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Abstract—Line of sight (LoS) links that use high frequencies
are sensitive to blockages, making it challenging to scale future
ultra-dense networks (UDN) that capitalise on millimetre wave
(mmWave) and potentially terahertz (THz) networks. This paper
embraces two novelties; Firstly, it combines machine learning
(ML) and computer vision (CV) to enhance the reliability and
latency of next-generation wireless networks through proactive
identification of blockage scenarios and triggering early handover
(HO). Secondly, this study adopts federated learning (FL) to
perform decentralised model training so that data privacy is
protected, and channel resources are conserved. Our vision-
aided proactive HO (PHO) framework localises users using
object detection and localisation (ODL) algorithm that feeds a
multiple-output neural network (NN) model to predict possible
blockages. This involves analysing images captured from the
video cameras co-located with the base stations (BSs) in con-
junction with wireless parameters to predict future blockages
and subsequently trigger PHO. Simulation results show that our
approach performs remarkably well in highly dynamic multi-
user environments where vehicles move at different speeds, and
achieves 93.6% successful PHO. Furthermore, the proposed
framework outperforms the reactive-HO methods by a factor
of 3.3 in terms of latency while maintaining a high quality of
experience (QoE) for the users.

Index Terms—Federated Learning, computer vision, blockage
prediction, ultra-dense networks, network latency.

I. INTRODUCTION

Next-generation wireless networks undergo a substantial

design change when operating in high-frequency bands [1].

Obtaining high data rate services from millimeter wave (mm-

Wave) and terahertz (THz) technologies demands downscal-

ing the communication system, resulting in a new network

paradigm termed ultra-dense networks (UDN) [2]. Moreover,

the use of beamforming enhances the received signal strength

(RSS) by forming line-of-sight (LoS) beams. Nevertheless,

UDNs face critical challenges due to the sensitivity of high-

frequency beams to blockages. These signals suffer high

penetration loss and attenuation, leading to a high RSS drop

each time an obstacle intercepts the LoS communication link.

This problem is aggravated in highly dynamic environments

where many dynamic objects can cause frequent blockages.

In literature, several techniques are adopted to overcome

the connectivity issue. For example, mmWave channel geo-

metry and signal diffraction characteristics have been studied

compared with sub-6GHz to predict whether a mmWave LoS

connection will be blocked [3], [4]. Other solutions rely on

machine learning (ML) and the dual connectivity (DC) to

maintain wireless connectivity and meet the required quality of

experience (QoE) for users [5], [6]. However, such solutions’

limitations vary in practicality, wasting network resources, and

most importantly, they do not solve the link blockage problem

since switching between links is still reactive.

To best solve this problem, UDNs require a sense of the

surrounding environment to move from reactive to proactive

blockage measures. The direct view is essential for UDN

communications and is equally important to computer vision

(CV), where visual information captures only direct visible

objects in the scene, helping to proactively detect blocking

objects. Therefore, leveraging vision information collected

from the served environment is envisioned to aid the operation

of the network rather than relying on wireless information

alone, which fails to address this dilemma [3]–[6]. Images

are rich in detail that can help solve the blockage problem in

UDNs. However, this hinges on two main questions; first, is

it possible to detect objects in the environment and identify

their mobility information? Second, how can wireless users be

distinguished from other passive objects in still images?

In [7], depth images and a deep learning (DL) model

are used to predict a user’s RSS in the next few hundred

milliseconds to assist in handover (HO) decisions. Further,

[8] exploits red-green-blue (RGB) images to train a ResNet-

18 model and then classify the images based on the blockage

status. However, the approaches in [7], [8] do not account

for the associated latency until completing a successful HO

and, therefore, cannot avoid link blockages, which is critical

in highly dynamic UDNs. In our previous work [9] we go

further by providing a simple scenario study that intelligently

detects blockages and performs optimal proactive HO (PHO)

considering the latency required to ensure user HO. The multi-

user environment is considered in [10]; this work adopts CV

and DL to predict whether the beam will be blocked in the

next instance. However, the limited-time prediction will most

likely not avoid beam blockages.

In light of the above discussion, this paper extends our

study in [9] by providing a CV-aided latency-aware PHO

solution that targets practical multi-user UDNs. The proposed

framework utilises the object detection and localisation (ODL)

algorithm in addition to neural network (NN) to accurately

predict blockages and the time when the blockage will occur.

Moreover, we noticed that the studies adopting ML approaches

follow the centralised training mechanism, which raises data

privacy concerns and consumes bandwidth resources. There-



fore, we also adopt federated learning (FL) approach to

collaboratively train the NN model, protect the privacy of the

visual information, and alleviate pressure on radio channels

[11]. The following points summarise the main contributions

of this paper:

• We formulate the CV-aided blockage prediction problem

for multi-user/object UDNs and develop an end-to-end

latency-aware framework that takes advantage of the

RGB images to proactively predict blockages and perform

PHO so that the QoE of users remains as high as possible.

• We consider FL as a distributed learning approach rather

than the conventional centralised learning method to train

the model locally in each small base station (SBS) where

the visual information resides and secure data privacy

while relieving the communication overhead.

• Finally, we validate the accuracy of the proposed frame-

work using modern simulation tools. The simulation

results underpin the importance of our solution in main-

taining seamless connectivity for highly dynamic UDNs.

II. NETWORK MODEL

This study targets UDNs which are prevalent in smart cities,

where the environment is challenging due to numerous mobile

users and obstacles. We consider an outdoor mmWave system

consisting of one macro base station (BS) and many SBSs,

as depicted in Fig. 1. For clarity, this figure shows only two

SBSs and part of a street as a small portion of a UDN.

Orthogonal frequency division multiplexing (OFDM) with K
subcarriers is adopted as the modulation scheme based on

28GHz. Each SBS has a camera that monitors objects within

its field of view. Moreover, it has an M -element antenna

array that enables beamforming to serve single-antenna mobile

users with beams selected from a predefined beam steering

codebook F = {fi}
B

i=1, where fi ∈ C
M×1 and B denotes the

total number of beams.

The network focus is to determine the optimal beam that

achieves the highest RSS at the user side (f⋆). Given this,

we define an area of interest (AoI) as the coverage area that

achieves the optimal RSS when the users are connected to

the corresponding SBS. QoE is the key performance indicator

that this study aims to keep as high as possible; therefore,

we assume that the network hands over the users from one

SBS to another every time they cross the boundaries of AoIs.

Moreover, the geometric mmWave channel model is adopted

since it captures the geometrical distribution of the environ-

ment and is commonly used in practical mmWave systems

[12]. Therefore, the downlink received signal at subcarrier k
is

yk = h
T
k f

⋆sk + nk, (1)

where h
T is the transpose of the downlink channel, s is

the transmitted symbol, and n represents the additive white

Gaussian noise (AWGN). In addition, the RSS at the user side

can be determined as follows:

RSS =
1

K

K
∑

k=1

∣

∣h
T
k f

⋆
∣

∣

2
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Figure 1: The proposed system model: portion of an UDN including
one macro BS and two SBSs each equipped with a vision sensor.

III. PROBLEM FORMULATION

The beam blockage problem can be formally defined as

follows. The camera captures frames of RGB images, and

image processing is applied to produce flat1 RGB (F-RGB)

images focused on the AoI. Each F-RGB image is assumed to

contain O objects, and every object o ∈ O will be monitored

until it leaves the SBS’s AoI. The F-RGBs are fed to an ODL

algorithm to obtain boundary-boxes information about every

object. This information is then converted to a 6-dimensional

metric vector [x1, y1, xm, ym, x2, y2], where the subscripts 1,

m, and 2 indicate the upper left, middle, and lower right

coordinates of the boundary boxes, respectively. The complete

mobility vector (L) of any object o is shaped by adding

the it’s movement direction (d) and speed (v) as follows

Lo = [x1o , y1o , xmo
, ymo

, x2o , y2o , do, vo]
O
o=1.

Assuming the number of wireless users in any F-RGB is U ,

U ⊆ O, and a user u ∈ U is identified from one of all objects

(as will be discussed in Section IV-B), then, the L vector for

that user is represented as Lu = [xmu
, ymu

, du, vu], given that

the UE is located in the middle of the object and other objects

are possible blockages. Let Su,c represents the combination

of the wireless user and a single blocking object, denoted

as an obstacle (c), Su,c = {Lu,Lc}, u ∈ U, c ∈ O\{u}.

Therefore, the goal is to classify whether this sample leads

to a possible future blockage b ∈ {0, 1}, where 0,1 indicate

beam non-blockage or blockage, respectively. Moreover, the

study predicts the remaining time until the user gets blocked

if a link blockage is expected, denoted as TBLK , which could

be defined as:

TBLK =

{

i , b = 1, ∀i ∈ R
+

-1, b = 0
(3)

where -1 means not applicable when the sample Su,c does

not lead to a future blockage. Thus, su,c = {bu,c, TBLKu,c
} is

defined as the labels associated with each data sample Su,c.

The objective of this study is achieved by using an ML

1Flat term is used to indicate a 2D image that has the same metric width
anywhere.



model fΘ(S) that can perform classification and regression in

parallel. It takes in the user-obstacle vectors S and produces

predictions ŝ. The model predictions are governed by a set of

parameters Θ adapted based on dataset of labelled samples

D = {Su, su}
U
u=1. This dataset trains the ML model to

reach high-fidelity for blockage status and time prediction. The

following mathematical formulas represent the purpose of the

model, which aims to maximise the probability of link status

prediction and reduce the blockage time prediction error.

max
fΘ(S)

U
∏

u=1

P

(

b̂u,c = bu,c | Su,c

)

, ∀c ∈ O\{u} (4)

min
fΘ(S)

U
∑

u=1

(|T̂BLKu,c
− TBLKu,c

|), ∀c ∈ O\{u} (5)

IV. CV-ASSISTED DYNAMIC BLOCKAGE

PREDICTION AND PHO

A. Key Idea and Schematic Diagram

This study focuses on a practical scenario that considers

multiple dynamic users and objects and extends our previous

work [9] that considers a single user and a stationary blocking

object. The framework is divided into several subtasks, as

illustrated in the schematic diagram in Fig. 2. Initially, the

camera at each SBS captures sequences of time-tagged RGB

images that are processed to zoom in on the respective AoI.

Then, one of the leading-edge ODL algorithms is used to

recognise objects and extract the required augmented inform-

ation. Next, it is necessary to differentiate the wireless users

from other obstacles to form Su,c data samples. At this point,

the data samples are labelled2 by blockage status and time.

The complete dataset is then stored to train the multi-output

model using FL, and when the model is ready, the unlabelled

data samples will be fed directly to the model for inference.

If the predicted TBLK is greater than the time required by

the proposed framework (TF ), it is highly possible to avoid

such blockages by requesting a PHO. The following formulas

illustrate the main time parameters of the proposed solution:

TF = TODL + Tinf + TPHO, (6)

TD ≤ TBLK − TF , (7)

where TODL is the time associated with using the ODL al-

gorithm on two successive F-RGB images. Tinf is the model’s

inference time. TPHO is the time required for performing

PHO, and TD is the time defined to delay triggering the PHO

to the point that yields the best QoE.

B. Objects Detection and Users/Obstacles Discrimination

ODL algorithms have recently undergone many advance-

ments allowing for super-fast, real-time, and accurate de-

tection. In this study, a state-of-the-art you only look once

(YOLO) version 3 algorithm is adopted to detect various

2Labels of data samples can be obtained analytically in the absence of
prior information or by observation, which means monitoring and recording
the users blocking status and time.

objects in the F-RGB images and produce boundary boxes

indicating the positions of the objects in pixel scale [13]. The

boundary boxes are then converted to metric scale using the

conversion ratio Wm : Wp, where Wm and Wp refer to the

width of F-RGB images in meters and pixels, respectively.

This process is followed by extracting objects’ speed and

direction to build the L vector for every object. Performing

ODL on two successive F-RGB images is necessary to de-

termine the speed and direction. The direction is determined

by noting the displacement in x location, whether to the left

or the right. This offset distance is divided by the difference

of the corresponding time stamps to get the object’s speed.

The study in [13] shows that performing ODL on two F-RGB

images requires 102ms, i.e. TODL = 102ms. This time will

be less if edge computing resources are employed in SBSs.

Identifying wireless users: Moving from a single-user [9]

to a multi-user environment necessitates distinguishing each

particular user from other objects in the F-RGB image. This

study uses a mapping technique in which the exact location

of the wireless user in the environment is reflected on the

F-RGB images and compared with all boundary boxes. The

object with a boundary box centre closest to the user’s location

will be considered the wireless user in the F-RGB. Several

techniques are followed to obtain the user’s position in the

wireless environment, such as GPS and RSS triangulation, but

they fail to provide an accurate location. The shift to higher

operating frequency is foreseen to improve the positioning

based on the cellular networks [14]. Moreover, several studies

have considered this research direction and proposed novel

techniques that provide very accurate user localisation [15],

[16]. Based on these developments, this work assumes that

the radio access network adopts one of these highly accurate

methods to provide the location and track the users. Therefore,

this study proposes the dynamic positioning table (DPT) in

each SBS to keep track of the user’s location, which is also

converted and reflected on the pixel scale. With DPT tables,

it is now possible to differentiate wireless users from other

objects and to build the user-obstacle data samples, Su,c.

C. Model Training and Inference: FL Approach

The nature of the defined problem is best solved using a

model that can do both classification and regression simultan-

eously. Hence this work develops a multi-output two-hidden

layer NN model fed by user-obstacle samples to predict the

blockage status and time. In addition, this study adopts FL

rather than centralised learning to protect the privacy of the

data and relieve the pressure on the communication channels.

Training Phase: During the FL process, the NN model is

used as the base model to be trained by the SBSs. The number

of clients is set to three. However, the framework can be easily

extended to include many SBSs. A parameter server (PS) in

the macro BS orchestrates the training process by selecting

the number of SBSs participating in each round and sends

them the model to start the training. Each SBS exploits its

dataset to train the model locally and then sends the model’s

parameters to the PS for aggregation. Furthermore, an early
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Figure 2: Schematic diagram of the proposed framework.

Table I: Hyperparameters of the NN model.

stopping patience technique is developed to avoid suboptimal

performance or excessive rounds of unnecessary training.

Inference Phase: After the model has been trained in

the FL environment, it is ready to be used for inference. The

generated user-obstacle data samples can be fed to the trained

model for blockage status and time prediction. Furthermore,

the time associated with model inferencing requires approx-

imately 1 ms, i.e., Tinf =1ms.

D. Optimal PHO Trigger Point

The proposed framework informs the network of the need

for PHO if a blockage is expected. The principal question

is when and at what distance the PHO should be triggered.

Therefore, this study identifies two regions: detection and

failure. The detection region is defined as the region in which

the proposed framework monitors and detects the objects

within it; in this system model, this region is the same as

the AoI. The failure region is where there is no chance of

avoiding link interruption due to insufficient time remaining

to complete the PHO. The failure region is located just before

the blocked region; its width and location vary because of

the environment’s dynamicity and the user’s speed. Fig. 1

illustrates these regions.

Finding the optimal distance to trigger PHO is linked with

maintaining higher values of the user’s QoE. If a BLK event is

detected, the best scenario is to wait for the maximum delay

(Tmax
D ) obtained from equation (7) and then perform PHO.

Translating this time to distance gives the optimal distance

(Dopt) defined as follows:

Dopt = v × Tmax
D . (8)

In other words, the optimal PHO must be triggered just

before the failure region in the boundary between the detection

and failure regions. Triggering the PHO anywhere within the

detection region and before the optimal PHO boundary may

also avoid the link blockage but at the cost of affecting the

perceived QoE. In addition, doing early PHO may impact the

balance and the allocation of network resources. Hence, the

objective of the proposed framework is to always trigger the

PHO within the vicinity of the optimal PHO boundary.

E. PHO Latency

The final required parameter for the proposed framework

is TPHO. In a conventional network employing beamforming,

if a user loses the connection with the SBS, it will undergo

1) Actual 𝑇𝐵𝐿𝐾 < 𝑇𝐹 230 ✓
2) Predicted 𝑇𝐵𝐿𝐾 <= Actual 𝑇𝐵𝐿𝐾 2695 ✖
3) Predicted 𝑇𝐵𝐿𝐾 > Actual 𝑇𝐵𝐿𝐾 2075 ✓

𝑇𝐵𝐿𝐾 categories

Samples Blockage?Category

Figure 3: Classification and regression model performance.

certain steps to reconnect again. The complete steps are

beam failure detection, beam failure recovery, cell search,

and contention-based/free random access [10]. According to

the 3GPP specifications, each step is associated with a time

duration until completion and the total delay time is ∼312.2

ms, indicating the time associated with performing reactive

HO when contention-based random access is assumed. Us-

ing proactive blockage prediction significantly minimises this

time, and the TPHO will be equal to 80ms [9], assuming

contention-based radio access since this study targets urban

areas with dynamic wireless environments. Consequently, the

proposed framework’s TF is now determined and equals

183ms. If the predicted TBLK is greater than 183ms, the

framework has a high chance of avoiding link interruption.

Otherwise, a link interruption will happen.

V. PERFORMANCE EVALUATION AND RESULTS

This section first discusses how the NN model is developed

and then delves into describing the simulation setup and

discussing the simulation results.

A. FL-based Multi-Output Model Development

The NN model is trained under the FL setup using the feder-

ated averaging algorithm. The complete information about the

model structure and the selected hyperparameters are shown

in Table I. Model performance is tested using ten thousand

samples forming 50% blocking and 50% nonblocking. Fig.

3 displays the testing results in which the confusion matrix

demonstrates the near-optimal classification accuracy of the

model, while the table divides the TBLK into three categories

and gives the blockage status for each category.

To give a better understanding, the PHO success rate is

defined as SRPHO = Ns/NT , where Ns denotes the number

of samples with successful PHO and NT indicates the total



Table II: PHO success rate versus percent shift.

Pshift % 0 1 3 5 7 9 11 13 15

SRPHO % 54 77.1 91 93.4 93.6 93.3 92.8 92.4 92

number of blocking samples. Therefore, we can conclude from

the table in Fig. 3 that the success rate is unsatisfactory with

54%. However, this result can be improved by making a trade-

off between the SRPHO and the QoE. Therefore, we introduce

a new parameter called the percent shift (Pshift) defined to

reduce the predicted TBLK by this percent. This parameter

aims to move as many samples as possible from the third to

the second category to enhance the SRPHO at the cost of

a slight drop in the QoE. Table II shows how changing the

values of the Pshift affects the SRPHO, and the best value is

7%. Accordingly, Fig. 4 illustrates the cumulative distribution

function (CDF) of the samples with successful PHO versus

TD offset, which indicates how far is the predicted TD (T̂D =
T̂BLK − TF ) from the actual one and defined as:

TDoffset
=

Tmax
D − T̂D

Tmax
D

× 100%, ∀T̂D ≤ Tmax
D . (9)

The optimal PHO point is when the TDoffset
is zero, and the

closer the samples are to this point, the better the performance.

Moreover, moving away from this point means an earlier PHO

which may affect the QoE. However, performing earlier PHO

with some QoE drop is better than losing the connection and

establishing it again, which will incur much overhead and

increase the network’s latency. Finally, the framework is now

ready to be used under the considered scenario that will be

discussed subsequently.

B. Simulation Setup

The overall performance of the proposed framework is

evaluated by considering a practical outdoor environment. The

scenario considered in this study is inspired by the vision

wireless (ViWi) ASU downtown scenario (ASUDT1) [17],

which has a very similar system model to the one adopted for

this study. ASUDT1 comprises two mmWave SBSs operating

at 28GHz and located 60 m apart on opposite sides of the

street. Each has an antenna array that forms LoS beams

to serve 60 users moving in straight trajectories. Users are

UEs placed in the center of vehicles of different sizes, such

as cars, buses, and trucks, moving at different speeds and

directions, and each can be seen as a potential obstacle for

other users. At each time instance (also known as a scene),

the ASUDT1 provides raw data for every user u consisting

of a 4-tuple of concurrent information (user location, RGB

images, mmWave channel, link status) from each SBS, which

helps in evaluating the performance of the proposed solution.

The simulation experiments are based on Python programs,

and the key performance metrics are the PHO success rate,

the network latency, and the perceived QoE.

C. Simulation Results

Several aspects are considered to examine the efficacy of

the proposed framework. First, given the dynamicity of the

Figure 4: The distribution of the TD offset of the samples with
successful PHO.

considered environment, the impact of vehicles’ speed on

performing a successful PHO is studied. The speed is set in a

range of 1.5 to 20 mph, and a new parameter called relative

speed is introduced. For every blocking sample in Su,c, the

relative speed parameter is defined as the sum of the user’s

and obstacle’s speeds if they are moving towards each other

or the difference in their speeds if they are moving in the

same direction. This parameter measures how fast a blockage

occurs and will be used to investigate its impact on performing

successful PHO. Consequently, the relative speed from all

blocking samples of the testing dataset is divided into three

categories, slow, medium, and fast. Fig. 5(a) demonstrates the

results of this study. It can be observed that the PHO success

rate is high when the relative speed is low and medium. At the

same time, it decreases as the relative speed increases, which

is expected due to reducing the TBLK for a blockage, thus

reducing the probability of a successful PHO.

Then, the latency associated with performing HO on both

reactive- and proactive-based approaches is studied. Section

IV-E shows that the latency associated with reactive HO is

about 312.2 ms. However, the PHO requires only 80 ms,

assuming contention-based random access. Following a similar

approach from [10], the average HO latency for 5000 users is

calculated as:

ζ =
{ρ× U} × 80 + {(1− ρ)× U} × 312.2

U
, (10)

where U signifies the total number of users and ρ ∈ [0, 1] is

the percentage of users who successfully perform a PHO. Fig.

5(b) shows the average latency improvement of the proposed

PHO framework compared to the reactive mechanism. The

average latency is 94.8 ms for our CV-aided PHO solution,

which outperforms the reactive HO approach by a factor of 3.3,

vital to maintaining connectivity for real-time applications.

The final study adopts a similar approach from [9] of

considering moving users running an RTP-based application

and measures the average QoE/mean opinion score (MOS)

of a group of users with prospect blockages. This study

takes advantage of the mmWave channel information provided

by the ASUDT1 scenario. Since ASUDT1 provides plentiful

information represented as scenes for every location point,

this study spotlights on the portion of the street between



(a) (b) (c)

Figure 5: Simulation results: (a) The impact of different relative speeds on the PHO success rate, (b) Comparison of the average latency
between the reactive HO and the proposed CV-aided PHO, (c) The RSS percentage drop due to performing reactive and PHO, and how
much this drop affects the QoE measured through MOS.

the two SBSs and only focuses on the blockages within the

scene interval from 680 to 980. For every blocking, the RSS

percentage drop when a user is handed over to another SBS

is recorded and is done for all users who encounter blockages

in between the two SBSs. Then, the average percentage drop

of the RSS is calculated and mapped to the corresponding

value of the MOS. However, for the reactive-HO approach,

no proactive measures are taken and the percentage drop in

RSS is also measured to find the average percentage drop in

RSS. Fig. 5(c) illustrates the outcome of this study in which

the proposed framework can keep the MOS at a high level

despite the small drop in the average RSS. Reactive HO failed

to keep users at high MOS during interruption time. This

result confirms the potential of the proposed framework for

improving the reliability of high-frequency wireless networks

and making them suitable for latency-sensitive applications.

VI. CONCLUSIONS

This study explored the potential of leveraging vision in-

formation to improve the reliability of high-frequency net-

works by predicting dynamic blockages in advance and taking

measures to perform PHO. A NN multi-output model is

developed that, combined with CV technology, propose a

novel framework capable of accurately predicting blockages

and the time needed before the user reaches the blocked

region. Moreover, the model is trained using FL to protect data

privacy and conserve bandwidth resources. Simulation results

indicated that our framework achieves a high PHO success

rate of 93.6%, outperforms the reactive-HO approaches by a

factor of 3.3 in terms of latency, and maintains the QoE at

higher levels. These results highlight a promising solution for

beam blockages in multi-user mmWave/THz networks.
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