) in tasks of middle or high
level of detail t4-5 (Model 1), t8-9 and t11 (Model 2),
t15-17 and t18-19 (Model 3) (column 4 of Fig. 8a) imply-
ing that the extra exploration time interactive conditioning
introduces tends to diminish in cases of more complex tasks.

Task t8 was the one with the smallest mean difference
(close to 0.0) in the response time and the greatest mean
difference in accuracy between the groups (columns 3-4
of Fig. 8a). This could imply that the observed effect on
accuracy cannot be explained by possible extra exploration
time in IG (see Section 7.4 for further analysis on this).

Confidence. Participants in IG are more confident than
those in SG overall with the effect being strong in tasks
of lower level of detail t6-9 (Model 2), t13 and t17
(Model 3) (column 5 in Fig. 8a). Task t13 presents one of the
strongest effects of interactive conditioning on confidence,
while there is no corresponding effect on accuracy (columns
3, 5 in Fig. 8a). This could imply that interactive condition-
ing makes participants with equivalent performance more
confident (see Section 7.4 for further analysis on this).

7.4 Comparative Analysis

Do higher response times imply better accuracy or higher
confidence? Does better accuracy imply higher confidence?
The conduction of a causal analysis of the observed data
is out of the scope of this analysis, but we will investigate
the existence of relations (correlations) between these pairs
based on the inferred data.

Fig. 8b presents the pair plot of the mean values of the
differences of the posteriors for the accuracy, response times,
and confidence between the IG and SG groups. There is a
positive correlation between the differences in accuracy and
confidence implying increased confidence with increased
accuracy of the IG in comparison to the SG. Interactive con-
ditioning when used in pair plots seems to support more ac-
curate and certain decisions in the study tasks than the static
pair plots. There is a slight negative correlation between the
differences in accuracy and response time implying that any
increase in the accuracy of the IG would not be attributed to
increased response times. The negative correlation between
the differences in confidence and response time is implied
by the previous two correlations.

7.5 Analysis of Interaction Logs

The coordinates of the selection boxes drawn by the IG
participants in each task were recorded. The proportion of
participants having drawn at least one selection box was
high in all tasks (10/13 in task t5, 12/13 in tasks t3-4,
t6, t15, t19, and 13/13 in all other tasks). The (Q1,Q2,Q3)
quartiles of the number of selection boxes drawn per task
were (4.5, 9., 13.) and of the normalized (by the range of
the corresponding variable) length of selection boxes were
(0.11, 0.16, 0.24). The lengths of the selection boxes dragged
and drawn by participants were between the 10% and 25%
of variables’ ranges being coherent with the shape of the
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distributions. Such sizes of selection boxes are big enough
to capture part of the distribution with roughly constant
curvature. Bigger sizes would capture several modes.

8 DISCUSSION

8.1 When is Interactive Conditioning (not) Beneficial?

Model Designs. The analysis of the collected data (Sec-
tion 7.3) showed that the use of interactive conditioning
is beneficial for users’ comprehension of probabilistic mod-
els in cases of more sophisticated model designs like the
parameterization of the bounds of a uniform distribution,
hierarchical structures, and unusual combinations of prior
distributions (e.g. uniform and half-normal) (t6-8, t18).
This finding is strengthened by the fact that participants
in SG had a quite higher former training in Statistics than
those in IG (Fig. 5D4-5) and by excluding the possibility
that the higher accuracy could be attributed to the longer
response times observed in IG due to more time spent in
the exploration of the structures (Section 7.4).

In all other tasks (t1-5, t10-17, t19) there was no
strong effect of interactive conditioning on participants’ per-
formance (column 3 of Fig. 8a). We excluded the possibility
of low use of interactive conditioning being an explanation
for this (Section 7.5). The low complexity and common-
ness of the statistical associations encountered in most of
these tasks or the high complexity of others could possibly,
at least partly, explain this observation. Tasks t1-5 and
t12-17 concerned simple common statistical associations
(e.g. a normal distribution setting the µ of another normal
distribution) making both representations adequate enough
for participants to achieve a similarly good performance
(θ > 0.5) in most of these tasks (columns 1-2 in Fig. 8a).
Task t19 was a very complex task concerning the determi-
nation of the mathematical formula (a linear regression) (T3)
linking four variables (temperature, a, b, day) together.
Participants’ performance in any of the groups was close the
random choice (θ ≈ 0.5) (columns 1-2 in Fig. 8a).

Level of Structural Detail. Interactive conditioning did
not seem to benefit participants’ performance in a specific
level of detail of variables’ relations (column 3 of Fig. 8a).
Model design was more determining in the effect of interac-
tive conditioning on users’ performance than the complexity
of the task. On the contrary, the level of detail seem to
play a role in the differences of participants’ response time
and confidence between the two groups. The differences in
response time diminish in tasks of higher levels of detail
(Section 7.3). The burden of the extra exploration time re-
quired for interactive conditioning reduces in more complex
tasks. The greatest advantage of interactive conditioning in
participants’ confidence in comparison to static pair plots
appear with greater certainty in tasks of lower level of detail
(Section 7.3). In simpler tasks, participants using interactive
conditioning are more confident.

8.2 Practical Implications

Various types of users of probabilistic models could ben-
efit from visualizations like interactive pair plots. Model
builders could benefit from such visualizations when they
encounter complex model designs or have lack of statistical

experience to conduct prior predictive checks and validate
models (are the relations (effects) of variables as expected?).
Decision-makers in crucial areas like healthcare or stock
market could benefit from such visualizations when they
should eliminate any risk of ignorance or misunderstanding
of models’ structure to decide on crucial interventions (what
is the effect of a model’s variable on another?).

Researchers could benefit from such visualizations when
they need to tune some parameters in a model and need
to (for)see the effect of doing so, or to communicate their
models to a broader audience and provide a more intuitive
overview of the model. Teachers and learners of Bayesian
modeling could benefit from such visualizations when the
former seek for ways to illustrate the effects of variables
in various model designs, and the latter to gain a more
intuitive understanding of the different model designs.

Visualizations like IPP could help users explore the
effects of variables in the posterior space, as well. The re-
lationships of variables under the posterior are governed by
effects, although these effects usually cannot be expressed
analytically in explicit mathematical or statistical associa-
tions as they can in the prior space. This happens because
the exact form of the posterior distribution usually cannot be
expressed analytically unless the priors are conjugate [35].
In these cases, posterior distributions can be estimated by
sampling algorithms (e.g. MCMC), which does not allow us
to know how exactly variables are associated (e.g. variable
x sets the µ of the distribution of variable y). Although the
effects of variables in the posterior space could be visualized
and explored though such visualizations, most probably
they could not be interpreted as specific analytical relations.

The findings of the user study are not restrictive to a
specific PPL. Visualizations like IPP could be used to present
the output of any probabilistic programming code that is
being interpreted. Any programming language or library
(including PPLs) that supports operations on probability
distributions could be used for sampling from the prior and
any PPL could be used for inferring the posterior.

8.3 Limitations of User Study
The analysis of the collected data suggests that interactive
conditioning is beneficial for users’ understanding, but it
is not clear what aspect of it actually helps users. The
recorded interaction data could not provide us with more
insight into how participants in IG were exploiting the
specific implementation of interactive conditioning. Were
they combining information from both scatter plots and
marginal distributions? Were they only looking at the condi-
tional marginal distributions? Or were they only looking at
the highlighted scatter plots? Such questions would require
other experiment designs that would include one or combi-
nations of open questions, think-aloud protocol, analysis of
participants’ micro-interactions [36] or eye-tracking.

The participants’ sample in this study present limited
demographics with respect to age and educational back-
ground. Further experimentation could be conducted on an
expanded sample with broader demographics to investigate
if the findings of this user study would replicate (as Ottley
et al. [16] did for Brase [18] and Micallef et al. [15]).

We focused on presenting the study’s models in the prior
space. This offers analytic descriptions of variable’s relations
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(what controls what and how) as explained in Section 8.2,
which could be used to validate participants’ responses
(ground truth). For a clearer experiment design, we did
not include the case of posteriors determined by conjugate
priors. The types of distributions we could explore was
limited by the fact that prior sampling from heavy tail
distributions (student-t, Pareto, Cauchy) gives a Dirac-delta-
looking estimation of the probability density. Exploring
variables distributed in such ways in IPP would not reveal
any effect on their distribution while conditioning on them.

We had to limit the number of questions to ensure the
completion of study by participants in roughly an hour. The
user study was designed to include a variety of probabilistic
model types (parameterized, linear regression, hierarchical),
distributions (normal, half-normal, uniform), and statisti-
cal associations (setting the mean, standard deviation, or
bounds of the distribution directly or through simple mathe-
matical equations). There are many more model designs (lo-
gistic regression, GPs), distributions (discrete distributions
like binomial and Poisson) and configurations that could be
explored in the future in the context of a study like this one.

Variables’ relations in a probabilistic model could also be
characterized by their causal direction (directionality of the
arrow that links two variables in the model’s graph). This
was not included in the relations’ level-of-detail hierarchy
described in Section 2.2 as a separate level to limit the
task types, and hence questions in the user study. Par-
ticipants’ performance in T2 and T3 tasks could be used
as an indication of whether they were able to infer this
information. Inferring which variable controls a parameter
of the distribution of another variable implies the inference
of the causal direction between the variables.

8.4 Conclusions

Although there are various existing visualizations of proba-
bilistic models and variables’ relations, it is very little known
about whether and when they support users’ comprehen-
sion of the models. We focused on interactive conditioning
and investigated through a user study whether adding it to
classical scatter plot matrices helps users better understand
probabilistic models and if there are levels of structural
detail and model designs for which it is beneficial. The
analysis of the collected data showed that interactive condi-
tioning is beneficial in cases of sophisticated model designs
and the difference in response time between the interaction
and static group becomes less important in higher levels of
structural detail. Participants using interactive conditioning
were more confident about their responses overall with the
effect being stronger in tasks of lower level of detail. We
believe that these initial findings evoke the need for more
research to understand how users can benefit from visual
representations of probabilistic models and could pave the
way for future investigation into the role of interaction to
support more explainable Bayesian probabilistic models [37]
and users’ engagement with them.
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