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A B S T R A C T

The effect of lateral compressive stresses on the cracking process in tension is rarely considered in fracture
models for quasi-brittle materials such as concrete. In this study, this effect is investigated by means of a meso-
scale lattice approach in which a damage-plasticity constitutive model is combined with an auto-correlated
random field of strength and fracture energy. In the first part of the analyses, the lattice approach is compared
with experimental results in tension and compression, which shows a good agreement between simulations
and experiments. Then, cells with periodic lattices and periodic boundary conditions are loaded in two steps.
Firstly, compression is applied. Next, the cell is extended in the lateral direction while keeping the compressive
stress constant. It is shown that with increasing compressive stress applied, the post-peak energy dissipation
in tension increases. Postprocessing of the results of the analyses reveals that this increase is due to greater
frictional energy dissipation and greater number of cracks than for pure tension.
1. Introduction

For nonlinear analysis of concrete structures, it is important to
include the nonlinear fracture process of concrete in tension, since it
may strongly influences the load capacity of structures and is the source
of a particular size effect on nominal strength (Bažant, 2002), which
neither follows the strength theory nor linear elastic fracture mechanics
(LEFM) (Griffith, 1921). This particular size effect is strongly dependent
on the length of pre-notches as shown in two independent experimental
studies (Hoover et al., 2013; Grégoire et al., 2013).

Cohesive crack models are a popular choice for this type of nonlin-
ear analyses (Hillerborg, 1985). In these models, the response of the
three-dimensional fracture process zone is idealised by a stress crack
opening law applied to a crack plane. Numerically, it is often more
straight-forward to model the stress-crack opening law smeared out
over the element length in the form of a softening stress–strain law
which is dependent on the element length (Bažant and Oh, 1983), so
that the resulting stress crack opening law is mesh-independent. For
direct tension, the integral of the stress crack opening law is the tensile
fracture energy, which is usually considered to be a material property.
Less focus has been paid on the effect of multiaxial stress states on the
tensile fracture process, although it is known from experimental studies
on concrete subjected to multiaxial stress states, that both strength
and strain at maximum stress are very sensitive to multiaxial stress
states (Kupfer et al., 1969; Mills and Zimmerman, 1970; Linse and
Aschl, 1976; Imran and Pantazopoulou, 2001).

E-mail address: peter.grassl@glasgow.ac.uk.

In concrete structures, lateral compressive stresses during tensile
cracking are present in the case of shear failure, anchorage failure
of prestressing tendons, corrosion induced cracking, and bond failure.
Another example, outside the research area of concrete and concrete
structures, is hydraulic fracture in rock formations, which are usually
subjected to complex triaxial stress states involving combinations of
high compressive and induced tensile stresses. In recent experimental
studies in Nguyen et al. (2020a,b) and Bažant et al. (2022b,a), it has
been reported that the fracture energy in tension is indeed influenced
by compressive stresses parallel to the crack plane. Moderate compres-
sion was shown to increase the fracture energy, whereas very high
compression close to the compressive strength reduces the amount
of energy dissipation during tensile fracture. This effect is usually
not considered in cohesive crack laws, because the stress parallel to
the crack does not routinely enter these formulations. On the other
hand, crack band models as proposed in Bažant and Oh (1983) can
in principal capture the effect of compressive stresses parallel to the
crack as long as the constitutive models are formulated accordingly.
Recently, it was shown in Bažant et al. (2022b) that comprehensive
constitutive models, such as the microplane model M7 (Caner and
Bazant, 2013) and the damage-plasticity model CDPM2 (Grassl et al.,
2013), are capable of reproducing these experimental results.

The increase in fracture energy due to moderately increasing lat-
eral compressive stresses is intriguing, since the strength in tension
is reported to decrease with increasing lateral compressive stresses.
vailable online 10 December 2022
020-7683/© 2022 The Author(s). Published by Elsevier Ltd. This is an open access a

https://doi.org/10.1016/j.ijsolstr.2022.112086
Received 4 October 2022; Received in revised form 28 November 2022; Accepted 8
rticle under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

December 2022

https://www.elsevier.com/locate/ijsolstr
http://www.elsevier.com/locate/ijsolstr
mailto:peter.grassl@glasgow.ac.uk
https://doi.org/10.1016/j.ijsolstr.2022.112086
https://doi.org/10.1016/j.ijsolstr.2022.112086
http://crossmark.crossref.org/dialog/?doi=10.1016/j.ijsolstr.2022.112086&domain=pdf
http://creativecommons.org/licenses/by/4.0/


International Journal of Solids and Structures 262–263 (2023) 112086P. Grassl

u
o
o

a
g
v
t
r
o
i
a
c
b
G

t
t

m
a
c

a
f
e

𝝈

H
(
m
i
𝜺

There are two possible explanations for the increase of fracture energy
due to compressive stresses parallel to the crack, which are discussed
in Nguyen et al. (2020a). Firstly, during tensile crack formation in
quasi-brittle materials such as concrete, the crack in the matrix is
bridged by aggregates, which are pulled out of the cement matrix.
Due to the friction between aggregates and matrix, compressive stresses
lateral to the tensile direction introduce greater resistance to pull out,
which results in greater energy dissipation (Bažant, 1996). Secondly,
the crack path in concrete due to direct tension is tortuous, because
cracking in tension is initiated at the interfacial transition zones, which
are the weak points in the meso-structure of concrete. These initial
cracks are then connected by fracture of the stronger matrix. This
process was studied in detail in Grassl and Jirásek (2010). If compres-
sive stresses are present, the fracture path, i.e. the geometry of how
these initial cracks connect, could be constraint, which should result in
multiple parallel matrix cracks to form either instead or in addition
of one tortuous localised crack. The aim of the present study is to
investigate these two possible effects by performing meso-scale analyses
of small concrete specimens.

Suitable numerical approaches for these meso-scale simulations are
discrete approaches as reported in Schlangen and van Mier (1992),
Zhang et al. (2020), Yip et al. (2005), Kang et al. (2014), Cusatis et al.
(2006), Smith et al. (2014) and Eliáš et al. (2015). Recent reviews of
these models can be found in Nikolić et al. (2018), Bolander et al.
(2021). The technique used in the present study is 3D lattice ap-
proach related to previous work reported in Grassl and Davies (2011),
Athanasiadis et al. (2018) and Aldellaa et al. (2022). It follows closely
the discretisation techniques presented in Yip et al. (2005), but uses
constitutive models based on combinations of damage and plasticity,
similar to tensorial models proposed in Grassl and Jirásek (2006). The
meso-structure of concrete, consisting of stiff and strong aggregates
embedded in a soft and weak matrix, is modelled by mapping random
fields generated by techniques reported in Shinozuka and Jan (1972)
onto the background lattice. This technique was used before in 2D
in Xenos et al. (2015).

The lattice modelling is used to reproduce uniaxial tensile and com-
pressive results reported in Gopalaratnam and Shah (1985) and Kupfer
and Gerstle (1973) to show that the model is capable of producing
realistic results for concrete before it is then applied to the analysis
of a periodic cell for which no experimental results are available. Cells
with periodic lattices and periodic displacement boundary conditions
developed in Athanasiadis et al. (2018) and Grassl and Jirásek (2010)
are used to apply combinations of average tension and compression
strain and stress states. The results are evaluated in the form of local
dissipated energy densities of individual lattice elements, which allows
for identifying changes of failure modes in the meso-structure due
to presence of compression parallel to the crack plane. Furthermore,
the width of the fracture process zone is investigated by roughness
measures used earlier in Grassl and Antonelli (2019) and Xenos et al.
(2015).

With the cells with periodic boundary conditions, only a small ma-
terial volume is modelled with different constraints than in experiments
on fracture of larger beams, as studied in the gap test (Nguyen et al.,
2020a). Therefore, it is not expected to reproduce quantitatively the
experimental results of the gap-test. Instead, the main aim of this paper
is to improve the understanding of the influence of compressive stresses
parallel to the crack plane on the stress-crack opening response in
tension. Several new contributions are presented in this work. Firstly,
a 3D lattice approach with a previously proposed damage-plasticity
constitutive model is combined with an auto-correlated random field
for strength and fracture energy. This new lattice meso-scale model is
compared for the first time to direct tension, and uniaxial and biaxial
compression experiments. Furthermore, a detailed analysis of the effect
of lateral compressive stresses on the tensile fracture process is carried
2

out. 𝜅
2. Lattice model

This section describes the meso-scale lattice modelling approach
which is used to simulate the fracture process zone subjected to biaxial
stress states. The spatial lattice discretisation is based on sequentially
placed random vertices while enforcing a minimum distance. These
vertices are used for dual Delaunay and Voronoi tessellations (Yip et al.,
2005). The random vertices form the nodes of the lattice element (see
vertices 𝑖 and 𝑗 in Fig. 1a). The edges of the Delaunay tetrahedra are
sed for the connections of the nodes, i.e. the edges give the location
f the lattice elements. The mid-cross-section of the lattice elements is
btained from the facets of the Voronoi polyhedra.

Two types of boundary treatments for the lattice generation were
pplied. For the comparison with experimental results, the lattice was
enerated by modelling boundaries of the specimen using mirrored
ertices as described in Yip et al. (2005) in addition to placing ver-
ices on the boundary with a smaller minimum distance than in the
egion. For the analysis of combined tension and compression, a peri-
dic lattice with periodic boundary conditions was used as described
n Athanasiadis et al. (2018) which gives the opportunity to control
verage stress and strain fields. In this periodic setup, lattice elements
ross the boundary of the cell, so that crack patterns are not influenced
y these boundaries as demonstrated in Grassl and Jirásek (2010) and
rassl and Antonelli (2019).

Each node has six degrees of freedom, namely three translations and
hree rotations. These nodal degrees of freedom are used to compute
ranslational displacement jumps 𝐮 =

{

𝑢n, 𝑢p, 𝑢q
}𝑇 at the centroid of the

mid-cross-section of the element by means of rigid body kinematics as-
suming that the two nodes of an element belong to two rigid polyhedra,
which are determined from the Delaunay and Voronoi tessellations.
The nodes are not the centroids of the polyhedra except of the special
case of a centroidal Voronoi tessellation which was not applied in this
study. These two polyhedra meet at the facet which forms the mid-
cross-section (Fig. 1b). The centroid 𝐶 of the mid-cross-section (Fig. 1b)
is used to model the interaction of the two polyhedra. The translational
displacement jump is transformed into strain by dividing it by the
element length ℎ. This strain is used as an input for the constitutive

odel to compute the stress, which is then related to the nodal forces
t the nodes. The rotational jump at point 𝐶 is not considered in the
onstitutive model.

The constitutive model in the lattice approach is a damage-plasticity
pproach which is capable of modelling both tensile and compressive
ailure (Grassl and Davies, 2011; Athanasiadis et al., 2018; Aldellaa
t al., 2022). The main stress–strain law is

= (1 − 𝜔)𝐃e
(

𝜺 − 𝜺p
)

= (1 − 𝜔) 𝝈̄ (1)

ere, 𝜔 is the damage variable (ranging from 0 to 1), 𝑫e = diag
𝐸, 𝛾𝐸, 𝛾𝐸) is the elastic stiffness matrix, where 𝐸 is the Young’s
odulus of the equivalent lattice material and 𝛾 is a parameter which

s used to control Poisson’s ratio of the continuum material. The vectors
=
(

𝜀n, 𝜀s, 𝜀t
)𝑇 and 𝜺p =

(

𝜀pn, 𝜀ps, 𝜀pt
)𝑇 are the total and plastic strain,

respectively. Furthermore, 𝝈 =
(

𝜎n, 𝜎s, 𝜎t
)𝑇 and 𝝈̄ =

(

𝜎̄n, 𝜎̄s, 𝜎̄t
)𝑇 are

the nominal and effective stress, respectively. Here subscripts 𝑠 and 𝑡
refer to the local coordinate system of the lattice element in Fig. 1b.
The plasticity part is based on the effective stress, i.e. independent
of damage. The plastic strain is determined from the plasticity part
assuming small strains by combining yield function in (2), flow rule
in (3), hardening law in (4), and loading and unloading conditions in
(5):

𝑓 = 𝐹 (𝝈̄, 𝜅) (2)

𝜺̇p = 𝜆̇
𝜕𝑔
𝜕𝝈̄

(3)

̇ = 𝜆̇ℎ (4)
𝜅
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Fig. 1. Lattice model: (a) geometrical relationship between Delaunay and Voronoi tessellations, (b) lattice element with cross-section defined by the associated Voronoi facet, (c)
yield surface, and (d) exponential softening law.
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𝑓 ≤ 0, 𝜆̇ ≥ 0, 𝜆̇𝑓 = 0 (5)

The yield function consists of two ellipsoids and has the form

𝑓 =

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

𝛼2𝜎̄2n − 2𝛼2𝜎̄0𝑛 𝜎̄n + 𝜎̄
2
q

−
2𝛼2𝑓c𝑓t + 𝛼2 (1 − 𝛼𝛽) 𝑓 2

t
1 + 𝛼𝛽

𝑞2 if 𝜎̄n ≥ 𝜎̄0n

𝜎̄2n
𝛽2

− 2
𝜎̄0n 𝜎̄n
𝛽2

+
(1 − 𝛼𝛽) 𝑓 2

c − 2𝛼𝛽𝑓c𝑓t
𝛽2 (1 + 𝛼𝛽)

𝑞2 if 𝜎̄n < 𝜎̄0n

(6)

where 𝜎̄0n = −
𝑓c − 𝛼𝛽𝑓t
1 + 𝛼𝛽

𝑞 is the transition point of the two ellipsoids as

ndicated in Fig. 1c and 𝜎̄q =
√

𝜎̄2s + 𝜎̄
2
t .

The variable 𝑞 controls the hardening.

= exp
(

𝜅
𝐴h

)

(7)

where 𝐴h is an input parameter.
A non-associated flow rule is used, i.e. the plastic potential differs

from the yield surface shown in Fig. 1c. It has the form

𝑔 =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

𝜓2𝜎̄2n − 2𝜓2𝜎̄0𝜓n 𝜎̄n + 𝜎̄2q if 𝜎̄n ≥ 𝜎̄0𝜓n

𝜎̄2n
𝛽2

− 2
𝜎̄0𝜓n 𝜎̄n

𝛽2 (1 + 𝜓𝛽)
+ 𝜎̄2q if 𝜎̄n < 𝜎̄

0𝜓
n

(8)

where 𝜎̄0𝜓n = −
𝑓c − 𝜓𝛽𝑓t
1 + 𝜓𝛽

𝑞 is the transition point of the two ellipsoids

of the plastic potential.
The function ℎ𝜅 in the evolution law in (4) is chosen as

ℎ𝜅 =
|

|

|

𝜕𝑔 |

|

|

(9)
3

|
𝜕𝜎n |
hich is the absolute value of the normal component of the direction
f the plastic flow.

The damage variable 𝜔 in (1) is determined by means of the damage
istory variable

d =
⟨

𝜀pn
⟩

(10)

here ⟨.⟩ denotes the McAuley brackets (positive part of operator).
herefore, only positive normal plastic strain results in damage. The
unction of the damage variable is derived from the stress-crack open-
ng curve in pure tension (𝜎n > 0, 𝜎q = 0). For the damage-plasticity
onstitutive model, the vector of crack opening components 𝐰c =
𝑤cn, 𝑤cs, 𝑤ct

}𝑇 is defined as

c = ℎ
(

𝜺p + 𝜔
(

𝜺 − 𝜺p
))

(11)

or pure tension, the crack opening simplifies to

cn = ℎ
(

𝜀pn + 𝜔
(

𝜀n − 𝜀pn
))

(12)

The stress-crack opening curve is

𝜎n = 𝑓t exp
(

−
𝑤cn
𝑤f

)

(13)

where 𝑤f controls the initial slope of the exponential softening curve as
shown in Fig. 1d. It is related to the area under the stress-crack opening
curve, i.e. fracture energy 𝐺F, as 𝑤f = 𝐺F∕𝑓t . For pure tension, (1) is

𝜎n = (1 − 𝜔)𝐸
(

𝜀n − 𝜀pn
)

(14)

Setting (12) into (13), and then (13) equal to (14), a nonlinear equa-
tion of the damage variable 𝜔 is obtained, which is solved using the
Newton–Raphson method.

In the lattice model, randomness of the material strength is con-
sidered by an autocorrelated random field with a Gaussian probability
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function of fully correlated strength and fracture energy. The auto-
correlated field has been generated with the spectral representation
techniques described in Shinozuka and Jan (1972) and Shinozuka
and Deodatis (1996). A square exponential function is used as the
autocorrelation function.

The constitutive model requires eight input parameters. For the
elastic response, the Young’s modulus of the lattice material 𝐸 and the
shear factor 𝛾 control the macroscopic Young’s modulus and Poisson’s
ratio. The parameters of the plasticity part are 𝑓t , 𝑓c, 𝛼, 𝛽, 𝜓 and
h. The parameter 𝐺F (or alternatively 𝑤f ) controls the amount of
nergy dissipated during cracking. For the autocorrelated Gaussian
ield, the mean, coefficient of variation 𝑐v and autocorrelation length
a are required.

Postprocessing of the results is carried out in three parts. Firstly, the
rack patterns are evaluated in the form of an equivalent crack width
̃ c = ‖𝐰c‖, where 𝐰c is the crack opening vector in (12). Secondly, the
nergy dissipation due to fracture is computed as

̇ = (1 − 𝜔)𝐃e
(

𝜺 − 𝜺p
)

𝜺̇p +
1
2
(

𝜺 − 𝜺p
)

𝐃e
(

𝜺 − 𝜺p
)

𝜔̇ (15)

More information on energy dissipation in damage-plasticity
approaches can be found in Grassl (2009). To be able to distinguish
between compression, shear and tensile energy dissipation, the yield
surface is subdivided into three parts as shown in Fig. 2a. Based on the
location on the yield surface for the current step, the energy dissipation
rate is allocated to one of the three groups. The third postprocessing
procedure is to evaluate the spatial variation of the fracture patterns by
applying a roughness measure (Xenos et al., 2015; Grassl and Antonelli,
2019). This measure is one-dimensional and requires knowledge about
the orientation of the fracture process zone. The main procedure is to
calculate an average distance of all dissipated fracture processes from
a reference level (see Fig. 2b) in a direction (denoted here as 𝑧) which
is normal to the assumed plane of the fracture process zone. For direct
tension, this direction is assumed to be equal to the one in which the
load is applied. The expression is

𝑧̄ =
𝑁
∑

𝑖=1
𝑤i𝑧i (16)

where 𝑤 is a weight which is defined as

𝑤i =
𝐴i𝐷̇i

∑𝑁
𝑘=1 𝐴𝑘𝐷̇𝑘

(17)

he roughness measure is

ℎ =

√

√

√

√

𝑁
∑

𝑖=1
𝑤i

(

𝑧i − 𝑧̄
)2 (18)

It is the standard deviation of distance 𝑧. To illustrate the measure,
consider two extreme cases. If all energy dissipation occurs on a plane
with the 𝑧-axis as the normal, the roughness measure is equal to zero.
On the other hand, if energy dissipation is uniformly distributed over
length 𝐿 in the 𝑧-direction, the roughness measure is 𝐿∕

(

2
√

3
)

, which
s the standard deviation of a uniform distribution over length 𝐿.

. Analyses and results

The modelling approach is first applied to the analysis of two
xperimental studies, namely a tensile test reported in Gopalaratnam
nd Shah (1985) and a compression test reported in Kupfer and Gerstle
1973). After this evaluation of the capabilities of the lattice approach,
he model is applied to combined tensile and compressive stresses with
4

he periodic cell. w
3.1. Comparison of meso-scale model with experiments

In this section, the lattice modelling approach is compared to two
representative experiments for concrete fracture, namely a direct ten-
sile test and uniaxial and biaxial compression experiments.

The experimental results of the tensile test modelled here were
reported in Gopalaratnam and Shah (1985). The geometry of the lattice
model is shown in Fig. 3a. From the experiments, it is known that
the fracture processes occur in the notched region of the specimen.
Therefore, only a small area around the notches was discretised with a
fine lattice and random field. The input parameters for this region are
𝐸 = 50.46 GPa, 𝛾 = 0.215, 𝑓t = 2.44 MPa, 𝑓c = 30 MPa, 𝑤f = 0.05 mm,
𝐴h = 0.001, 𝛼 = 0.5, 𝜓 = 0.25, 𝑙a = 2.67 mm and 𝑐v = 0.2. The

inimum distance between the lattice nodes is 𝑑min = 2 mm. The input
arameters are determined by inverse analysis. A uniaxial test with
lastic properties is used to calibrate 𝐸 and 𝛾, so that macroscopic
alues for 𝐸m and 𝜈 were obtained, which produced a good agreement
ith the experimental data. The lattice parameters for the nonlinear

esponse were fitted so that the curve matches well the experimental
esults. For the autocorrelated field, parameters 𝑙a and 𝑐v were taken as
roposed in Aldellaa et al. (2022) in which corrosion induced cracking
as studied. For 𝑙a, it was shown in Grassl and Jirásek (2010) and
enos et al. (2015) that a ratio of 𝑙a∕𝑑min = 1.333 provided crack
atterns which were independent of the lattice background mesh for
D analyses. In this study, 𝑙a∕𝑑min = 2.67∕2 = 1.333 was used. It should
e noted that the present study does not aim to reproduce statistical size
ffect on strength, for which most likely a larger auto-correlation length
s required as reported in Vořechovskỳ (2007) and Grassl and Bažant
2009). The effect of autocorrelation length on fracture processes was
tudied in detail in Eliáš and Vořechovskỳ (2020).

For the rest of the specimen, a coarser lattice was chosen with
min = 6 mm and uniform properties equal to the mean of the random
ield used in the refined region. In the experiments, the end of the
pecimens were gripped by very stiff loading devices. In the analyses, it
s assumed that these regions (hashed areas in Fig. 3a) are almost rigid
very high Young’s modulus 𝐸). The notches were modelled by setting
oung’s modulus of elements crossing the notch planes to a very small
alue. The overall results of the simulations are presented in the form
f the stress versus relative displacement in Fig. 3b. Here, the stress is
alculated as the force divided by the ligament area of the cross-section
t the height of the notches. The out-of-plane thickness of the specimen
s 38 mm. The relative displacement was calculated using the vertical
isplacements of points E and F shown in Fig. 3a. For the analysis,
n incremental-iterative approach with indirect displacement control
as used. For the indirect displacement control, an equally weighted
verage of the relative displacements of nodes A-B, C-D and E-F were
sed. Three realisations of random fields, referred to random 1 to 3 in
ig. 3b, were used. Crack patterns of the analysis are shown in Fig. 4
or three stages marked in Fig. 3b for model 1. Only the notched area
f the specimen is shown in which the random field was applied. The
hite lines indicate the notch location.

Overall, the model is capable of reproducing the experimental re-
ults well. From the stress versus notch opening curve, it can be seen
hat the peak stress, and strain at peak stress are well reproduced.
he initial softening branch in the simulations is less steep than in the
xperiments, which could be due to the use of an exponential softening
aw instead of a bilinear one. In Jirásek and Zimmermann (1998), it was
hown that a bilinear curve with strength and crack opening threshold
atios fitted can match well experimental bending results. A bilinear
urve with those thresholds exhibits a steeper initial softening than a
xponential softening curve with the same fracture energy. The crack
atterns are reasonable as well. From the three contour plots in Fig. 4,
t can be seen that two cracks initiate near the notches (because of the
andom field, cracks do not necessarily initiate exactly at the notch)
nd then meet in the centre of the specimen, which is in agreement

ith the experimental observations in Gopalaratnam and Shah (1985).
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Fig. 2. Postprocessing: (a) Division of yield surface in tension, shear and compression parts. (b) Schematic illustration of segments (mid cross-sections of elements) at which energy
dissipation occurs.
Fig. 3. (a) Geometry of the lattice specimen for the tensile test reported in Gopalaratnam and Shah (1985). The out-of plane thickness of the specimen is 38 mm. (b) Load versus
crack mouth opening of the lattice simulations compared to experiments reported in Gopalaratnam and Shah (1985). The white circles mark the stages at which the crack patterns
are shown in Fig. 4.
Fig. 4. Crack patterns of the direct tensile analysis. The corresponding points in the load–displacement curve are marked in Fig. 3b. Red refers to an equivalent crack width of
10 μm.
The final crack in the analysis, shown by the red region, has a width
governed by the lattice element length and is tortuous which is due
to the random lattice and the random field used, which was discussed
in more detail previously in the 2D quantitative studies in Grassl and
Jirásek (2010).

For compression, the lattice model was used to analyse uniaxial and
equi-biaxial compression experiments reported in Kupfer and Gerstle
(1973). The geometry and loading setup used in the simulations is
shown in Fig. 5. Boundaries are assumed to be frictionless because in
5

the experiments stiff steel brushes were used to apply the force to re-
duce frictional constraints. To speed up the analysis, the specimen edge
length was chosen to be 100 mm in the analyses, instead of the 200 mm
in the experiments. The out-of plane thickness was chosen as 10 mm.
This change of the geometry is acceptable, because the failure processes
for the range of displacement investigated here are distributed. The
incremental-iterative approach used for the previous tensile test ex-
hibits convergence problems when it is applied to the compression test.
These problems occur close to the peak load. Therefore, the analysis is
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Fig. 5. (a) Geometry of the lattice specimen for the compression test reported in Kupfer and Gerstle (1973). The out-of-plane thickness is 10 mm. (b) Stress versus strain of the
lattice simulations compared to experiments reported in Kupfer and Gerstle (1973). The white circles mark the stages at which the crack patterns are shown.
Fig. 6. Crack patterns for the uniaxial compression analysis at stages marked in the stress–strain curve in Fig. 5b.
carried out using an explicit solver and direct displacement control. A
very small displacement rate is used to obtain results which are close to
the quasi-static response. The input parameters are 𝐸 = 45.91 GPa, 𝛾 =
0.297, 𝑓t = 3. MPa, 𝑓c = 30 MPa, 𝑤f = 0.02 mm, 𝐴h = 0.001, 𝛼 = 0.5, 𝜓 =
0.25, 𝑙a = 2.67 mm and 𝑐v = 0.2. The minimum distance between nodes is
𝑑min = 2 mm. The results are shown in the form of stress–strain curves
in Fig. 5b. For uniaxial compression, both the axial compressive and
lateral tensile strain are shown. For equi-biaxial compression, the two
strain components are equal. The strain in the out-of plane direction
was not evaluated from the analysis, because of the small out-of-plane
thickness of the specimen. In compression, the effect of the randomness
on the stress–strain curve is very small. Therefore, the results of only
one analysis are shown. This small effect of randomness is explained
by the averaging of many nonlinear processes in the specimen. For
the direct tensile test, a bigger scatter in the stress-crack opening is
obtained, because the nonlinear processes are confined in a small region
close to the notches. The crack patterns are shown in Fig. 6 for the
uniaxial compression case for three stages marked in Fig. 5b.

The stress–strain curves are overall in good agreement with the
experimental results. For the uniaxial test, both the axial as well as the
lateral strain responses are well reproduced. The lattice model captures
well the pre-peak nonlinearity in the axial direction. The associated
lateral strain in the model is greater than in the experiments. However,
this difference is small considering how difficult it is to predict and
measure the lateral strain in unconfined compression. For equibiaxial
compression, the model overestimates the strength obtained in the
experiments. Furthermore, the strain at peak is slightly underestimated.
6

Still, the shapes of the curves from analyses and experiments are very
similar. From the crack patterns in Fig. 6 it can be seen that the
cracks initiate at the boundary and are then distributed across the
specimen in the form of shear bands. No splitting cracks are visible
which is normally associated with compression tests without friction at
the boundary. The concentration of cracks at the boundary might be
due to the way the lattice is generated. Vertices are first placed on the
boundary and then within the specimen. This results in a layer of lattice
elements next to the boundary, which are longer than elements within
the specimen.

Overall, the comparison of the lattice results with experiments for
the tensile and compression test demonstrates that the lattice model is
capable of reproducing the failure process of concrete. In the next step,
the model is applied to investigate nonproportional loading in the form
of compression and lateral tension.

3.2. Prediction of effect of lateral compression stress on the fracture process
in tension

In this section, the lattice model is applied to investigate the effect
of lateral compression on the tensile fracture process. This part of
the work is motivated by the recent gap tests reported in Nguyen
et al. (2020a,b) and Bažant et al. (2022b,a). In these experiments, the
centre area of beams were loaded in compression by means of special
support pads which yield in compression under constant force. With
this constant compressive force present, bending was applied which
fractured the ligament area of the notched beams in tension with the
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Fig. 7. FPZ: (a) Geometry of the periodic cell, (b) First load step at which compressive stress is applied. (c) Second load step with constant lateral compressive stress.
a
a
s
s

l
𝜎

lateral compressive stresses present. It was found that fracture energy
in tension increases with increasing lateral compressive stress applied.

In the present study, this nonproportional loading scenario is in-
vestigated simplified by means of a numerical cell with both periodic
boundary conditions and periodic lattice structure. The periodicity of
the lattice is achieved by letting lattice elements cross the boundary of
the cell and connecting the degrees of freedom of these lattice elements
on each side of the specimen to the average strain fields applied to
the periodic cell. The details of this approach are presented in Grassl
and Jirásek (2010) and Athanasiadis et al. (2018). As a result of this
periodic lattice generation, tensile cracks are initiated independently
of the cell’s boundaries and are even free to cross boundaries as was
demonstrated in Grassl and Jirásek (2010). It should be noted that the
use of periodicity of the displacements introduces constraints on the
crack evolution. However, these constraints are related to the direction
in which the periodicity of boundary conditions is applied and not the
lattice arrangement at the boundaries of the specimen. The geometry
of the periodic cell is shown in Fig. 7a. The input parameters are
𝐸 = 50.46 GPa, 𝛾 = 0.215, 𝑓t = 1.92 MPa, 𝑓c = 30 MPa, 𝑤f = 0.025 mm,
𝐴h = 0.001, 𝛼 = 0.5, 𝜓 = 0.25, 𝑙a = 2.67 mm and 𝑐v = 0.2. These
parameters are chosen so that the average tensile strength is 𝑓t = 3 MPa.
The minimum distance between nodes is again 𝑑min = 2 mm, as before.
An implicit incremental-iterative approach was used to control the
analysis. The two step loading procedure is schematically shown in
Fig. 7b and c. Firstly, an average compressive stress in 𝑦-direction is
applied in increments until the desired value 𝜎lat is reached (Fig. 7b).
Then, in the second step, the compressive stress 𝜎lat is kept constant and
an average tensile strain in the 𝑧-direction is applied in increments until
the specimen is completely fractured (Fig. 7c). These average stress
and strain components are controlled independently using a previously
proposed implementation of the boundary periodicity of the cell. Six
loading schemes are analysed, which differ by the amount of lateral
compressive stress 𝜎lat applied, which are 𝜎lat∕𝑓t = 0, 2, 4, 6, 7, 8. For
each loading scheme, 10 analyses with random fields are carried out.

For 𝜎lat∕𝑓t = 0, the effect of randomness on the tensile response is
demonstrated in Fig. 8a by showing the mean curve with error bars
which represent plus/minus one standard deviation. Furthermore, the
random fields for tensile strength and crack patterns for two analyses
are shown in Fig. 8b. Compressive strength and fracture energy are fully
correlated with tensile strength. From the results, it can be seen that
the standard deviation in the pre-peak regime is very small. Only in
the post-peak regime, when the strain profiles are localised in narrow
zones, a bigger standard deviation is visible. This standard deviation
is due to random material properties and random lattice arrangement
as shown in Fig. 8b. It can be seen that due to the periodic boundary
conditions and periodic lattice, there is no preferential location of the
crack within the specimen. However, periodicity of the displacements
requires that the localised crack reaches the boundary of the cell at the
same z-coordinate value on both sides, since the cell represents only
a small portion of the crack. This introduces different constraints on
7

the crack formation, than in full size test specimens in experiments.
In Grassl and Jirásek (2010), it was shown that the effect of the length
of the periodic cell on the load–displacement curve is small for 2D
analyses.

The results of the stress–strain curve for the prescribed displacement
in the 𝑥-direction (Fig. 7) for different lateral stress levels is shown
Fig. 9a as a mean of 10 analyses. The error bars representing the stan-
dard deviations, which are very similar to those presented in Fig. 8a,
are not included in the graph for clarity. Furthermore, the cumulative
dissipated energy is shown in 9b as a mean of 10b analyses. The
total dissipated energy in the post-peak regime computed according
to (15) is split in tensile, shear and compression components and the
evolution of each component is shown separately as well. Furthermore,
the roughness of the fracture patterns computed according to (18)
is shown in Fig. 10a as mean of 10 analyses. In addition, the crack
patterns for selected levels of 𝜎lat are shown in Fig. 10b. These cracks
re for one of the 10 analyses for each lateral compressive stress levels
t a large value of the strain. The random field for the analyses used to
how the crack patterns, is the same but the level of lateral compressive
tress differs.

From the stress versus strain curves in Fig. 9a, a strong effect of the
ateral compressive stress 𝜎lat on strength and ductility is visible. For
lat∕𝑓t = 2, a small increase in the peak stress and pre-peak nonlinear

is observed. This increase could be explained by the frictional-cohesive
nature of concrete. Low parallel compressive stresses could increase
the tensile strength as long as compression does not induce tensile
damage. However, there are no experimental results available to con-
firm this slight increase for this specific loading procedure. For larger
𝜎lat∕𝑓t values, the peak stress decreases and the pre-peak nonlinearities
strongly increase. For the post-peak branch of the curve, there is only
a small difference between 𝜎lat∕𝑓t = 0 and 𝜎lat∕𝑓t = 2. For larger 𝜎lat∕𝑓t
values, the ductility in the post-peak regime increases significantly.
The decrease of the tensile strength with increasing lateral compressive
stress agrees with the well documented strength envelope of concrete
subjected to biaxial stress states (Kupfer and Gerstle, 1973). The change
of the pre-peak and post-peak nonlinearities is less well discussed in
the literature and requires further explanation. The dissipated energy
of the post-peak part of the curves in Fig. 9b shows that for 𝜎lat∕𝑓t ≤ 4
almost all of the post-peak energy dissipation occurs in tension and
is not strongly affected by lateral compression. However, for greater
lateral compressive stress, the shear and compression parts of energy
dissipation increase more than the tensile part. This indicates that
for large lateral compressive stresses, friction is activated which con-
stitutes another form of energy dissipation in addition to the tensile
dissipation. This observation is related to Bažant (1996) where it was
shown that the energy dissipation during tensile fracture is also due
plastic-frictional energy dissipation. In this study, the chosen division in
tensile, shear and compressive energy (Fig. 2) is rather arbitrary and it
could be argued that the tensile energy dissipation contains also dissipa-

tion in shear. Still, the increase of the shear and compression dissipation
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Fig. 8. FPZ:(a) Average stress versus average strain in 𝑥-direction for 𝜎lat∕𝑓t = 0. The error bars show plus/minus one standard deviation based on 10 random analyses. (b)
Examples of random fields of tensile strength (top) and crack patterns (bottom) of two analyses for 𝜎lat∕𝑓t = 0.

Fig. 9. FPZ: (a) Average stress versus strain in 𝑥-direction for varying lateral compressive stress. (b) Dissipated energy versus lateral compressive stress.

Fig. 10. FPZ: (a) Roughness measure versus lateral compressive stress. (b) Fracture patterns for varying lateral stresses in the 𝑧-direction 𝜎lat in the 𝑧-direction.
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with larger lateral compressive stresses indicates that friction plays a
role in the energy dissipation.

The total increase in dissipation is not only explained by the acti-
vation of friction, as can be seen by the increase of tensile dissipation.
The additional energy dissipation in tension can be explained by the
increase in the number of cracks with increasing lateral compressive
stress as shown in Fig. 10b. These crack patterns are for one random
field. A representation in the form of mean values is shown in Fig. 10a
in the form of the roughness measure. The more cracks there are in the
specimen, the greater is the roughness measure defined in (18). At the
lateral stress level at which the tensile energy dissipation increases the
roughness measure increases as well. Therefore, the increase in tensile
energy dissipation is due to the formation of multiple tensile cracks. The
reason for these additional cracks is found by studying the tortuosity
of tensile cracking in concrete. If the crack path is perfectly straight,
lateral compressive stress would not initiate additional tensile cracks.
However, from the results for 𝜎lat∕𝑓t ≤ 0 in Fig. 8b, it can be seen
hat the localised crack in tension is tortuous. The cracking process
tarts at weak locations off the centre line of the crack plane, which
re then connected by inclined crack segments to form one localised
rack. If large compressive stresses are present, the formation of these
onnecting segments is initially suppressed and other crack directions
n which energy is dissipated in tension are created. Only at a later
tage the crack localises. It is also important to point out that the lateral
ompressive stress is applied as a multiple of the tensile strength, which
tays constant during the tensile fracture process. Therefore, during the
racking process, when the average tensile stress decreases, the ratio of
ateral compressive stress versus tensile stress increases.

. Conclusions

From the analyses of tensile fracture with lateral compression with
he proposed meso-scale lattice approach a number of conclusions are
rawn. The proposed lattice approach is capable of reproducing the
esponse of concrete in tension, uniaxial and biaxial compression as
he comparison with experimental results has shown. The lattice model
redicts that large lateral compressive stresses decrease the tensile
trength, which is in agreement with experimental results. The presence
f lateral compressive stresses increase post-peak energy dissipation.
or the range of lateral stresses considered, the greater the lateral stress
s, the greater is the post-peak energy dissipation. The postprocessing,
ased on dissipated energy and roughness measures, shows that the
ncrease in post-peak dissipation is due activation of friction and widen-
ng of the fracture process zone. From the crack patterns, it can be seen
hat the spatially correlated random fields result in a tortuous crack
ath from which, if parallel compressive stresses are present, additional
nclined cracks are induced.
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