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Rapid parameter estimation for an all-sky continuous gravitational wave search using
conditional varitational auto-encoders

Joe Bayley,1 Chris Messenger,1 and Graham Woan1

1SUPA, University of Glasgow, Glasgow G12 8QQ, United Kingdom.

All-sky searches for continuous gravitational waves are generally model dependent and computa-
tionally costly to run. By contrast, SOAP is a model-agnostic search that rapidly returns candidate
signal tracks in the time-frequency plane. In this work we extend the SOAP search to return broad
Bayesian posteriors on the astrophysical parameters of a specific signal model. These constraints
drastically reduce the volume of parameter space that any follow-up search needs to explore, so
increasing the speed at which candidates can be identified and confirmed. Our method uses a ma-
chine learning technique, specifically a conditional variational auto-encoder, and delivers a rapid
estimation of the posterior distribution of the four Doppler parameters of a continuous wave signal.
It does so without requiring a clear definition of a likelihood function, or being shown any true
Bayesian posteriors in training. We demonstrate how the Doppler parameter space volume can be
reduced by a factor of O(10−7) for signals of SNR 100.

I. INTRODUCTION

Non-axisymmetric and rapidly rotating neutron stars
are expected to produce detectable gravitational waves
(GWs) in the sensitive frequency range of ground based
detectors such as Laser Interferometer Gravitational-
wave Observatory (LIGO) [1] and Virgo [2]. They would
be seen as long-duration quasi-sinusoidal signals. A num-
ber of specific mechanisms have been proposed for this
emission, including r-mode oscillations and elastic or
magnetic deformations to the crust of the neutron star
(see [3, 4] for a review). Such observations would pro-
vide new insights into neutron star physics, including
constraints on the equation of state of hot, dense matter.

Searches for these types of continuous gravitational
waves (CWs) generally fall into three categories, based
on the assumptions made about the source and signal
prior to the search. Targeted searches [5–7] use electro-
magnetic observations to provide information on the sky
location, frequency, and frequency derivatives of signals
from known pulsars. Directed searches [8–12] use electro-
magnetic observations to provide information on the sky
location only, and all-sky searches [13–16] explore all sky
locations and a broad span of frequency, and frequency
derivative parameter space. In this paper we will concen-
trate on this final category of search.

All-sky searches probe a very large parameter volume,
and it is not computationally feasible to apply the fully-
coherent matched filtering technique used by targeted
searches [5–7] in this regime. Instead one can use a
semi-coherent approach, in which the data is divided into
segments which are analysed separately. The coherent
analysis of each segment is then incoherently combined
using various techniques [17–20], see [21] for a review.
In general, as the length of the segments (i.e., the co-
herence length) increases, the sensitivity of the search
also increases but at a computational cost. Semi-coherent
methods are designed to balance this computational cost
against the sensitivity of the search.

One of the fastest all-sky search methods for CWs is

SOAP [22]. SOAP performs a search for weakly-modelled
signals, without a specific astrophysical justification, and
therefore explores the entire parameter space that might
contain a CW signal as well as signals that do not follow
the standard CW frequency evolution. This search is
explained in more detail in Sec. II and in [22–24].

SOAP was designed to identify signal candidates
rapidly so that they could be followed-up later by more
sensitive parameter-dependent methods. Once SOAP
identifies a signal it therefore needs to give estimates of
the candidate’s frequency parameters and sky position
to these follow-up searches. The outputs from the SOAP
search include the frequency bin location as a function of
time for a candidate, producing tracks which can poten-
tially randomly wander through the frequency band. The
difficulty in defining a clear likelihood for these tracks
means that we cannot use traditional methods to pro-
duce Bayesian posterior distributions. In this work we
turn to likelihood free methods [25, 26] and introduce
our implementation named Neville which leverages ma-
chine learning to generate Bayesian posteriors on the four
Doppler parameters of the CW signal: the sky position
α, δ, the frequency f0, and the frequency derivative ḟ0.

In Sec. II we introduce the SOAP method and some
of the key outputs from the search as well as the stan-
dard model that is used for a CW signal. In Sec. III
we introduce how machine learning has been used for
Bayesian parameter estimation, in particular we describe
our conditional variational auto-encoder (CVAE) imple-
mentation known as Neville and how it can be trained
to approximate a Bayesian posterior. In Sec. IV we dis-
cuss the different data-sets which are generated for the
training and testing of the method described in Sec III,
and introduce different parameterisations of the astro-
physical parameters. In Sec. V we outline the specifics of
the CVAE model and its structure and then describe the
training procedure in Sec. VI and the timing in Sec. VII.
In Sec. VIII we show the results from testing this method
on the two data-sets described in Sec. IV and discuss how
this method is used in practice.
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II. SOAP

SOAP [22–24] is a search pipeline for weakly-
modelled long-duration signals, based on the Viterbi al-
gorithm [27]. In its simplest form SOAP analyses a spec-
trogram to find the continuous time-frequency track that
contains the greatest total spectral power. If a signal is
present and sufficiently strong, then this track is likely
to follow its frequency evolution very closely. In [22]
the SOAP algorithm was expanded to include multiple
detectors as well as a statistic to penalise instrumental
artefacts in the data. This was followed by further devel-
opments in [23] where convolutional neural networks were
used on the outputs of SOAP to improve the robustness
of the search against instrumental artefacts.

An example of the inputs and outputs of the SOAP
algorithm is shown in Fig. 1. The figure shows the input
time-frequency spectrograms and the three main output
components: the Viterbi track, the Viterbi statistic and
the Viterbi map, described below.

Viterbi track The Viterbi track is the most probable
track through time-frequency data given a choice
of statistic (i.e., summed short Fourier transform
(SFT) power).

Viterbi statistic The Viterbi statistic is the sum of the
individual statistics along the Viterbi track. In the
analysis that follows we use the ‘line-aware’ Viterbi
statistic. This is the sum of the log-odds ratios,
psignal/(pline + pnoise) along the track [22].

Viterbi map The Viterbi map shows the value of the
Viterbi statistic for every time-frequency bin in the
spectrogram, corresponding to the log-probability
that the track passes through each time-frequency
bin. Each time slice in the map is normalised indi-
vidually, i.e., each vertical slice is adjusted so that
the sum of their exponentiated values is unity. Each
pixel in the image can therefore be interpreted as a
value related to the log-probability that the signal
has a particular frequency conditioned on the time
of the vertical slice.

Using the techniques described in [22, 24], the only rel-
evant information for later investigations provided from
the track is the narrow frequency band (0.1 Hz) in which
the signal was found. Although useful, this still leaves a
large parameter volume for a follow-up search to explore.
In this paper we describe how the Viterbi track, and
therefore the potential frequency evolution of a source,
can be used to infer the CW Doppler parameters: the fre-
quency f0, its derivative ḟ0, and the sky location (α, δ).
This process is complicated by the unusual statistical
properties of the Viterbi track, and its non-stationary de-
viations from a the true Doppler-modulated signal shape
in the presence of noise.

A. Continuous Wave Signal

In the frame of the source, CW signals are usually mod-
elled as a quasi-sinusoidal, with a slow frequency evolu-
tion over time due (for example) to radiative losses. A
ground based detector will see these signals modulated
in amplitude, due to the detector antenna pattern, and
Doppler-modulated in frequency due to the non-inertial
motion of both the source and the detector. In the stan-
dard SOAP search, strips of constant time in the time-
frequency plane contain the mean of 30-minute spectra
over a day, so the modulation from the Earth’s spin and
from the antenna pattern are not apparent. Relativistic
effects are small at these resolutions, so the frequency
evolution of the signal f(t) is simply

f(t) =
1

2π

dΦ(t)

dt
= f0(t)

(
1 +

v(t) · n̂
c

)
, (1)

where Φ(t) is the phase evolution of the signal, v(t) is
the Earth’s velocity relative to the source, n̂ is the unit
vector pointing towards the source, and c is the speed
of light. The signal frequency f0(t) seen in the solar
system’s barycentric frame is usually represented by a
Talor expansion,

f0(t) = f0 + ḟ0(t− t0) + . . . , (2)

and in this work we will concentrate on the first two terms
in this expansion. The velocity v(t) of the earth relative
to any object at any given time t is defined using solar
system ephemerides data via the lalsuite library [28].

The full frequency evolution of the observed signal
then depends on the source’s barycentric frequency f0
and its derivative ḟ0, and the sky position α, δ. Given
such a signal in Gaussian noise one could determine the
joint posterior probability distribution of these parame-
ters using standard Bayesian sampling techniques such
as MCMC or nested sampling. However, extracting pa-
rameters from a Viterbi track, as returned by SOAP, is
less straightforward.

If the SNR is large enough, the Viterbi track will
closely follow the frequency evolution of a signal in the
time-frequency plane. If the SNR is very low the Viterbi
algorithm will simply follow noise and the track will wan-
der stochastically. Between these extremes of SNR we
see both behaviours: tracks that spend some of the time
locked to the signal and some time tracking noise, ex-
amples of which can be seen in Fig. 2. The equivalent
noise in these tracks is highly correlated, non-stationary
and non-Gaussian, making it is difficult to write down a
corresponding likelihood function.

Due to there being no clear way to calculate the like-
lihood, traditional sampling methods cannot be used for
this particular problem. In this work we therefore look
to using likelihood free methods to extract the Bayesian
posteriors [25], in particular we used a form of CVAE
which is explained in more detail in Sec. III. This machine
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FIG. 1: The top two panels show simulated time-frequency spectrograms from the LIGO Hanford and Livingston
observatories [1]. The data includes a simulated CW signal with an optimal network signal-to-noise-ratio (SNR) of
120. The bottom panel shows the normalised Viterbi map with the pixel intensity showing the Viterbi log-odds that

the track falls in a particular frequency bin as a function of time. The green curve shows the injected frequency
evolution of the signal and the red line shows the recovered track from SOAP.

learning based method, allows us to extract Bayesian pos-
teriors without ever being trained on the true posteriors
or defining a likelihood function.

III. MACHINE LEARNING AND PARAMETER
ESTIMATION

Within the field of GWs the use of machine learning is
becoming more prevalent [29] with methods being devel-
oped for many tasks including detection and inference. In
particular, a number of methods have been developed to
estimate the Bayesian posterior distribution on the pa-
rameters of compact binary coalescences (CBCs) using
machine learning, including the use of CVAEs [26] and
normalising flows [30]. In the following work we apply
a CVAE to estimate the posterior probability distribu-
tions of the parameters considered in the preceding sec-
tion. Using this CVAE implementation one can estimate
the Bayesian posterior without explicitly being shown the
true posterior or likelihood during the training procedure.

Only the prior parameter space and noise model are as-
sumed, and the data used to train the CVAE is drawn
from this parameter space. In the case of Viterbi tracks,
we can write down a prior parameter space for the signal
parameters, but as we cannot write down a noise model
we either numerically simulate noise instances or take
examples from real data.

The objective of the CVAE is to minimise the cross-
entropy between the Bayesian posterior p(x|y) and a tar-
get distribution rθ(x|y) described by neural network pa-
rameters θ. The following section follows the derivations
in [26]. The cross-entropy is defined as

H(p, r) = −
∫
p(x|y) log rθ(x|y) dx, (3)

where x are the parameters of the model, y is the data
and θ are the learned parameters of the neural network
describing the distribution rθ(x|y). This cross-entropy is
minimised when p(x|y) = rθ(x|y). However, the cross-
entropy cannot be calculated directly for every training
example since computing the Bayesian posterior p(x|y)
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FIG. 2: Each of the panels show an example of many
Viterbi tracks (black) each resulting from running
SOAP on the same simulated signals with different
noise realisations over a 460 day duration. The red

curve shows the true CW frequency evolution. The top
panel shows a high SNR of 150, the middle panel shows

a signal with SNR 70 which is at the edge of our
detection threshold and the lower panel shows Viterbi

tracks resulting from just noise realisations.

is costly or as in our case we have no clear definition. We
can instead minimise the expectation value of the cross-
entropy over the distribution of instances of y, which
would make the distributions as similar as possible over
all possible y. The expectation value of the integral can
be written as

〈H〉 = −
∫∫

p(y)p(x|y) log rθ(x|y) dxdy

= −
∫∫

p(x)p(y|x) log rθ(x|y) dxdy,

(4)

where p(x) is the prior distribution on the parameters.
Hence we are now taking the expectation over both the
noise realisation and the signal parameters. The target
distribution rθ(x|y) can be parametrised as a combina-
tion of two distributions known as an encoder rθ1(z|y)

and a decoder rθ2(x|y, z) described by a neural network
with parameters θ1, θ2. By marginalising over this latent
space we can write the target distribution as

rθ(x|y) =

∫
rθ1(z|y)rθ2(x|y, z) dz, (5)

where the rθ1 defines a probability distribution in the la-
tent space z and rθ2 describes a distribution in the physi-
cal parameter space x and is conditional on the data and
latent space location. The latent space z is an abstract
representation of the input which is learned by the CVAE
and θ1 and θ2 represent the trainable parameters of the
neural networks. After some manipulation, shown in [26],
and the addition of a second encoder network qφ(z|x, y)
which depends on both the measurement y and parame-
ters x, one finds that the expectation of the cross entropy
satisfies

〈H〉 ≤ −
∫ ∫

p(x)p(y|x)Eqφ(z|x,y)
{

log rθ2(x|y, z)

−KL [qφ(z|x, y)||rθ(x|y)]
}

dy dx,

(6)

where KL is the KL divergence and Eqφ(z|x,y) is the ex-
pectation value over the distribution of q. This integral
can be approximated via Monte-Carlo integration where
samples of x and y are drawn from the prior p(x) and the
likelihood p(y|x). This allows it to be used as the cost
function to be minimised in the training of the 3 neu-
ral networks modelling the rθ1 , rθ2 and qφ distributions.
The three neural networks model these distributions by
outputting parameters describing a distribution, i.e. the
mean and variance of a Gaussian distribution. The cost
function then approximates Eq. 6 by taking the average
over a batch or draws from the prior and likelihood such
that

〈H〉 . 1

Nb

Nb∑
n=1

[− log rθ2(xn|zn, yn)

+KL [qφ(zn|xn, yn)||rθ1(zn|yn)]]

(7)

where Nb is the number of instances of x and y used per
training step (the batch size). The right hand side of
Eq. 7 is then used to train the network.

A. Training

The aim of the training procedure is to adjust the
network parameters to minimise the cost function de-
scribed by Eq. 7 and therefore also Eq. 3. To do
this we calculate two main components: the ‘recon-
struction loss’ log rθ2(xn|zn, yn) and the KL divergence
KL [qφ(zn|xn, yn)||rθ1(zn|yn)].

1. To calculate the reconstruction loss, first the data
y and parameters x are propagated through the
qφ(z|x, y) encoder which outputs parameters de-
scribing the latent space z. These are a set of
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means µφ and variances standard deviations σφ of
an uncorrelated Gaussian distribution with nz di-
mensions. One can then sample from this Gaussian
distribution and combine the outputs z with the
data y and propagate this through the rθ2(x|z, y)
decoder which outputs the means µx and standard
deviations σx of another uncorrelated Gaussian dis-
tribution with nx dimensions. The reconstruction
loss can then be calculated by evaluating the out-
put Gaussian distribution at the true values of x.

2. The KL divergence is calculated using the outputs
of the qφ(z|x, y) encoder and the rθ1(z|y) encoder.
The rθ1(z|y) encoder takes the data y as input and
also outputs the means µθ1 and standard deviations
σθ1 of an uncorrelated Gaussian distribution with
nz dimensions. There is no analytical form for the
KL divergence between multivariate Gaussians, but
as in [26] we can approximate it as

KL [qφ(z|x, y)||rθ1(z|y)] ≈ log

(
qφ(z|x, y)

rθ1(z|y)

)∣∣∣∣
z∼qφ(z|x,y)

.

(8)
This is a single sample estimate of the KL diver-
gence, therefore the average of these values is then
taken over a batch.

The reconstruction loss and the KL divergence are
combined to form the cost function as in Eq. 7, where
the expectation is estimated over a batch of input train-
ing data of size Nb. This cost function is then minimised
over many batches using back-propagation, where the
ADAM optimizer [31] is used with the default param-
eters. During training, we modify a weight on the KL
and reconstruction loss components where we do not op-
timise the entire loss function at once. Initially we opti-
mise the reconstruction loss and slowly introduce the KL
divergence term into the calculation with a multiplicative
pre-factor. The pre-factor linearly increases from 0 to 1
over 300 epochs avoiding the known local minima where
the KL term remains close to zero and the latent space
structure is not learnt by the rθ1 and qφ networks.

B. Testing

When generating samples from the posterior estimate,
the procedure is slightly different to training. The aim
here is to perform the integral in Eq. 5 using Monte Carlo
integration which can be written as

rθ(x|y) ∝
N∑
i

rθ2(x|y, zi)|zi∼rθ1 (z|y), (9)

where N is the number of samples. We do not per-
form this directly however, but generate samples of x
from rθ(x|y) by sampling from rθ2(x|y, z) conditional on
z samples drawn from rθ1(z|y):

x ∼ rθ2(x|y, z)|z∼rθ1 (z|y). (10)

To generate posterior samples we need to generate sam-
ples in the latent space z, now using the rθ1(z|y) encoder
which takes input of only y. We can then make many
draws from rθ1(z|y) described by µθ1 and σθ1 . These la-
tent space z samples can then each separately be fed into
the decoder rθ2(x|z, y) along with the data y to gener-
ate a set of means µx and standard deviations σx of a
Gaussian distribution. From each of these we can draw
a single sample in the physical parameter space of x. It
is these samples that we treat as being drawn from the
posterior distribution. It is important to note here, that
whilst the output of rθ1(z|y) and rθ2(x|z, y) are an uncor-
related Gaussian distributions, this does not mean that
the final distribution rθ(x|y) is also Gaussian. The vari-
ation provided by the latent space distribution which is
marginalised over in Eq. 5 allows for a diverse family of
possible output distributions in the physical space.

IV. DATA

To follow the training procedure outlined in Sec. IIIA
one needs many examples of the data y and the corre-
sponding parameters x. Two distinct data-sets are used
to test the CVAE described in Sec. III; both use mea-
surements of frequency as a function of time as the input
however each have different noise models. One data-set
uses the CW signals frequency bin location with a sim-
plified noise model (Sec. IV 1) to allow comparison to
standard techniques. The other data-set has the noise in
the form of Viterbi tracks output from SOAP (Sec. IV 2)
and is the main use case for this method.

1. Gaussian noise dataset

The first data-set is generated by simulating a CW sig-
nal using parameters drawn from the prior distribution
described in Tab. I. The true instantaneous frequency of
the signal can then be found at a given set of times which
cover a time-span of 362 days sampled once per day. This
is chosen to have the same input size as the realistic case
described in Sec. IV 2. Once we have the frequency of
the CW signal over a range of times we add independent
Gaussian noise samples with a mean of 0 and standard
deviation of 0.01Hz to each of the frequency locations (ar-
bitrarily chosen to be 1/10th of the band width). Whilst
this is not a realistic noise distribution it allows for direct
comparison to existing Bayesian sampling techniques and
a way to validate the technique. An example of this type
of input can be seen in the lower panel of Fig. 3. The
data is then scaled to be between 0 and 1 using

fscaled(t) =
f(t)− fmin

fmax − fmin
, (11)

where f(t) is the frequency location as a function of time
and fmin and fmax are the upper and lower edges of the
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TABLE I: The upper and lower bounds for the random signal parameters. The parameters α, sin δ, f0, log ḟ0, cos ι,
φ0, ψ and SNR were sampled uniformly between these bounds in each band. The frequencies fmin and fmax refer to
the band limits, and signals are randomly placed in the centre half of the band. fmin is arranged on a uniform grid
with a 0.1Hz spacing in the given range and the bandwidth fmax − fmin = 0.1Hz. Except for the distribution of
signal frequencies f0, all the injections parameters are sampled from the same distributions as the S6 mock data

challenge (MDC) [32].

α [rad] sin δ [rad] f0 [Hz] log10

(
ḟ0[Hz/s]

)
cos ι [rad] φ [rad] ψ [rad] SNR fmin [Hz]

lower bound 0 −1 fmin + 0.25(fmax − fmin) −9 −1 0 0 60 40

upper bound 2π 1 fmin + 0.75(fmax − fmin) 0 1 2π π/2 150 500
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FIG. 3: Examples of the two types of input data y that
are used to train the CVAE. The top panel shows an
example of a Viterbi track output from SOAP, overlaid
is the true signal path in red. The lower panel shows
the data-set where Gaussian noise has been added to
the frequency components of the CW signal as a

function of time.

analysis band defined in Tab. I. In total we generate 106

training signals in the 40-500 Hz range recording both
their Doppler parameters and the scaled frequency track.

2. Viterbi noise dataset

The second data-set consists of frequency tracks with
Viterbi noise where an example can be seen in the upper
panel of Fig. 3. The Viterbi tracks are generated by run-
ning the SOAP search on a set of CW simulations which
have their parameters distributed according to the prior
distribution described in Tab. I, i.e., they are distributed

and transformed in the same way as the previous test.
The SNR defined in Tab. I and Eq.15 of [33] is achieved
by re-scaling the GW amplitude h0 based on the noise
power spectral density (PSD). The power spectrum of
the signal can then be simulated for each time segment
of the spectrogram, this is done by assuming the time-
series distributed according to Gaussian noise therefore
producing a spectrogram which is χ2 distributed. The
signal power will then be distributed according to a non-
central χ2 distribution with a non-centrality parameter
equal to the square of the SNR.

The SOAP search is setup up similarly to in [22, 23],
where we use the line aware statistic [22] with parameters
wS = 4.0, wL = 10 and p(ML)/p(MS) = 0.4, where wS

is the prior width in SNR of the signal model, wL is the
prior width in SNR of the line model and p(ML)/p(MN) is
the prior odds ratio ratio for the signal and noise models.
The Viterbi tracks output from SOAP are then scaled
such that the analysis band is in the range of 0 to 1, as
described in Eq. 11. The scaled Viterbi tracks are then
what is used for the data y in the CVAE.

The parameters x for this particular CVAE consist of
the four Doppler parameters and an extra condition for
each track element indicating whether is is associated
with a signal or not. These conditions were introduced
to provide extra information to help the CVAE learn
the Doppler posterior distributions more effectively. The
form of the conditions is in 362 boolean values which
identify which of the track elements are within two fre-
quency bin widths of the true signal. This value is cho-
sen since power in frequency bins outside of this range is
unlikely to be associated with the injected signal. The
boolean values b are defined by

b(t) =

{
1 for |fviterbi(t)− fpulsar(t)| < 2

tSFT

0 otherwise
, (12)

where fviterbi is the frequency bin location of the viterbi
track, fpulsar is the frequency bin location of the pulsar
signal and tSFT is the length of a SFT. Figure 4 shows an
example of a Viterbi track, the boundaries chosen around
the true signal, and the results of applying Eq. 12to these.

In total we simulate 106 training examples in the
40-500 Hz range and generate the Doppler parameters,
Viterbi tracks and boolean arrays for each.
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FIG. 4: Examples of a Viterbi track and how it relates
to each of the boolean values, the Viterbi track has
been down-sampled to allow for easier viewing of the
track elements. If the Viterbi track falls outside the
pulsar tracks bound (red dashed) then it is assigned a
value of 0 (unfilled circles) otherwise it is assigned a
value of one (filled circles). The list of boolean values
corresponding to the Viterbi track is shown at the

bottom of the image.

A. Parameterisation

It is often useful to choose a different parameterisa-
tion of the signal in order to simplify the problem for
the CVAE, this can allow for faster training and better
performance. In this example the signal has four Doppler
parameters which we are interested in: the equatorial sky
positions α and δ and the frequency f0 and its derivative
ḟ0.There are two main transformations that are made
before normalising the parameters between 0 and 1.

The first is to convert the equatorial sky positions α, δ
into the ecliptic longitude γ and latitude λ. The Viterbi
tracks cannot be used to distinguish between the upper
and lower ecliptic hemispheres as, due to only being sam-
pled once per day, they have no access to daily Doppler
or antenna pattern modulation. By parameterising the
sky position in the ecliptic frame our prior range only has
to cover one hemisphere as this is duplicated in opposite
hemisphere. The posterior should then contain only a
single mode simplifying the problem for the CVAE.

The second transformation is to convert the signal fre-
quency f0 into an offset from the lower edge of each anal-
ysis band fmin. This allows us to normalise the offset
parameter between 0 and 1 rather than the entire 40-500
Hz frequency range, allowing the network more dynamic
range when predicting the frequency. There is also a de-
generacy between the ecliptic latitude and the frequency,
therefore the network still needs access to the true fre-
quency of the analysis band. The parameter fmin is ap-
pended to the inputs the the network, exactly where this
is appended is described in more detail in Sec. V.

Finally the four transformed parameters are nor-
malised between 0 and 1 such that we predict the four

parameters,

p1 = γ/2π,

p2 = 2|β|/π,
p3 = (f0 − fmin)/(fmax − fmin),

p4 = (log ḟ0 − log ḟmin)/(log ḟmax − log ḟmin),

(13)

where γ and β are the ecliptic longitude and latitude,
f0 is the initial frequency, ḟ0 is the frequency derivative,
fmin,max are the upper and lower edges of the analysis
band and ḟmin,max are the prior ranges for the first fre-
quency derivative. Once samples are genrenated in the
p1, p2, p3, p4 space, they are converted back into the four
Doppler parameters using the inverse of the transforma-
tions in Eq. 13.

V. NETWORK DESIGN

There are two distinct CVAE structures shown in
Tab. II which correspond to the two different data-sets
described in Sec. IV. This was required due to the vastly
different noise distribution in the Viterbi tracks com-
pared the the additive Gaussian noise case. The latter
case was used for development of the algorithm design
and is not representative of the highly correlated noise
that we observe in practice in Viterbi tracks output from
the SOAP algorithm. The models used for the analysis
contain the two encoders which approximate the distri-
butions rθ1(z|y) and qφ(z|x, y) and the decoder which
approximates rθ2(x|z, y). Each of which are composed
of convolutional and fully connected layers and output
some parameters which describe a probability distribu-
tion. They each share a set of convolutional layers which
aims to extract information that the three networks will
share, this is then fed into separate fully connected lay-
ers. The weights and bias of the convolutional layers are
shared between the networks as shown in Tab. II. The
idea being that the representation of the y data output
from the convolutional layers should be common to all
networks.

The first of the CVAEs was designed for the Gaussian
noise data-set, this the simpler of the two where x is the
re-parameterised Doppler parameters (p1, p2, p3 and p4)
described in Sec. IVA and y is the re-scaled frequency
evolution described in Sec. IV 1. Each of the encoders of
this model output the means and standard deviations of
nz independent Gaussian’s, where nz is the size of the la-
tent space z. The size of the latent space nz was chosen to
be 6 for this network, this was so that the latent space can
encode information on at least the four Doppler parame-
ters. There was no improvement in increasing this value
above 6 in tests of the networks structure. The decoder
network also outputs the means and standard deviations
four independent Gaussian distributions corresponding
to the four re-parameterised Doppler parameters.

The parameters x for the Viterbi CVAE are the four
re-parameterised Doppler parameters (p1, p2, p3 and p4)
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as well as the list of boolean values b corresponding to the
conditions that the track is associated with a signal, de-
scribed in Sec. IV 2. The inputs y for the Viterbi network
are the re-scaled Viterbi tracks described in Sec. IV 2. As
with the Gaussian noise CVAE, the outputs of the two
encoders are also the means and standard deviations of
nz independent Gaussian distributions. In this case the
latent space has a size nz = 128, this was increased com-
pared to the previous example as the number of inferred
parameters x has increased to from 4 to 366. The goal
was for the latent space to then learn information about
each of the track conditions as well as the Doppler param-
eters, increasing the size of the latent space beyond 128
did not improve the performance of the network, how-
ever this was not exhaustively tested. The outputs of
the decoder are then the four Doppler parameters, which
remain as the means and standard deviations of inde-
pendent Gaussian distributions and the track conditions
which are described by a probability of drawing a value of
1 from a Bernoulli distribution. The track conditions are
included in this CVAE to aid it in learning the Doppler
posteriors more effectively, the posteriors we investigate
in Sec. VIII are then marginalised over the track condi-
tion posteriors.

VI. TRAINING

The training procedure involves splitting the training
data into batches of 500, one batch of 500 signals and pa-
rameters are propagated through the CVAE, where the
average loss is calculated, i.e. the cost value in Eq. 7.
This cost is then used to update the weights of the net-
works via back propagation. This process is repeated
for all of the batches in the training data where once
the CVAE has seen all of the training data, one epoch
is complete. This process is repeated for 20000 epochs,
where the weights are updated a small amount over each
batch, therefore, the overall cost slowly moves towards a
minimum. We slowly ramp up the influence of the KL
divergence term in the loss, this is a linear ramp from 0 to
1 between the epochs 600 and 900. We also apply a decay
in the learning rate, where we multiply the learning rate
by 0.993 every 5 epochs starting at epoch 4000. The val-
ues for the linear ramp and the decay rate were chosen
such that the network performance improved, however
they were not exhaustively optimised. An example of the
training and validation loss curves are shown in Fig. 5,
this shows six curves corresponding to the total cost in
Eq. 7, the reconstruction cost L and KL-Divergence cost
KL. This show evidence that the CVAE is not over-
fitting to the training set as the validation and training
loss curves overlap through the training. Also as the total
loss curve (blue curve in upper panel of Fig. 5) appears
to no longer be decreasing towards the end of training,
this implies that the network has converged on a result.

103 104−6
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s
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Training reconstrution

Validation total

Validation reconstrution

103 104
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0.4

0.6
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FIG. 5: The total loss of the CVAE (blue) is comprised
of the reconstruction loss (green) and the KL divergence

(orange). This is an example of a typical loss curve
when trained on the Gaussian noise data-set described
in Sec. IV 1. The plot begins at epoch 700 as during the
ramping stage of training described in Sec. III A the loss

reaches large values making the loss at later epochs
difficult to read.

VII. TIMING

One of the key focuses of the SOAP search is its ability
to rapidly return results, therefore, this method should
not drastically increase this time. For 106 training ex-
amples and 20000 epochs of training, it takes ∼ 5 days
to train the network using a Nvidia TITAN X GPU, this
can now be sped up drastically by using more modern
GPUs. Whilst the training time is significant compared
to the run time of SOAP, the training is completed only
once before the search is completed. To generate 5000
samples from the 366 dimensional posteriors for the 400
test signals described in Sec. IV 2 it takes a total 24s on
the same Nvidia TITAN X GPU, leaving an average time
to generate a posterior of 0.06s. Therefore, this does not
add any significant time to the SOAP search.

VIII. RESULTS

To test our implementation of a CVAE described in
Sec. III we use the two data-sets described in Sec. IV.
The first data-set is used such that we can show a di-
rect comparison between this method and traditional
Bayesian sampling methods such as Dynesty [34]. The
second data-set is a realistic example of the data which
will be analysed in a real search using SOAP [22].
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TABLE II: This table show the network design for the two main networks used in this analysis. The covolutional
layers span multiple columns as the weights are shared between the three networks. The outputs from the rθ1(z|y)
and qφ(z|x, y) networks are twice the number of latent space dimensions z as they represent the means and log

variances of a Gaussian distribution. Similarly the output of the rθ2(x|z, y) contains the means and log-variances of
the four Doppler parameters. Quantities in square brackets are the output sizes from each of the layers, the

quantities inside brackets for the Conv1D layers refer to the number of filters and the filter size respectively. The
values inside the brackets for the Linear layers refers to the number of neurons used within that layers, the layer has

this output size.

Network Gaussian noise network Viterbi track network

distribution rθ1(z|y) qφ(z|x, y) rθ2(x|z, y) rθ1(z|y) qφ(z|x, y) rθ2(x|z, y)

Input sizes x = [4], y = [362, 1], z = [6] x = [366], y = [362, 1], z = [128]

convolutional network Conv1D(4, 4) [362,4] Conv1D(4, 4) [362,4]

MaxPool(4) [90,4] MaxPool(4) [90,4]

Conv1D(4, 4) [90,4] Conv1D(4, 3) [90,4]

MaxPool(4) [90,4] MaxPool(4) [90,4]

Flatten Flatten [360] Flatten [360])

Concatenate Flatten [360] Flatten + x [364] Flatten+z [372] Flatten [360] Flatten + x [726] Flatten+z [372]

Fully connected Linear(64) Linear(64) Linear(64) Linear(64) Linear(64) Linear(64)

Linear(64) Linear(64) Linear(64) Linear(64) Linear(64) Linear(64)

Output Linear(12) Linear(12) Linear(8) Linear(12) Linear(12) Linear(362 + 8)

A. Gaussian noise

To test the CVAE 400 pieces of data are generated us-
ing the same methods as outlined in Sec. IV 1, this data-
set is not used during the training procedure. Each of the
pieces of test data are input to the CVAE which then gen-
erates 10000 samples from the respective posterior distri-
butions on the four Doppler parameters (γ, β, f0, ḟ0). We
then run the nested sampling algorithm Dynesty [34] on
the same pieces of test data, generating samples from
the posterior on the same Doppler parameters. Dynesty
is run using a Gaussian likelihood function with a fixed
noise variance of 0.01Hz and 1000 live points. To demon-
strate the accuracy of the CVAE we show the comparison
of the posterior samples from the CVAE and dynesty for
each of the test examples. Figure 6 shows this from one
piece of test data, where we can see strong agreement
between Dynesty (blue) and the CVAE (orange).

We can also run a statistical test over our entire test
data-set by generating a probability-probability (p-p)
plot. A p-p plot is used to test that the posteriors are
self-consistent and the true parameter values lie within
the marginalised N% confidence bounds for N% of the
simulations. If the methods are returning consistent pos-
teriors then the p-p plot curve should be close to the
diagonal. In Fig. 7 we show the p-p plot of Dynesty com-
pared with the p-p plot generated from the CVAE. From
these one can see that the CVAE is consistent with the
that from Dynesty.

B. Viterbi noise

The main motivation for the work described in this
paper was to estimate the posterior in the four Doppler
parameters for a given Viterbi track. To test how the
CVAE described in Sec. V performs on this task, a set
of 500 Viterbi tracks are generated in the same way as
Sec. IV 2 and are not used in the training procedure.

Each of the 500 Viterbi tracks are input to the CVAE
which then outputs 5000 samples from the posterior
distribution on the four Doppler parameters and the
362 track conditions as described in Sec. III B. The
marginalised posterior of the Doppler parameters are
shown in Fig. 8 on the left hand side. As we only generate
samples from the posterior in the northern hemisphere
of the sky, the β posterior samples are reflected over the
ecliptic equator (β = 0) by randomly selecting half of
the samples and inverting their sign. The posterior for
each of the track element probabilities are a set of binary
samples drawn from different Bernoulli distributions. For
each time step the fraction of binary posterior samples
that is equal to 1 is taken as a measure of the probability
that the track is associated with the signal. These frac-
tions are represented in the upper right panel of Fig. 8,
where each sample of the Viterbi track is colored from
red to green. A track element colored green means that
it is consistent with the signal and red means that it is
consistent with noise.

We are mainly interested in the Doppler parameters
of the posterior and produce the posterior including the
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FIG. 6: An example posterior for a single frequency
track with additive Gaussian noise. Blue is the CVAE
posterior and orange is the posterior from dynesty. The

black markers who the true injection parameters.
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FIG. 7: p-p plots are given for both samplers dynesty
(orange) and our CVAE implementation (blue). This is
constructed from 400 test examples, where there are
four curves for each of the two samplers corresponding
to the four Doppler parameters. The grey regions refer
to the one, two and three σ confidence bounds expected

from a uniform distribution for 400 test examples.

365 track conditions mainly to assist the CVAE in learn-
ing the distributions in the Doppler parameter space.
Therefore, for the majority of tests that follow we work
only with the four dimensional marginal posteriors of
the Doppler parameters. To test the consistency of the
marginal posterior distributions on the Doppler parame-
ters with the truths, we can generate a p-p plot for the
four Doppler parameters as shown in Fig. 9. As de-
scribed in Sec. VIIIA the p-p plot shows that N% of
simulations lie within the N% confidence reigon of the 1d
marginalised posteriors. Figure 9 shows that the p-p plot
passes this test as the four curves remain within the 3σ
confidence bounds and a combined p-value of 0.36 is re-
turned. Whilst a p-p plot presents the effectiveness of the
network on an ensemble of signals, it is also informative
to see the performance on individual examples. Figure 8
shows an example output from generating a posterior
on the Doppler parameters and track conditions using
a CVAE. This figure shows the marginalised posterior
on the Doppler parameters on the left, demonstrating
both that the Doppler parameters posterior is consistent
with the injected parameter and that the CVAE can re-
produce more complex posteriors that in the previous
test in Sec. VIIIA. In the upper right panel of Fig. 8,
one can see that the Viterbi track does not identify the
entire signal, but around half way through the observa-
tion identifies noise instead. The posterior conditions on
the track elements effectively identify this region as orig-
inating from noise (colored red) and aids the CVAE in
generating Doppler posteriors more consistent with the
truth. Figure 8 also shows a predicted frequency evolu-
tion over the Viterbi track using only the samples from
the Doppler parameters. The error bounds are are gen-
erated by taking the median and 90% confidence interval
of the track frequencies at each time step.

1. Parameter space reduction

The CVAE returns a posterior distribution on the CW
Doppler parameters given an input Viterbi track, which
in itself provides information on the source. However,
the main goal was to use this posterior to inform a
more sensitive search such as a templated matched-filter
search [19, 35]. This would allow for easier verification
of the source and would return more information on the
Doppler parameters as well as other parameters associ-
ated with a CW. The matched-filter searches however,
cannot be run over the entire Doppler parameter space
as the number of templates required for an entire observ-
ing run would make the search computationally impos-
sible. Therefore, the reduction of the size of the param-
eter space using SOAP and the followup CVAE is key
for any follow-up search. We can investigate what reduc-
tion in parameter space can be expected by applying this
method compared to using just the SOAP search alone.

For an all-sky search the entire parameter space volume
of the Doppler parameters can be found by looking at the
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FIG. 8: This shows the marginalised posterior distribution on the four Doppler parameters returned from a realistic
Viterbi tracks, the true injected parameters are shown as the orange vertical and horizontal lines and the contours
are at the 0.5,1,1.5 and 2 σ level. In the top right a plot of the Viterbi tracks (green to red points) is also shown with
the true pulsar frequency evolution (red) and a band containing tracks from the 2 sigma contours of the posterior
(orange band). The red to green points of the Viterbi track correspond to the predicted probability that the track
element is associated with a signal, green being more likely to be signal and red being more likely to be noise.

ranges in which we search. After the SOAP search has
run these parameters are limited to

γ ∈ [0, 2π] rad

β ∈ [−π/2, π/2] rad

f0 ∈ 0.1 Hz

ḟ0 ∈ [−1× 10−11, 0] Hz s−1,

(14)

where f0 is limited to the 0.1 Hz wide sub-band width
searched over by SOAP. For each of the test examples
which cross the SOAP detection threshold, we can make
an estimate of the parameter space volume which is con-
tained within a 95% confidence region, then compare this
to the total search volume. Figure 10 shows the reduc-
tion in parameter space as a function of the SNR of a

signal, this is the ratio of the volume contained in the
95% region of the Doppler posterior compared to the to-
tal volume defined by the ranges in Eq. 14. Figure 10
shows that at an SNR of 100 the median that the pa-
rameter space is reduced is by a factor of 10−7.

In Fig. 11 the size of the region contained with 95% of
the marginal posteriors for the two frequency parameters
and the sky position is shown. When the signal has low
SNR SOAP identifies less of the Viterbi track and there-
fore there is not as much information in the track to help
this follow-up to reduce the parameter space, leading to
large parameters space regions at low SNR in Fig. 11.
There is also a large spread on the parameter regions for
all of the parameters even for higher SNRs. This can
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FIG. 9: The p-p plot for the posteriors estimated by the
CVAE from a set of 500 Viterbi tracks. This is the
fraction of events which lie in the given confidence
interval of each of the 1D marginalised posterior

distributions. The grey regions refer the the one, two
and three σ confidence bounds expected from a uniform
distribution with 500 events. The combined p-value

over all parameters is 0.36.
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contained within the 95% contour of the Doppler
parameters posterior and the full parameter space

volume as a function of SNR, where the full parameter
space volume ranges are shown in Eq. 14. The orange
curve shows the running median with a width of 8 bins.

also be associated with SOAP not identifying the entire
track, which occur if the signal drifts outside of the 0.1
Hz wide search band. This is the case for many of the
high SNR large parameter space region points in Fig. 11.

Due to the small reduction in parameter space in some
of these signals, not all follow up methods will be suitable
for all the signals. What is more likely is that for each of
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FIG. 11: The first panel shows the frequency range
contained within the 95% intervals of the marginalised
f posterior. The second panel shows the frequency

derivative range contained within the 95% intervals of
the marginalised ḟ posterior. The final panel shows the

sky area contained within the 95% contour of the
posterior on the sky parameters as a function of SNR.

the signals either a hierarchical semi-coherent approach
would be used which is more sensitive than SOAP. This
would include searches based on matched filters [19, 35,
36] or other semi-coherent methods such as [17, 18]. For
a hierarchical search, this method could act as a rapid
initial stage of the search, where the choice of length of
the coherent segment would depend on the size of the
posterior, i.e. longer coherence times can be used with
smaller posteriors.
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IX. SUMMARY

In this paper we describe a method to extract the
source parameters of a CW signal from the outputs of
SOAP [22, 24], which is an all-sky search for weakly
modelled CWs. This would allow for a more sensitive
but more computationally expensive follow up search to
use this narrower parameter space. The paper outlines
the machine learning methods which were used to extract
these parameters and presents results from a number of
tests of the validity of the outputs.

The outputs of the SOAP search include the time-
frequency evolution of a candidate signal, which can
randomly wander through a frequency band producing
tracks which are highly correlated and difficult to define
a likelihood for. Traditional sampling methods cannot
be used for this particular problem as a clear way to
calculate the likelihood is required. We therefore used
likelihood free methods to extract the Bayesian posteri-
ors, in particular we used a form of CVAE. This allows us
to extract Bayesian posteriors without ever being trained
on the true posteriors. We outline this method and de-
scribe adaptations which were required when testing on
two different datasets.

We test the method in two different simulated data-
sets, a CW frequency evolution with Gaussian noise
added to the frequency bin locations and Viterbi tracks
generated from CW signals injected into Gaussian noise
time series. This allows us to compare the CVAE ap-
proach to traditional sampling methods as well as demon-
strate its performance in a realistic simulation. When
tested in the unrealistic data with Gaussian noise added
to the frequency locations, the structure of the CVAE
is the simpler of the two models with its output being
samples from the posterior of the 4 Doppler parameters.
In this simplified case, we show that the CVAE can re-
turn a posterior which is consistent with one returned
from a nested sampling method (dynesty). As well as
this we show a p-p plot which shows how the posteriors
are statistically self consistent and are consistent with
the simulated parameters.

The CVAE was also tested with Viterbi tracks output
from the SOAP search. When testing on Viterbi tracks
the CVAE was modified such that it output not only pos-
terior samples of the four Doppler parameters but also bi-
nary posterior samples from the conditions that the track
element is associated with the true astrophysical signal.

This also allows us to infer which areas of the Viterbi
track are associated with the signal. Traditional sam-
pling methods cannot be used with the Viterbi tracks as
we have no clear definition of the likelihood, therefore we
do not have a direct comparison between posteriors as in
the previous test. To test the output we instead demon-
strated that the posterior distributions are statistically
self consistent and consistent with the true parameters
using a p-p plot.

The main motivation for this method as an addition
to SOAP was to reduce the parameter space for a follow-
up search using a more sensitive algorithm. To asses
the ability of the entire method to reduce the parameter
space, we show the size contained within 95% of the pos-
terior of each of the individual Doppler parameters and
the total reduction in the parameters space as a function
of signal SNR. The median of the reduction of the pa-
rameters space at an SNR of 100 is O(10−7), for higher
SNR signals this reduces closer to O(10−9). For low SNR
signals near the detection threshold, the median reduc-
tion in the parameter space is closer to O(10−3) which
is expected as SOAP identifies less of the true signal at
lower SNR.

This method then extends the ability of the SOAP
search allowing it to provide useful outputs to follow-
up searches. Now SOAP does not only rapidly search
through large quantities of data returning likely long du-
ration GW candidates within O(hour), but also rapidly
returns Bayesian posteriors on the Doppler parameters
of the identified signal in less that O(10−1) seconds per
candidate.

X. ACKNOWLEDGEMENTS

We would like to acknowledge the continuous wave
working group of LIGO-Virgo-KAGRA Collaboration
for their assistance during this project. This research
is supported by the Science and Technology Facilities
Council., J.B. G.W. and C.M. are supported by the
Science and Technology Research Council (grant No.
ST/V005634/1). C.M. is also supported by the European
Cooperation in Science and Technology (COST) action
CA17137. The authors are grateful for computational re-
sources provided by the LIGO Laboratory supported by
National Science Foundation Grants PHY-0757058 and
PHY-0823459.

[1] J. Aasi et al. (LIGO Scientific), Class. Quant. Grav. 32,
074001 (2015), 1411.4547.

[2] F. Acernese et al. (VIRGO), Class. Quant. Grav. 32,
024001 (2015), 1408.3978.

[3] M. Sieniawska and M. Bejger, Universe 5, 217 (2019),
URL https://www.mdpi.com/2218-1997/5/11/217.

[4] B. J. Owen, arXiv:0903.2603 [astro-ph, physics:gr-qc]
(2009), 0903.2603, URL http://arxiv.org/abs/0903.

2603.
[5] R. J. Dupuis and G. Woan, Phys. Rev. D - Part.

Fields, Gravit. Cosmol. 72, 102002 (2005), ISSN
15507998, URL https://link.aps.org/doi/10.1103/
PhysRevD.72.102002.

[6] B. Schutz, Phys. Rev. D - Part. Fields, Gravit. Cosmol.
58, 063001 (1998), ISSN 15502368.

[7] R. Abbott, H. Abe, F. Acernese, K. Ackley, N. Ad-

https://www.mdpi.com/2218-1997/5/11/217
http://arxiv.org/abs/0903.2603
http://arxiv.org/abs/0903.2603
https://link.aps.org/doi/10.1103/PhysRevD.72.102002
https://link.aps.org/doi/10.1103/PhysRevD.72.102002


14

hikari, R. X. Adhikari, V. K. Adkins, V. B. Adya, C. Af-
feldt, D. Agarwal, et al., Astrophys. J. 935, 1 (2022),
2111.13106.

[8] O. J. Piccinni, P. Astone, S. D’Antonio, S. Frasca,
G. Intini, I. La Rosa, P. Leaci, S. Mastrogiovanni,
A. Miller, and C. Palomba, Phys. Rev. D 101,
082004 (2020), URL https://link.aps.org/doi/10.
1103/PhysRevD.101.082004.

[9] R. Abbott, T. D. Abbott, S. Abraham, F. Acernese,
K. Ackley, A. Adams, C. Adams, R. X. Adhikari, V. B.
Adya, C. Affeldt, et al., Astrophys. J. 921, 80 (2021),
2105.11641.

[10] The LIGO Scientific Collaboration, the Virgo Collabo-
ration, the KAGRA Collaboration, R. Abbott, H. Abe,
F. Acernese, K. Ackley, N. Adhikari, R. X. Adhikari,
V. K. Adkins, et al., arXiv e-prints arXiv:2201.10104
(2022), 2201.10104.

[11] The LIGO Scientific Collaboration, the Virgo Collabo-
ration, the KAGRA Collaboration, R. Abbott, H. Abe,
F. Acernese, K. Ackley, N. Adhikari, R. X. Adhikari,
V. K. Adkins, et al., arXiv e-prints arXiv:2204.04523
(2022), 2204.04523.

[12] R. Abbott, T. D. Abbott, F. Acernese, K. Ackley,
C. Adams, N. Adhikari, R. X. Adhikari, V. B. Adya,
C. Affeldt, D. Agarwal, et al., Phys. Rev. D 105, 082005
(2022), 2111.15116.

[13] R. Abbott, T. D. Abbott, S. Abraham, F. Acernese,
K. Ackley, A. Adams, C. Adams, R. X. Adhikari, V. B.
Adya, C. Affeldt, et al., Phys. Rev. D 103, 064017
(2021), 2012.12128.

[14] R. Abbott, T. D. Abbott, S. Abraham, F. Acernese,
K. Ackley, A. Adams, C. Adams, R. X. Adhikari, V. B.
Adya, C. Affeldt, et al., Phys. Rev. D 104, 082004
(2021), 2107.00600.

[15] The LIGO Scientific Collaboration, the Virgo Collabo-
ration, the KAGRA Collaboration, R. Abbott, H. Abe,
F. Acernese, K. Ackley, N. Adhikari, R. X. Adhikari,
V. K. Adkins, et al., arXiv e-prints arXiv:2201.00697
(2022), 2201.00697.

[16] R. Tenorio, LIGO Scientific Collaboration, and Virgo
Collaboration, arXiv e-prints arXiv:2105.07455 (2021),
2105.07455.

[17] P. Astone, A. Colla, S. D’Antonio, S. Frasca, and
C. Palomba, Phys. Rev. D 90, 042002 (2014),
URL https://link.aps.org/doi/10.1103/PhysRevD.
90.042002.

[18] B. Krishnan, A. M. Sintes, M. A. Papa, B. F.
Schutz, S. Frasca, and C. Palomba, Phys. Rev. D
70, 082001 (2004), URL https://link.aps.org/doi/
10.1103/PhysRevD.70.082001.

[19] P. Jaranowski, A. Królak, and B. F. Schutz, Phys. Rev.
D 58, 063001 (1998), URL https://link.aps.org/doi/
10.1103/PhysRevD.58.063001.

[20] B. P. Abbott, R. Abbott, T. D. Abbott, F. Acer-
nese, K. Ackley, C. Adams, T. Adams, P. Addesso,
R. X. Adhikari, V. B. Adya, et al. (LIGO Scientific
Collaboration and Virgo Collaboration), Phys. Rev. D
96, 062002 (2017), URL https://link.aps.org/doi/
10.1103/PhysRevD.96.062002.

[21] R. Tenorio, D. Keitel, and A. M. Sintes, Universe 7, 474
(2021), 2111.12575.

[22] J. Bayley, G. Woan, and C. Messenger (2019),
1903.12614, URL http://arxiv.org/abs/1903.
12614http://dx.doi.org/10.1103/PhysRevD.100.

023006.
[23] J. Bayley, C. Messenger, and G. Woan, Phys. Rev. D

102, 083024 (2020), URL https://link.aps.org/doi/
10.1103/PhysRevD.102.083024.

[24] J. C. Bayley, Soapcw (2020), URL https://git.ligo.
org/joseph.bayley/soapcw.

[25] K. Cranmer, J. Brehmer, and G. Louppe, Proceedings
of the National Academy of Sciences 117, 30055 (2020),
https://www.pnas.org/doi/pdf/10.1073/pnas.1912789117,
URL https://www.pnas.org/doi/abs/10.1073/pnas.
1912789117.

[26] H. Gabbard, C. Messenger, I. S. Heng, F. Tono-
lini, and R. Murray-Smith, arXiv e-prints 1909,
arXiv:1909.06296 (2019), URL http://adsabs.harvard.
edu/abs/2019arXiv190906296G.

[27] A. J. Viterbi, IEEE Trans. Inf. Theory 13, 260 (1967),
ISSN 15579654, URL http://ieeexplore.ieee.org/
document/1054010/.

[28] LIGO Scientific Collaboration, LIGO Algorithm Library
- LALSuite, free software (GPL) (2018).

[29] E. Cuoco, J. Powell, M. Cavaglià, K. Ackley, M. Be-
jger, C. Chatterjee, M. Coughlin, S. Coughlin, P. Easter,
R. Essick, et al., arXiv e-prints arXiv:2005.03745 (2020),
2005.03745.

[30] S. R. Green, C. Simpson, and J. Gair, arXiv e-prints
2002, arXiv:2002.07656 (2020), URL http://adsabs.
harvard.edu/abs/2020arXiv200207656G.

[31] D. P. Kingma and J. Ba, arXiv e-prints arXiv:1412.6980
(2014), 1412.6980.

[32] S. Walsh, M. Pitkin, M. Oliver, S. D’Antonio, V. Der-
gachev, A. Królak, P. Astone, M. Bejger, M. Di Gio-
vanni, O. Dorosh, et al., Phys. Rev. D 94, 124010 (2016),
ISSN 24700029, 1606.00660, URL https://link.aps.
org/doi/10.1103/PhysRevD.94.124010.

[33] C. Dreissigacker, R. Prix, and K. Wette, Phys. Rev. D
98, 084058 (2018), 1808.02459.

[34] J. S. Speagle, Mon. Not. R. Astron. Soc. (2019),
URL http://arxiv.org/abs/1904.02180http:
//dx.doi.org/10.1093/mnras/staa278.

[35] G. Ashton and R. Prix, Phys. Rev. D 97, 103020 (2018),
URL https://link.aps.org/doi/10.1103/PhysRevD.
97.103020.

[36] R. Tenorio, D. Keitel, and A. M. Sintes, Phys. Rev. D
104, 084012 (2021), 2105.13860.

https://link.aps.org/doi/10.1103/PhysRevD.101.082004
https://link.aps.org/doi/10.1103/PhysRevD.101.082004
https://link.aps.org/doi/10.1103/PhysRevD.90.042002
https://link.aps.org/doi/10.1103/PhysRevD.90.042002
https://link.aps.org/doi/10.1103/PhysRevD.70.082001
https://link.aps.org/doi/10.1103/PhysRevD.70.082001
https://link.aps.org/doi/10.1103/PhysRevD.58.063001
https://link.aps.org/doi/10.1103/PhysRevD.58.063001
https://link.aps.org/doi/10.1103/PhysRevD.96.062002
https://link.aps.org/doi/10.1103/PhysRevD.96.062002
http://arxiv.org/abs/1903.12614 http://dx.doi.org/10.1103/PhysRevD.100.023006
http://arxiv.org/abs/1903.12614 http://dx.doi.org/10.1103/PhysRevD.100.023006
http://arxiv.org/abs/1903.12614 http://dx.doi.org/10.1103/PhysRevD.100.023006
https://link.aps.org/doi/10.1103/PhysRevD.102.083024
https://link.aps.org/doi/10.1103/PhysRevD.102.083024
https://git.ligo.org/joseph.bayley/soapcw
https://git.ligo.org/joseph.bayley/soapcw
https://www.pnas.org/doi/abs/10.1073/pnas.1912789117
https://www.pnas.org/doi/abs/10.1073/pnas.1912789117
http://adsabs.harvard.edu/abs/2019arXiv190906296G
http://adsabs.harvard.edu/abs/2019arXiv190906296G
http://ieeexplore.ieee.org/document/1054010/
http://ieeexplore.ieee.org/document/1054010/
http://adsabs.harvard.edu/abs/2020arXiv200207656G
http://adsabs.harvard.edu/abs/2020arXiv200207656G
https://link.aps.org/doi/10.1103/PhysRevD.94.124010
https://link.aps.org/doi/10.1103/PhysRevD.94.124010
http://arxiv.org/abs/1904.02180 http://dx.doi.org/10.1093/mnras/staa278
http://arxiv.org/abs/1904.02180 http://dx.doi.org/10.1093/mnras/staa278
https://link.aps.org/doi/10.1103/PhysRevD.97.103020
https://link.aps.org/doi/10.1103/PhysRevD.97.103020

	Cover Sheet (AFV)
	287312
	I Introduction
	II  SOAP 
	A Continuous Wave Signal

	III  Machine learning and parameter estimation
	A Training 
	B Testing 

	IV Data 
	1 Gaussian noise dataset 
	2 Viterbi noise dataset 

	A Parameterisation

	V Network design 
	VI Training 
	VII Timing 
	VIII  Results
	A Gaussian noise
	B Viterbi noise
	1 Parameter space reduction


	IX Summary
	X Acknowledgements
	 References


