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Abstract—Joint communication and sensing technique has
been adopted for smart home design and other applications re-
cently. WiFi sensing, which utilizes mutually orthogonal channel
response to monitor the changes in the medium, is regarded
as one of key techniques in this field. Human activity recogni-
tion using wireless communication system is a key function of
future internet of things system. The effective and inexpensive
WiFi sensing system can help people for device-free controlling,
healthcare monitoring without concern of image information
leakage that uses camera system. In this article, we proposed
a continuous angle of arrival and time of flight (AoA-ToF) maps
based method that adopts multiple signals classification analysis
on commercial and off-the-shelf WiFi devices to detect the
human activities. The performance of our system achieves 85.6%
accuracy in total with 8 activities among 5 users. Meanwhile,
we investigated the performance of our system under different
conditions, including direction and user identity. The results show
the system’s robustness for human activity recognition under such
conditions.

Index Terms—WiFi sensing, channel state information, multi-
ple signal classification, deep learning

I. INTRODUCTION

Indoor human activity recognition (HAR) has played a
significant role in intelligent internet of things (IoT) con-
trolling and healthcare monitoring. Device-free WiFi sensing
in HAR is an emerging research trend for nearly a decade,
which spawned various kinds of applications including vitals
monitoring, human daily activity recognition, falling detection,
and signs recognition [1], [2]. Compared to other equipment
of radar-based device-free approaches, the WiFi devices ob-
jectively own higher cost-effective which is the better choice
for general indoor cases implementation.

Since the WiFi signals are approved to be accessible for
wireless sensing, there are various kinds of HAR systems
have been developed. WiFall system [3] is designed to detect
falling activity for health monitoring using the stability of
CSI time and diversity of frequency spectrum of WiFi signals.
Lip motion detection system [4] is proposed for under-mask
speech recognition, which utilizes WiFi signal’s variation
while human speaking to classify different pronunciation. E-
eyes [5] leverages the distribution information of CSI am-
plitude for HAR tasks. All the above systems are focused
on extracting temporal signals influenced by human activity
but don’t utilize the spatial information brought by the WiFi
antenna array. Widar3.0 [6] realizes an overall HAR system

that can be transferred to different environments, orientations,
and locations. It integrates the Doppler frequency variation
from multiple views of WiFi devices in distinct coordinates,
with regard to human position. However, the system is only
available when the scenario has more than three receivers.

Inspired by the Widar3.0 system, we proposed a continuous
angle of arrival (AoA) and time of flight (ToF) maps-based
method that adopt single pair of commercial WiFi devices
to achieve fine-grained human activity recognition task. Our
contributions are summarised in three points.

1) We firstly leverage the continuous AoA-ToF maps
(CATM) in the HAR task as our best knowledge.
Compared to the previous frequency spectrum-based
classification method that only leverages temporary in-
formation, the CATM reserve both temporal and spatial
human body information.

2) We design a lightweight temporal neural network for
HAR tasks in our CATM system.

3) We collect and establish a dataset of human activity
with WiFi sensing, and human skeleton information for
validation.

The rest parts of the paper are structured as follows: Section
II introduces the basic model of CSI transmission. Section III
demonstrates the methods of signals calibration, feature ex-
traction of CATM, and temporal neural network classification.
Section IV and V analyse the overall performance and give the
conclusion respectively. The structure of the proposed system
is shown in Fig. 1.

II. PRELIMINARIES

Channel state information (CSI) is used to characterize
the channel attributes of WiFi links in the physical layer
as the sample of channel frequency response, which can be
disturbed by multipath fading and shading. In the indoor
environment, human movement is one of the significant factors
that influence the CSI value. Meanwhile, CSI data contains
human-related information, like daily movement and rhythmic
physiological phenomena, like respiration and heartbeat. WiFi
sensing technique aims to extract and analyze this potential
human related information. We could use the equation to
describe the CSI:

H(f, t) = e−j2π∆ft(Hs(f) +Ha(f, t)) +N(t) (1)



Fig. 1: CATM based HAR system of WiFi sensing

where e−j2π∆ft is the random phase shift due to the asyn-
chronous sending and receiving process of the WiFi system;
Hs and Ha(f, t) represents the CSI signals from all the
static paths (including the signals in line of sight (LOS)
path and those reflected off the stationary objects) and active
paths (including signals reflected from the dynamic objects)
respectively. N(t) represents the noise during transmission.
CSI signals in active paths can be expressed as:

Ha(f, t) =

Nd∑
i=1

ai(f, t)e
−j2π

(di(t)+da(t))

λ (2)

where Nd is the index of the dynamic path, ai(f, t) represents
the complex attenuation factor of the ith path; e−j2π

di(t)

λ

represents the phase change of ith path; di(t) and da(t) are
the static length and vibrating length of ith path. λ represents
the wavelength of the WiFi signal.

Through coupling the above two equations, it can be found
that human related information is reflected from the amplitude
and phase shift. However, previous researches found that
the raw CSI data is too noisy to extract the feature [7],
[8], especially for tiny motion. In this case, we designed a
series of experiments of breathing detection to validate the
performance of data sanitation techniques. The reason why we
choose breathing instead of other activities is the respiration
information is periodical and tiny enough, which make it easier
to check the correlation between main frequency response and
human motion.

III. METHODOLOGY

A. Calibration technique

At first we collected CSI data using Intel 5300 network
interface cards (NIC) and omnidirectional antennas. A volun-
teer is asked to sit statically between a WiFi receiver and a
WiFi transmitter and keep breathing evenly. The plots of raw
CSI amplitude and phase are shown in Fig. 2. In comparison
with CSI amplitude, CSI phase information of human body
motion is more sensitive, especially for respiration detection
[8], [9]. However, the random phase shift from asynchronous
links pollutes informative phase variation as Fig. 2 shows.
Phase sanitation is significant for the post-classification task
of WiFi sensing. According to the previous analysis of WiFi

CSI transmission [10], noise components can be divided into
sampling frequency offset (SFO) and packet detection delay
(PDD) caused by the receiver:

• SFO: Clocks of transmitter and receiver are out of syn-
chronization, which leads the sampling frequency of the
receiver to shift randomly. This will cause the phase of
collected signal to be unpredictable shifted.

• PDD: Detection of WiFi signals in receiver side cause
thes delay.

Next, the conjugation multiplication is adopted in our
system to reduce the SFO which has been proved in In-
doTrack [11]. It considers the phases of two transmission
paths are shifted by the same value from the receiver. In
this case, conjugate multiplication can help to reduce SFO
and PDD. Secondly, due to the multi-path effect of WiFi
signals, receivers can collect multiple impulse signals while
the transmitter only sends them once. It shows the time
dispersion of wireless transmission, which means the ToF
should be various for one transmitted packet. Based on the
line-of-sight path, we adopt the ToF-based filter to eliminate
the high delay components of CSI signals. To explore the
influence of ToF corresponding to the respiration signals, we
adopt the power delay profile (PDP). The PDP method utilizes
the influence of time delay due to the multi-path effect. PDP
can be calculated by inverse fast Fourier transform (IFFT)
of raw CSI data. Due to the multi-path effect, physical WiFi
signals are not only transferred by the LOS path but also can
be reflected by any objects around the circumstances, which
is in NLOS paths. The signals with a long time delay can
be regarded as uncertain data that carried more environmental
information. Meanwhile, considering the sampling frequency,
the time delay should be smaller than the time gap between
the two samples. Otherwise, the signals will be attenuated by
other samples’ information in the hardware or transmission
medium. In this case, we calculated the PDP of CSI signals
and set the threshold of time to the sampling time to filter the
long ToF signals out. The experiment result is shown in Fig.
3 tested in distinct subcarriers.

B. AoA-ToF Maps Construction

For our activity classification, the directional movement fea-
ture of the human body is the main parameter for researchers



(a) Subcarrier 10 (b) Subcarrier 20 (c) Subcarrier 30

Fig. 2: Raw CSI data within volunteer keep breathing evenly for 15 seconds of different subcarriers

(a) Original phase information (b) Recovered signals (c) Separated noise signals

Fig. 3: The PDP filtered result of CSI.

to establish the mapping relationships from signals to multiple
activities class [12]. However, for complex human motions,
like waving hands (left and right side), the behavior patterns
can be similar to each other. We assume that the human motion
is capable to influence the channel parameters of Angle of
arrival (AoA) and Time of flight (ToF). AoA indicates the
direction of receiving signals with respect to the receiver
and ToF indicates the time cost of transmission from the
transmitter to receiver, by LOS and NLOS. In this case, we
extract continuous AoA-ToF maps (CATM), which directly
represent the behavior coordination in physical space.

Firstly, we regard the double antennas as an antenna array
and analysis it with a Multiple Signal Classification (MUSIC)
signal processing algorithm [13]. However, the MUSIC al-
gorithm requires the number of transmission paths should be
smaller than the number of antennas. In our setup, the number
of antennas is limited to the number of ports in the commercial
WiFi chip. In the equation, we separate the signals received
by each antenna into 30 different groups based on the number
of subcarriers of the chip. The separated frequency bands of
subcarriers lead to frequency-selective fading. For different
frequency components of the signal, the wireless transmission
channel will show distinct random responses. According to
the frequency-selective effect, we simulate a virtual antenna
array composed of 30 independent subcarriers from a single
antenna. On the other hand, in the linear antenna array, phase
differences between two actual antennas are related to the time
cost of receiving the data from the same path. Suppose the

index of antenna and subcarrier are M and K respectively.

XCSI =


xcsi(1, 1) xcsi(1, 2) · · · xcsi(1,K)

xcsi(2, 1) xcsi(2, 2) · · · xcsi(2,K)

...
...

. . .
...

xcsi(M, 1) xcsi(M, 2) · · · xcsi(M,K)

 (3)

Next, we analyze the phase shift indicator with the AoA
and ToF value of the individual path. We suppose the incident
angle of receiving signals towards the linear array is θ.

ϕθ =
2π(m− 1)dsinθ

λ
(4)

We mainly adopt the MUSIC-based method which is pro-
posed in [14]. Due to the frequency band fθ between two
adjacent subcarriers, there is a 2.5 radians phase shift. At lth
path, the phase shift of kth subcarrier with ToF τ is given by:

ϕτ = 2π(k − 1)fθτl (5)

Besides, we leveraged the Smoothed-CSI matrix proposed
in SpotFi [14] to increase the virtual unit and enhance the
linear array association. The Eq. 6 shows the cases of M = 2
and K = 30. For simplicity, We use XS−CSI to call the
smoothed CSI matrix.



XS−CSI =



xcsi(1, 1) xcsi(1, 2) · · · xcsi(1, 15)

xcsi(1, 2) xcsi(2, 2) · · · xcsi(2, 16)

...
...

. . .
...

xcsi(1, 15) xcsi(1, 16) · · · xcsi(1, 30)

xcsi(2, 1) xcsi(2, 2) · · · xcsi(2, 16)

xcsi(2, 2) xcsi(2, 3) · · · xcsi(2, 17)

...
...

. . .
...

xcsi(2, 15) xcsi(2, 16) · · · xcsi(2, 30)


(6)

In our system, we assume the phase difference of different
subcarriers is ϕτ . Therefore, we replace xcsi(m, k) with e−jϕτ

and e−jϕθ to explore the phase shift. Meanwhile, we label the
transmission path index as L The steering vector a and steering
matrix A can be written as:

a(θ, τ)=[1, e−jϕτ , . . . , e−jϕ14
τ , e−jϕθ , . . . , e−j(ϕθ+ϕ14

τ )] (7)

A = [a(θ1, τ1), a(θ2, τ2), . . . , a(θL, τL)]
⊤ (8)

In the MUSIC algorithm, the received data is used for eigen-
decomposition to separate the signal subspace and the noise
subspace. The orthogonality of the signal direction vector and
the noise subspace is used to form a spatially scanned spectrum
for a full-domain search of the spectral peaks, which enables
parameter estimation of the signal. To apply the algorithm, we
firstly establish a linear model of a received signal vector of
X, in the presence of a steering matrix of A, Gaussian white
noise of N, and Smoothed-CSI matrix of S:

X = AS+N (9)

The basic idea of the MUSIC algorithm is to analyze the
covariance matrix RX of received signals:

Rx = E
{
XXH

}
= AE

{
SSH

}
AH + E

{
NNH

}
(10)

= ARsA
H +RN

where Rs and RN represents the correlation matrix of multi-
path incident signals and noise respectively. In the K-size
eigenvalues of correlation matrix, the smallest K − L eigen-
values are corresponding to the noise and others eigenvalues
correspond to L incident signalsThe noise subspace can be
constructed: En = [e⃗1, e⃗2, . . . , e⃗K−L]. Therefore, the power
spectrum with respect to the AoA θ and doppler frequency
dop can be expressed as:

P(θ, τ)MUSIC =
1

aH(θ, τ)ÊN ÊH
Na(θ, τ)

(11)

Besides, attributed to the short time delay of subcarriers
on a single antenna and limitation of resolution in MUSIC,
there are negative ToF value signal components shown in
the matrix. Generally, the MUSIC algorithm only focuses on
the peak of the power spectrum which reflects the sources’

direction. However, in our system, we set static location for
each device, and extract the variation of peak influenced by
human activity. Although it’s not possible for ToF value to be
negative in real world, we adopt these parts and suppose the
shape of heatmaps in the negative region is helpful for neural
network classification. In the discussion of Section. IV-B4 we
compare the influence on performance between non-negative
ToF CATM (NT-CATM) and full CATM.

There are two activities, i.e. walking and jogging, that are
posted in the time domain as Fig. 4. Because the patterns of
these human movements are similar, it’s can be proved that
the effectiveness of feature extraction with the similarity of
two CATM. The red boxes represent the similarity between
the two activities, which shows the robustness via different
time slots.

C. Temporal classification neural network structure

The structure of our proposed neural network is illustrated in
Fig. 5. It contains 3 components: frame embedding, sequential
fusion, and classification. The frame embedding consists of
one convolutional layer, one residual block, and one pooling
layer. We implement the residual block following the function
in [15], where an identity mapping is introduced for faster back
propaganda of gradient. The following is the sequential fusion,
which intends to collect the information from the temporal
sequence. In the module, we adopt an LSTM structure, which
has a robust ability to retain the long-term information in time
sequence. In the final step, a simple linear projection with
SoftMax is utilized as the classification module that generates
the probability distribution of predicted motions. The model
is trained by CrossEntrophy loss and Adam optimizer.

IV. EVALUATION

A. Experiment Setup

We adopted four PCs equipped with Intel 5300 COTS WiFi
devices to sense 8 different activities of 5 volunteers. As Fig.
6(d),(h) shows, we set up 1 transmitter and 3 receivers to
collect CSI data. Meanwhile, we equipped a Kinect V2 depth
camera by the side of the transmitter to capture the human
skeleton coordinates, as Fig. 4 shows. For CSI data collection,
each profile contains 3-second human activity with a sampling
frequency of 1000 Hz.

After CSI calibration and CATM extraction, the dimension
of each profile is set to S ×H ×W , where S represents the
length of the sequence in one packet, H and W both refer
to the dimension of a single ATM. We set the size of CATM
profile to 100× 90× 90. In total, we collected 7998 profiles.
To standardize the training step, we set 100 epochs with 32
batch sizes for our system and other comparison tests. The
whole dataset is randomly picked 20% of profiles as test set.

B. Overall evaluation and Discussion

The overall classification results are composed of 3 pairs
of Tx and Rx, which are calculated to be 85.8%, 85.4%,
and 86.8% respectively. For simplicity, we classify the data



Fig. 4: ATM result of CSI while human jogging (a,b,c) and walking (e,f,g).

Fig. 5: Res-LSTM Temporal neural network structure

Fig. 6: Experimental setup

collected from the different paths into 3 directions. For ex-
ample, D1 represents the first pair of Tx and Rx, with the
same for others. To evaluate the factors that influence system
performance, we analyze the system with a control variable
method of different direction paths and user identity.

1) Influence from direction: From the accuracy comparison
among the 3 directions, we observe that the performance of the
classification system of D1 and D3 works slightly better than

TABLE I: Recognition accuracy vs Activity type

Accuracy (%) Total
D1 D2 D3

Walking 90.3 88.2 87.1 88.5
Jogging 78.6 72.4 79.3 76.7

Squatting 91.4 82.9 84.4 86.3
Chest

expansion
83.9 82.4 96.2 86.8

Rising arms 84.4 89.5 83.3 85.7
Lunge press

(Right)
85 82.8 91.2 86.4

High-step
stretch

86.1 88.2 86.8 87

Lunge press
(Left)

85.3 94.1 80 86.4

Total 85.8 85.4 86.8 85.6

D2. We suppose that the LOS path components of D2 cause
a stronger effect on our CATM, such as static LOS response.

2) Influence from user identity: For distinct users, the
behavior habits are various. To validate the performance of
our system among different persons, we invite 5 volunteers
to participant in our experiments and compare their results
to the dataset. The performance is shown in the Table. II.
Identities indeed influence the performance with a maximum
gap of 12.8%.

3) Comparison of other HAR systems: We replicate and
compare other three different WiFi HAR systems to validate
the performance of our work: Widar3.0 [6], THAT [16],
Dop HAR [17]. The comparison results are illustrated in Fig.
7. The Widar3.0 system gets the highest HAR accuracy of
91.4% compared to ours CATM of 86.8% in D3. However,
to adopt Widar3.0 system, there should be at least 3 WiFi
receivers for establishment. In our system, only one receiver is
needed. From the comparison results with other two systems,
our CATM system gains the highest classification accuracy.

4) Comparison of CATM and NT-CATM: In our com-
parison test, we reproduce the NT-CATM described in



TABLE II: Recognition accuracy vs User identity

Accuracy (%)
U1 U2 U3 U4 U5

Walking 85.7 95.2 77.8 95.5 87.5
Jogging 85 83.3 77.8 66.7 70.6

Squatting 83.3 95 73.7 95 84
Chest

expansion
91.3 94.1 78.9 85 83.3

Rising arms 90.1 92 90 91.3 63.6
Lunge press

(Right)
90.5 95 79.2 81.3 86.4

High-step
stretch

92.6 100 83.3 93.3 70.4

Lunge press
(Left)

80 77.8 93.8 92.3 87

Total 87.8 91.9 81.6 88.5 79.1

Fig. 7: Accuracy comparison of different WiFi HAR systems
in 3 directions

Section.III-B. The results in Fig. 8 validate our assumption that
negative ToF values in CATM contain the effective information
related the human behaviors.

Fig. 8: Accuracy comparison of CATM and NT-CATM in 3
directions

V. CONCLUSION

This paper proposes a CTAMs based system for human
activity monitoring in the indoor environment, which adopts
spatial phase variation information of CSI. In this system, we
firstly analyzed the noise components in raw CSI data and
leverage various techniques to filter the phase offset of CSI
information for data sanitation. Then, we extracted the features
with continuous AoA-ToF maps. Finally, we established a
temporal neural network for the HAR task and achieved 85.6%

accuracy among 5 volunteers and 8 activities. The comparison
results demonstrate the ubiquitous performance under the con-
ditions of different directions and user identities. Meanwhile,
from the comparison tests with other WiFi HAR systems, we
get the highest accuracy in the systems considering single WiFi
receiver.
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