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Wojciech Polkowski

Received: 14 October 2022

Accepted: 19 November 2022

Published: 24 November 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

crystals

Article

Hydrogen-Induced Order–Disorder Effects in FePd3

André Götze 1, Siobhan Christina Stevenson 2 , Thomas Christian Hansen 3 and Holger Kohlmann 1,*

1 Institute of Inorganic Chemistry, Leipzig University, Johannisallee 29, 04103 Leipzig, Germany
2 School of Chemistry, University of Glasgow, Glasgow G12 8QQ, UK
3 Institut Laue-Langevin, 71 Avenue des Martyrs, CS 20156, CEDEX 9, 38042 Grenoble, France
* Correspondence: holger.kohlmann@uni-leipzig.de; Tel.: +49-341-9736201

Abstract: Binary intermetallic compounds, such as FePd3, attract interests due to their physical,
magnetic and catalytic properties. For a better understanding of their hydrogenation properties, both
ordered FePd3 and disordered Fe0.25Pd0.75 are studied by several in situ methods, such as thermal
analysis, X-ray powder diffraction and neutron powder diffraction, at moderate hydrogen pressures
up to 8.0 MPa. FePd3 absorbs small amounts of hydrogen at room temperature and follows Sieverts’
law of hydrogen solubility in metals. [Pd6] octahedral voids are filled up to 4.7(9)% in a statistical
manner at 8.00(2) MPa, yielding the hydride FePd3H0.047(9). This is accompanied by decreasing long-
range order of Fe and Pd atoms (site occupancy factor of Fe at Wyckoff position 1a decreasing from
0.875(3) to 0.794(4)). This trend is also observed during heating, while the ordered magnetic moment
decreases up to the Curie temperature of 495(8) K. The temperature dependences of the magnetic
moments of iron atoms in FePd3 under isobaric conditions (p(D2) = 8.2(2) MPa) are consistent with a
3D Ising or Heisenberg model (critical parameter β = 0.28(5)). The atomic and magnetic order and
hydrogen content of FePd3 show a complex interplay.

Keywords: intermetallics; metal hydrides; neutron diffraction; in situ diffraction; order–disorder
effects; interstitial hydrides; deuterides; magnetism

1. Introduction

The incorporation of hydrogen is a well-known tool for influencing the structural,
electric, magnetic and optic properties of intermetallic compounds [1,2]. The interplay
between hydrogen uptake and magnetism is often quite complex. Upon hydrogen uptake,
intermetallic compounds may lose ferro-(LaCo5) or ferrimagnetism (Y6Mn23) or become
ferromagnets (CeNi3, Hf2Fe and Th7Fe3) [1]. The influence of hydrogen incorporation
on the atomic order in crystal structures of intermetallics is also widely studied. In an
extreme case, it may lead to amorphous hydrides in a process known as hydrogen-induced
amorphization (HIA) [2]. The process involves short-range diffusion of metallic atoms,
and the driving force seems to be the different hydrogen occupation sites in crystalline
and amorphous states of the alloy. In some cases, such as Laves phases, the latter can be
predicted by geometric factors, such as the atomic size ratio of constituting atoms [2]. Obvi-
ously, hydrogen uptake, atomic order (crystal structure) and magnetic order (cooperative
phenomena) influence each other. In most studies, however, only the interaction between
two of these factors is investigated and the third neglected or assumed not to play a role,
which might be an oversimplification in some cases. Clearly, more in-depth investigations
are needed to reveal the complex interplay between hydrogen uptake, atomic order and
magnetic order in intermetallics. In this respect, we studied the crystal and magnetic
structure of FePd3 and its solid solution with hydrogen (also called hydride throughout
this text) in detail in order to thoroughly characterize the interesting system FePd3-H2
and to reveal the potential cross-links between these factors. In order to obtain a high
depth of knowledge, the hydrogenation of FePd3 was analyzed by time-resolved in situ
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neutron diffraction, mapping the crystal structure, including hydrogen atom positions and
magnetic moments.

FePd3 has attracted interest as a functional material due to its diverse physical proper-
ties. It has a characteristic pressure-induced invar behavior by means of an anomalously
low thermal expansion at high applied pressures [3–5], and it is ferromagnetic with a
Curie temperature of 499 K [6]. A soft ferromagnetic behavior was found in carbon-based
materials by encapsulation of FePd3 [7–9]. FePd3 can be used in electrocatalysis to enhance
the cycle stability of hybrid Li–air batteries [10] or as an electrocatalyst to oxidize formic
acid [11]. In addition, a higher attraction between 2-methylfuran and hydrogen compared
to palladium was found in hydrogenation catalysis [12]. The use of bimetallic catalysts
changes the electronic structure at the surface [13] and decreases the Pd-Pd coordination
number; this can hinder the formation of unfavorable surface species, thus avoiding un-
wanted side reactions, e.g., decarbonylation, in the solvent-free hydrodeoxygenation of
furan compounds for a Pd-FeOx/SiO2 catalyst [14]. Knowledge of the crystal structure is
of great importance for catalytic applications, since it has a distinct influence on catalytic
properties. The phase diagram of the Fe-Pd system shows a solid solution with a large
phase width of about ±10% around an Fe:Pd atomic ratio of 1:3 [15]. In addition to the
disordered phase Fe0.25Pd0.75 (Cu type, Fm3m), an ordered phase is known. FePd3 crys-
tallizes in an ordered variant of a cubic close packing (AuCu3 type, Pm3m, Figure 1). The
annealing times for the ordering process are long due to similar electronic and geometric
properties of the constituting atoms [16]. FePd3, with a high degree of crystallographic
order, shows a higher hydrogen incorporation at high hydrogen pressures compared to
(partially) disordered samples [17]. Disordered Fe0.25Pd0.75 needs more than two orders of
magnitude higher hydrogen pressure to obtain the same electrical resistivity as found in
ordered FePd3 [18]. The position of hydrogen atoms in FePd3Hx is not known yet.

In this work, we employ in situ studies to show the influence of moderate hydro-
gen pressures on the order–disorder transition in FePd3, thus complementing studies of
hydrogen absorption of FePd3 at high hydrogen pressures [17]. In situ neutron powder
diffraction, as an established method [19,20], was used to determine the level of atomic
disorder, the magnetic moment and the amount of incorporated hydrogen.
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Figure 1. The crystal structures of FePd3 in Cu type (left, disordered, Fe0.25Pd0.75, Fm3m [15]) and in
AuCu3 type (middle, ordered, FePd3, Pm3m [15]) and the crystal structure of FePd3H0.05 in the cubic
anti-perovskite type (Pm3m (this work)) with hydrogen atoms surrounded by six palladium atoms in
an octahedral arrangement.
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2. Materials and Methods

Synthesis and Chemical Analysis: Due to air sensitivity, iron was handled in an
argon-filled glove box. Disordered Fe0.25Pd0.75 was synthesized from stoichiometric
amounts of palladium powder (99.95%, ≤150 µm, Goodfellow) and iron granules (99.98%,
1–2 mm, abcr) in sealed silica glass ampoules under argon atmosphere. The mixture was
heated to 1423 K (100 K h−1 heating rate) for 48 h and afterward quenched in air. The
ordered compound was synthesized analogously; however, one small crystal of iodine
(resublimed, Merck) was added as a mineralizing agent. This mixture was heated to 923 K
(100 K h−1 heating rate) for 7 d in a sealed silica ampoule. A further sample was afterward
annealed for one month at 773 K. The products were ground in a mortar after cooling.

Iodine was removed by sublimation to the opposite side of the ampoule. Chemical
analyses were performed by an EDX INCA SYSTEM from Oxford Instruments, mounted
on a Zeiss LEO 1530 scanning electron microscope, with an acceleration voltage of 20 kV
and a working distance of 15 mm.

Thermal Analysis: Differential scanning calorimetry (DSC) was performed under
hydrogen pressure on a DSC HP 2+ (Mettler Toledo) equipped with a gas pressure chamber.
An amount of 20 mg of the powdered sample was put in an aluminum crucible, which was
closed with an aluminum lid. This was placed inside the pressure chamber, which was then
purged several times with hydrogen gas, before filling to the final hydrogen gas pressure
of 5.0 MPa. The sample was heated to 723 K with 10 K min−1, held at this temperature for
a minimum of 1 h and cooled to 300 K. Two runs were performed; afterward, the hydrogen
pressure was released, the sample removed and structural characterization undertaken
by XRPD.

Ex situ X-ray Powder Diffraction (XRPD): X-ray powder diffraction data from flat
transmission samples were collected on a G670 diffractometer (Huber, Rimsting, Germany)
with Mo-Kα1 radiation (70.926 pm) and from flat reflection samples on a SmartLab powder
high-resolution X-ray powder diffractometer (Rigaku, Tokyo, Japan) with a HyPix-3000
two-dimensional semiconductor detector using Co-Kα radiation with parallel beam. The
instrumental resolution function and the wavelength distribution were determined using a
measurement on an external silicon NIST640d standard sample. The wavelengths were
found to be 178.9789(4) pm and 179.3625(4) pm, close to the usual values for Co-Kα1 and
Co-Kα2; the difference was caused by optical components of the diffractometer affecting
the wavelength distribution.

In situ X-ray Powder Diffraction: In situ X-ray powder diffraction was performed on
a SmartLab powder high-resolution X-ray powder diffractometer (Rigaku, Tokyo, Japan) in
an Anton Paar XRK 900 reaction chamber (Graz, Austria) with 0.5 MPa hydrogen pressure
(H2, Air Liquide, 99.9%) and Co-Kα radiation with parallel beam on a flat FePd3 specimen
on top of an Al2O3 layer.

Ex situ Neutron Powder Diffraction (NPD): Neutron powder diffraction was carried
out at the Institute Laue-Langevin in Grenoble, France, with a high-flux diffractometer D20
in high-resolution mode. Powdered samples (≈1 cm−3) were held in air-tight vanadium
containers with 6 mm inner diameter and were each measured for 15 min. The wavelength
λ = 186.80(2) pm was calibrated using an external silicon NIST640b standard sample in a
5 mm vanadium container. Deuterides rather than hydrides were used to avoid the high
incoherent scattering of 1H.

In situ Neutron Powder Diffraction: In situ neutron powder diffraction (NPD) was
performed on a high-intensity two-axis diffractometer D20 at the Institute Laue-Langevin
(ILL), Grenoble, France. Time-resolved neutron diffraction data were collected under
deuterium pressure and heating by two lasers. These in situ experiments were carried out
in (leuco-)sapphire single-crystal cells with 6 mm inner diameter connected to a gas supply
system. The details are given elsewhere [19,20]. The sample cell was filled with FePd3
and attached to the gas supply system, which was subsequently evacuated. The reactions
were performed under various deuterium pressures (D2, Air Liquide, 99.8% isotope purity).
Data sets were obtained with 2 min time resolution. They are presented with an additional
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internal raw label (NUMOR), referring to proposal 5-24-613 [21]. For the in situ studies,
NUMORs 131613–131859 were used.

Rietveld Refinement: Rietveld refinements [22,23] were performed using FullProf [24]
and Topas [25]. Deuterium atoms were located by difference Fourier analysis. Simultane-
ous refinements of FePd3 based on XRPD data and neutron powder diffraction data were
performed with constrained mixed occupation parameters to reduce correlation with the
ordered magnetic moment of the iron atoms. Further details of the crystal structure investi-
gations may be obtained from FIZ Karlsruhe, 76344 Eggenstein-Leopoldshafen, Germany
(fax: (+49)7247-808-666; e-mail: crysdata@fiz-karlsruhe.de), on quoting the deposition
number CSD-2163436.

3. Results

For reasons of clarity and simplification, partially disordered FePd3 (typically with
between 10% and 20% palladium atoms on iron sites and vice versa, vide infra) is referred
to as ordered, and the completely disordered Fe0.25Pd0.75, with statistical distribution of
iron and palladium atoms as disordered in the following text. The term hydride is used
to include all hydrogen isotopes, unless indicated otherwise, e.g., for deuterides used
in neutron diffraction experiments. Because of the small amount of dissolved hydrogen
(deuterium), these phases may also be seen as solid solutions of hydrogen (deuterium)
in FePd3.

3.1. Synthesis and Chemical Analysis

The intermetallic compound FePd3 was synthesized from the elements. To facilitate
the ordering of the metal atoms, iodine was added as a mineralizing agent. The annealed
and quenched samples were gray powders with a metallic luster. Based on chemical
analysis, the empirical formulae Fe0.97(13)Pd3.03(13) for the ordered and Fe1.0(2)Pd3.0(2) for the
disordered phase were determined, with values averaged from at least 20 energy dispersive
X-ray (EDX) spectra of each. Based on these results, we assign the same sum formula FePd3
for both the ordered and the disordered phase. We distinguish them by nomenclature, i.e.,
FePd3 for the (partially) ordered and Fe0.25Pd0.75 for the disordered phase. The products
are stable in air. The powder particles align with the magnetic field of a permanent magnet.

3.2. X-ray Diffraction and Thermal Analysis

X-ray diffraction is well suited to tracking down unit cell volume changes due to
hydrogen uptake and to distinguishing between iron and palladium atoms, i.e., to inves-
tigating the atomic order. X-ray powder diffraction patterns of ordered FePd3 exhibit
anisotropic reflection broadening (Figure A1). Reflections common to both disordered (Cu
type, Fm3m) and ordered (AuCu3 type, Pm3m) are sharp (hkl all even or all odd), whereas
those extinct by F centering and seen only in the ordered phase are considerably broader
(hkl mixed even and odd), e.g., 100 with a half width at full maximum of 0.785◦, 111 with
0.188◦. This broadening can be attributed to small ordered domains joined by anti-phase
boundaries to larger crystallites. This effect is also present in cubic MnPd3 [26]. In the
Rietveld refinement, the anisotropic reflection broadening was modeled by dividing the
diffraction data set into two patterns with different regions of the 2θ range—one containing
only reflections with hkl all even or all odd, and one containing all the others, i.e., those with
hkl mixed even and odd (Figure A1 and Table A1). Each of the two patterns was treated
independently in terms of profile parameters but constrained in terms of crystal structure
parameters and scale factors. The refinement of occupation parameters (site occupation
factors, SOF) for the 1a and 3c sites, with a stoichiometric constraint on the sum formula
FePd3, yielded SOF(Fe) = 0.876(2) at Wyckoff position 1a, i.e., about 12% palladium at iron
sites (Figures 2 and A1, and Tables 1 and A1). The long-time annealed sample yielded
SOF(Fe) = 0.99(2) instead, i.e., it was fully ordered (Figure A2 and Table A2).
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(AuCu3 type, Pm3m, a = 385.204(6) pm, RBragg(pat.1) = 2.13, RBragg(pat.2) = 6.73, Rmagn(pat.1) = 2.26,
Rmagn(pat.2) = 6.12; for further details, see Tables 1 and A5 and the text) at 296(1) K based on neutron
powder diffraction data (NUMOR 131401 [21], λ =186.80(2) pm, D20 ILL, Grenoble, Rp(pat.1) = 0.057,
Rp(pat.2) = 0.069, Rwp(pat.1) = 0.080, Rwp(pat.2) = 0.087, background corrected: R′p(pat.1) = 0.083,
R’p(pat.2) = 0.667, R′wp(pat.1) = 0.100, R′wp(pat.2) = 0.410) and XRPD data (Figure A1, Co-Kα

radiation, Smart Lab, Rp(pat.3) = 0.105, Rp(pat.4) = 0.102, Rwp(pat.3) = 0.150, Rwp(pat.4) = 0.140,
R′p(pat.3) = 0.160, R’p(pat.4) = 1.90, R′wp(pat.3) = 0.192, R′wp(pat.4) = 0.804) using FullProf [24].
The inset shows the broadening of pattern 2 reflections through a comparison of intensities for
100 reflections calculated with the reflection width of pattern 1 (blue dashed line) and the reflection
width of pattern 2 (black line) with the respective difference plot.

Table 1. Crystal structure parameters of FePd3 (Pm3m) based on neutron powder diffraction
(a = 385.204(6) pm, µFe = 2.3(2) µB; see Figure 2) and XRPD (a = 385.390(3) pm; compare Figure A1) at
296(1) K.

Atom Wyckoff Position x y z Biso1/10−4 pm2

NPD
Biso2/10−4 pm2

XRPD
SOF

Fe1 1a 0 0 0 2.17(8) 0.19(4) 0.876(2)
Fe2 3c 0 1

2
1
2 1.11(12) 0.88(4) (1 − SOF(Fe1))/3

Pd1 1a 0 0 0 Biso1(Fe1) Biso2(Fe1) 1 − SOF(Fe1)
Pd2 3c 0 1

2
1
2 Biso1(Fe2) Biso2(Fe2) 1 − (1 − SOF(Fe1))/3

The thermal analysis (DSC, pstart(H2) = 5.00(2) MPa, Tmax = 723 K) of the FePd3 phase
shows no thermal signal (Figure A3). However, the unit cell increases by 0.08% (a(FePd3) =
385.330(5) pm, a(FePd3Hx) = 385.433(3) pm, according to Rietveld analysis of XRPD data),
and the disorder increases as well (SOF(Fe, 1a, FePd3) = 0.909(10), SOF(Fe, 1a, FePd3Hx)
= 0.841(12)) based on X-ray powder diffraction (Mo-Kα1 radiation) before and after DSC
(Figure A4).

In situ X-ray diffraction at 0.50(5) MPa hydrogen pressure on the long-time annealed
FePd3 sample shows a decrease in the level of atomic order. After the in situ chamber
was flushed with hydrogen to a pressure of 0.50(5) MPa, SOF(Fe) decreased from 0.99(2)
to 0.877(2). Furthermore, the cell volume increased by 0.2% (a(FePd3) = 385.412(4) pm;
a(FePd3Hx) = 385.631(4) pm), indicating hydrogen uptake at room temperature. In the
subsequent heating and cooling steps of 50 K to a maximum temperature of 550 K, SOF
stays constant, and the lattice parameters change reversibly with temperature (Figures A5
and A6, and Tables A3 and A4), indicating that the hydrogen-induced disorder occurs at
room temperature and does not proceed further at elevated temperatures.
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3.3. Neutron Diffraction
3.3.1. Ex Situ Neutron Diffraction

The disordered Fe0.25Pd0.75 sample shows no significant cell volume increase (Fig-
ure A7, abefore = 385.12(4) pm, aafter = 385.18(2) pm) when subjected to deuterium gas
(pmax(D2) = 8.3 MPa, Tmax = 558 K). Furthermore, no deuterium atoms can be found in the
crystal structure (zero occupation at Wyckoff position 4b, 1

2 , 1
2 , 1

2 ; analogous to PdH [27]),
and the iron and palladium atoms remain disordered. Therefore, we conclude that disor-
dered Fe0.25Pd0.75 does not take up hydrogen under the given conditions. This result is in
accordance with hydrogenation studies under higher pressures [17].

The neutron diffraction pattern of ordered FePd3 shows the same anisotropic reflection
broadening (Figure 2) as observed with XRPD (vide supra and Figure A1). For modeling in
Rietveld refinements, the same strategy of dividing into two patterns as described above
for XRPD was used. Each of the patterns was constrained to the respective XRPD pattern
in a simultaneous refinement on X-ray and neutron diffraction data. Please note that here,
and for the following refinements, the residual values for pattern 2 are quite high because
of low intensities and broad reflections (purple line in Figures 2, A1, A2, A4 and A7–A27).
Approximately 12% palladium atoms on iron sites were found with a fixed composition
of FePd3 as a constraint (Table 1). The refined value for the magnetic moment of the
iron atoms of 2.3(2) µB along [001] is in accordance with the literature data (µFe = 2.73(13)
µB [28]) within two standard uncertainties. Palladium atoms were not included in the
magnetic structure, since the refinements did not converge, indicating small µPd values.
This is in line with the small magnetic moments of palladium atoms in FePd3 found earlier
(µPd = 0.35 µB [29]).

The unit cell volume of ordered FePd3 expanded by 0.20% upon deuterium uptake
(a(FePd3) = 385.204(3) pm, a(FePd3D0.047(9)) = 385.372(2) pm). Deuterium atoms were
localized by difference Fourier analysis. For the refinement of deuterium occupation, the
magnetic moment of iron was fixed at 2.344 µB due to convergence problems. Two possible
deuterium sites were tested by Rietveld refinement. The Wyckoff position 3d (0 0 1

2 ) yields
a negative deuterium occupation and is thus considered to be empty. The occupation of
deuterium in [Pd6] octahedral voids at Wyckoff position 1b ( 1

2
1
2

1
2 ) was refined to 0.047(9).

We therefore conclude the deuteride to be FePd3D0.047(9) with an anti-perovskite type
structure (Figure 1).

3.3.2. In Situ Neutron Diffraction

To study the influence of structural order in FePd3 on hydrogenation properties, in
situ neutron powder diffraction on an ordered sample using deuterium in a sapphire single-
crystal cell was performed (Figure 3). Deuterium gas pressure was slowly increased up to
8.0 MPa before raising the temperature to about 550 K. After maintaining the temperature
for one hour, the cell was cooled to room temperature under deuterium pressure. As seen in
the 2D plot, the intensities of reflections with hkl mixed even and odd (e.g., at 2θ = 28◦, 40◦,
66◦, 73◦) decrease with increasing temperature. This observation indicates an increasing
level of disorder and decreasing ordered magnetic moment. Reflections (2θ = 42.4◦; 45.6◦;
56.1◦) at high temperatures are single-crystal reflections from the sapphire cell that shift
into the range of the detector due to thermal expansion.
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Figure 3. In situ neutron powder diffraction data (NUMOR 13,1706−13,1859 [21]) of the deuteration
of ordered FePd3 taken with diffractometer D20 (Grenoble, France) at λ = 186.80(2) Å in a single-
crystal sapphire cell [19,20] under various temperature and deuterium pressure conditions. Intensities
are in false colors.

The Rietveld refinements of selected NUMORs during the isothermal deuterium
pressure increase were performed with fixed magnetic moments. Magnetic investigations
of isotypic FePd3Bx show that only the ordered magnetic moment of the immediate boron
environment (only Pd atoms) is changed upon boron incorporation [30], while the magnetic
moment of the Fe atoms is not affected. Therefore, we consider fixing the magnetic
moments of iron atoms to be an appropriate approximation. The refinements during the
quasi-isobaric temperature variation were performed with fixed mixed occupancy. This
is because in situ XRPD at 0.5 MPa hydrogen pressure showed no significant change, and
a simultaneous refinement of the magnetic moment, the hydrogen occupation, and the
mixed occupancy of the metal atoms did not converge. The lattice parameter a of FePd3Dx
increases with rising deuterium pressure (Figure 4, left), which is reflected in the increasing
deuterium content. At 8 MPa deuterium pressure, the composition FePd3D0.047(9) is reached.
The disorder increases with deuterium uptake, as seen from the iron occupation at Wyckoff
position 1a decreasing from 0.875(3) to 0.794(3). In the heating step (Tmax = 539 K) at
8.2(2) MPa deuterium pressure, the lattice parameter a increases almost linearly, and the
deuterium content does not change significantly (Figure 4). The ordered magnetic moment
decreases with increasing temperature to zero. The data were fitted with a function for
a second-order transition based on the Landau theory with the magnetic moment as the
order parameter:

µord. = A
(

TC − T
TC

)β

The resulting Curie temperature, TC, is 495(8) K, and the critical exponent β equals
0.28(5) (Figure 4). The ordered magnetic moments at temperatures above the Curie temper-
ature are not significantly different from zero or are set to zero at the maximum temperature
of 539 K. All observed trends are fully reversible during the cooling step.
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Figure 4. Refined structural parameters of ordered FePd3 during isothermal increase in deuterium
pressure (left, NUMOR 131613–131746 [21], T = 298(2) K) and isobaric variation of the temperature
(right, NUMOR 131746–131894 [21], p(D2) = 8.2(2) MPa) based on in situ neutron powder diffraction
data: lattice parameter (a), deuterium content per formula unit (b), SOF of iron at Wyckoff position
1a (c) and atomic displacement parameters of the metal atoms (d). Error bars represent ±σ.
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4. Discussion

The atomic order in FePd3 can be controlled via the synthesis protocol, most easily
by using iodine as a mineralizing agent. Its use allows full atomic order in one month as
compared to 91% order in two months [16]. This method is well known for its potential
to promote single-crystal growth [31,32], the synthesis of metastable compounds [32] or
single-phase ordered compounds with shorter annealing times [31].

The magnetic moment of 2.3(2) µB of FePd3 determined by refinement of neutron
diffraction data differs somewhat from the literature values (µFe = 2.73(13) µB [28]); however,
the difference is less than two combined standard uncertainties. The difference may
also be caused by varying disorder in FePd3, which was not taken into account in early
studies [28,33]. The Curie temperature of 495(8) K, determined by a second-order transition
fit (Figure 5), is in accordance with the literature (Tc = 499 K [6]). The determined critical
exponent of this fit (β = 0.28(5)) is close (less than two standard uncertainties apart) to the
expected values of a 3D Ising model (β = 0.325) and a 3D Heisenberg model (β = 0.365) but
far from the mean-field model (β = 0.5) [34]. This is in perfect agreement with a short-range
interaction as typical for a magnetic exchange. The disparity between this and previous
investigations reporting on a Heisenberg magnet with a critical exponent of 0.371 [6] may
be explained by the method of determination. The ordered magnetic moment in this
study is only refined in the 001 direction, resulting in a bias toward the 3D Ising model.
Furthermore, the uncertainties are relatively high due to the correlation of the hydrogen
occupation, the mixed occupation and the ordered magnetic moment.
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Figure 5. Temperature dependence of refined magnetic moment with fixed occupation (SOF(Fe,1a)
= 0.798) in ordered FePd3 under isobaric conditions (p(D2) = 8.2(2) MPa) based on in situ neutron
powder diffraction data (see Figure 3). Green line shows the fitted function of the model of second-

order phase transition (µord.. = 3.2(2)µB

(
495(8) K−T

495(8) K

)0.28(5)
).

Deuterium occupies exclusively [Pd6] octahedral voids in a statistical manner with small
occupation parameters. The small deuterium contents are in accordance with studies at high
gas pressures [17] (Figure 6, left). The Pd-D distances are between 192.644(2) pm and 192.686(2)
pm for FePd3D0.013(8) and FePd3D0.047(9), respectively, and comparable to known hydrides of
MPd3 compounds, such as MnPd3H0.61 (190.0 pm ≤ d(Pd-H) ≤ 197.6 pm) [35].
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0.161(4)) and red and purple lines a linear fit based on Sieverts’ law.

FePd3 takes up much less hydrogen than, i.e., MgPd3 [20], MnPd3 [35,37] or
InPd3 [38]. This is in accordance with a proposed structure map correlating electroneg-
ativity and atomic radius of the metal M with the hydrogen content of MPd3Hx [39].
Iron, with quite a small atomic radius and an electronegativity of 1.6, is predicted to
take up small amounts of hydrogen, which is confirmed in this study. Furthermore, the
density of states at the Fermi level of FePd3 (6.2 [40] or 11.1 states eV−1 atom−1 [41])
is remarkably high compared to other MPd3 compounds crystallizing in the AuCu3
type, such as MgPd3 (1.13 states eV−1 atom−1 [42]), MnPd3 (2.18 [43] or 2.84 states eV−1

atom−1 [44]) and InPd3 (3.3 states eV−1 atom−1 [45]), which might also have an impact
on the hydrogen uptake capacity. At room temperature, the hydrogenation follows Siev-
erts’ law [36] (Figure 6, right), with low pressure (this work) and high pressure data [17]
differing somewhat (Figure 6). The moderate fit and higher error in fit parameters for
the high pressure data may be caused by increasing hydrogen–hydrogen interaction in
the solid solution and larger differences between fugacity and pressure, the latter of
which was used here as an approximation.

To compare the possible hydrogenation of ordered and disordered FePd3, it is useful
to look at the maximum hydrogen content of both structure types. The unit cell of MPd3
compounds in the AuCu3 type contains one [Pd6] and three [M2Pd4] octahedral voids.
Therefore, the probability of a [Pd6] octahedral void is 0.25, yielding the formula MPd3H
for a maximum occupation of hydrogen in [Pd6] sites. For disordered MPd3 compounds
crystallizing in the Cu type, the probability of a [Pd6] octahedral void is 0.178 (=0.756),
assuming a 75% probability of finding a palladium atom at any position in the crystal
structure. A maximum hydrogen occupation using only [Pd6] sites yields the formula
MPd3H0.712. According to this consideration, the ordered compound may absorb more
hydrogen if only [Pd6] sites are involved. It is well known that hydrogen uptake in
disordered FePd3 is indeed less than that for ordered FePd3 [17]. In this regard, it is
remarkable that the disorder in FePd3Hx increases with hydrogen uptake despite the
statistical decrease in [Pd6] octahedral sites. Furthermore, the disorder reversibly increases
with temperature, with near constant hydrogen content. The preference of [Pd6] sites for
hydrogen atoms can be inferred from many examples of hydrogenation reactions of MPd3
compounds structurally related to cubic close packing. The thermodynamic driving force
for hydrogen-induced rearrangements (from TiAl3 type or ZrAl3 type to AuCu3 type) arises
from the preference for Pd-H bonding and, consequently, an increase in the number of
[Pd6] octahedral voids [46]. Furthermore, other interstitial FePd3 compounds, such as
FePd3Bx, also prefer [Pd6] octahedral sites for the interstitial atoms [30]. The immediate
environment of absorbed hydrogen is responsible for the hydrogen solubility in metals
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and intermetallic compounds [47]. Under the assumption of a preference of hydrogen
atoms for [Pd6] octahedra, the unexpected increasing disorder upon hydrogenation may
be understood in terms of local short-range order of formed HPd6 octahedra and a lack of
long-range crystallographic order.

The findings on the magnetic and structural details of FePd3 and its hydrides show the
complex interplay between hydrogen uptake, atomic and magnetic order in intermetallics.
This raises questions on the validity of the assumption of constant atomic order, which
is often made for investigations on the effects of hydrogen incorporation on magnetic
properties, and calls for further investigations on this fascinating subject.

5. Conclusions

The use of iodine as a mineralizing agent decreases the annealing time and enables
higher ordering of metal atoms in the synthesis of FePd3. At moderate hydrogen pressures
(p ≤ 8 MPa), disordered Fe0.25Pd0.75 absorbs a negligible amount of hydrogen, and ordered
FePd3 forms the hydride FePd3H0.047(9). Hydrogen is incorporated at [Pd6] octahedral voids,
and the hydrogenation follows Sieverts’ law. During heating, the ordered magnetic moment
decreases, and FePd3Hx behaves like a 3D Ising or Heisenberg magnet. Simultaneously,
the disorder of the metal atoms increases slightly. All temperature-dependent effects are
fully reversible. Hydride formation in FePd3 influences crystallographic and magnetic
order alike. The citation of Carl G. Jung “In all chaos there is a cosmos, in all disorder a
secret order” [48] can be understood as order only arising from chaos. In contrast to that,
hydrogen seems to enhance the metal diffusion in FePd3, resulting in long-range disorder
arising from local order of the immediate hydrogen environment. This induced metal
diffusion and the resulting change in the arrangement of the metal atoms at the surface
might raise interest in catalysis.
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ple, AuCu3 type, Pm3തm, a = 385.412(4) pm, RBragg(pat.1) =8.01, RBragg(pat.2) = 27.1; for further details, 
see Table A2) at 296(1) K based on XRPD powder diffraction data (Co-Kα radiation, Smart Lab, 
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Figure A1. Rietveld refinement of the crystal structure of ordered FePd3 (AuCu3 type, Pm3m,
a = 385.380(5) pm, RBragg(pat.1) = 5.45, RBragg(pat.2) = 49.4; for further details, see Table A1) at 296(1)
K based on XRPD powder diffraction data (Co-Kα radiation, Smart Lab, Rp(pat.1) = 0.105, Rp(pat.2)
= 0.102, Rwp(pat.1) = 0.150, Rwp(pat.2) = 0.140, X2 = 2.24, background corrected: R’p(pat.1) = 0.124,
R’p(pat.2) = 1.90, R’wp(pat.1) = 0.163, R’wp(pat.2) = 0.804) using FullProf [24].

Table A1. Crystal structure parameters of FePd3 (Pm3m, a = 385.380(5) pm) based on XRPD data (see
Figure A1) at 296(1) K.

Atom Wyckoff Position x y z Biso/10−4 pm2 SOF

Fe1 1a 0 0 0 0.18(4) 0.87(2)
Fe2 3c 0 1

2
1
2 0.88(1) (1 − SOF(Fe1))/3

Pd1 1a 0 0 0 Biso(Fe1) 1 − SOF(Fe1)
Pd2 3c 0 1

2
1
2 Biso(Fe2) 1 − (1 − SOF(Fe1))/3

Crystals 2022, 12, x FOR PEER REVIEW 12 of 29 
 

 

Appendix A 

 
Figure A1. Rietveld refinement of the crystal structure of ordered FePd3 (AuCu3 type, Pm3തm, a = 
385.380(5) pm, RBragg(pat.1) = 5.45, RBragg(pat.2) = 49.4; for further details, see Table A1) at 296(1) K 
based on XRPD powder diffraction data (Co-Kα radiation, Smart Lab, Rp(pat.1) = 0.105, Rp(pat.2) = 
0.102, Rwp(pat.1) = 0.150, Rwp(pat.2) = 0.140, Χ² = 2.24, background corrected: R’p(pat.1) = 0.124, 
R’p(pat.2) = 1.90, R’wp(pat.1) = 0.163, R’wp(pat.2) = 0.804) using FullProf [24]. 

Table A1. Crystal structure parameters of FePd3 (Pm3തm, a = 385.380(5) pm) based on XRPD data (see 
Figure A1) at 296(1) K. 

Atom Wyckoff Position x y z Biso/10−4 pm² SOF 
Fe1 1a 0 0 0 0.18(4) 0.87(2) 
Fe2 3c 0 ½ ½ 0.88(1) (1 − SOF(Fe1))/3 
Pd1 1a 0 0 0 Biso(Fe1) 1 − SOF(Fe1) 
Pd2 3c 0 ½ ½ Biso(Fe2) 1 − (1 − SOF(Fe1))/3 

 
Figure A2. Rietveld refinement of the crystal structure of ordered FePd3 (long-time annealed sam-
ple, AuCu3 type, Pm3തm, a = 385.412(4) pm, RBragg(pat.1) =8.01, RBragg(pat.2) = 27.1; for further details, 
see Table A2) at 296(1) K based on XRPD powder diffraction data (Co-Kα radiation, Smart Lab, 
Rp(pat.1) = 0.109, Rp(pat.2) = 0.125, Rwp(pat.1) = 0.161, Rwp(pat.2) = 0.173, Χ² = 3.79, background cor-
rected: R’p(pat.1) = 0.147, R’p(pat.2) = 1.23, R’wp(pat.1) = 0.161, R’wp(pat.2) = 0.553) using FullProf [24]. 

Figure A2. Rietveld refinement of the crystal structure of ordered FePd3 (long-time annealed sample,
AuCu3 type, Pm3m, a = 385.412(4) pm, RBragg(pat.1) =8.01, RBragg(pat.2) = 27.1; for further details, see
Table A2) at 296(1) K based on XRPD powder diffraction data (Co-Kα radiation, Smart Lab, Rp(pat.1)
= 0.109, Rp(pat.2) = 0.125, Rwp(pat.1) = 0.161, Rwp(pat.2) = 0.173, X2 = 3.79, background corrected:
R’p(pat.1) = 0.147, R’p(pat.2) = 1.23, R’wp(pat.1) = 0.161, R’wp(pat.2) = 0.553) using FullProf [24].
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Table A2. Crystal structure parameters of FePd3 (long-time annealed sample, Pm3m, a = 385.412(4)
pm) based on XRPD data (see Figure A2) at 296(1) K.

Atom Wyckoff Position x y z Biso/10−4 pm2 SOF 1

Fe1 1a 0 0 0 1.5(2) 0.99(2)
Fe2 3c 0 1

2
1
2 1.88(4) (1 − SOF(Fe1))/3

Pd1 1a 0 0 0 Biso(Fe1) 1 − SOF(Fe1)
Pd2 3c 0 1

2
1
2 Biso(Fe2) 1 − (1 − SOF(Fe1))/3

1 The stoichiometric ratio of Fe to Pd atoms was fixed at 1:3.
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type, Pm3m, a = 385.330(5) pm, SOF(Fe, 1a) = 0.909(10), Biso(1a) = 0.35(9) 10−4 pm2, Biso(3c) = 0.91(2)
10−4 pm2, RBragg(pat.1) = 2.83, RBragg(pat.2) = 2192, Rp(pat.1) = 0.089, Rp(pat.2) = 0.020, Rwp(pat.1)
= 0.142, Rwp(pat.2) = 0.025, GOF = 5.09) and after DSC (top, AuCu3 type, Pm3m, a = 385.433(3) pm,
SOF(Fe, 1a) = 0.841(12), Biso(1a) = 0.96(12) 10−4 pm2, Biso(3c) = 0.69(3) 10−4 pm2, RBragg(pat.1) = 4.10,
RBragg(pat.2) = 2150, Rp(pat.1) = 0.131, Rp(pat.2) = 0.024, Rwp(pat.1) = 0.189, Rwp(pat.2) = 0.030, GOF
= 5.09) at 297(1) K based on XRPD powder diffraction data (Mo-Kα1 radiation, Huber G670) using
Topas [25].
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Table A3. Conditions and refined parameters of the Rietveld refinement of FePd3 (long-time annealed
sample, Pm3m) based on in situ XRPD data (see Figures A5 and A6, and Table A4) using Topas; X-ray
absorption modeled with an overall B value of −4 × 10−4 pm2 [25].

Frame T/K p/MPa a/pm V/106 pm3 Biso(1a)/10−4

pm2
Biso(3c)/10−4

pm2 SOF(Fe, 1a) 1

0 350 (2) 0.50 (5) 385.631 (4) 57.348 (2) 1.9 (2) 2.54 (4) 0.877 (11)
1 400 (2) 0.50 (5) 385.914 (4) 57.474 (2) 1.8 (2) 2.67 (4) 0.898 (11)
2 450 (2) 0.50 (5) 386.211 (5) 57.607 (2) 1.8 (2) 2.76 (5) 0.901 (11)
3 500 (2) 0.50 (5) 386.503 (5) 57.738 (2) 1.9 (2) 2.79 (5) 0.886 (11)
4 550 (2) 0.50 (5) 386.818 (5) 57.879 (2) 2.2 (2) 2.97 (5) 0.885 (11)
5 500 (2) 0.50 (5) 386.506 (5) 57.739 (2) 2.0 (2) 2.80 (5) 0.894 (11)
6 450 (2) 0.50 (5) 386.194 (4) 57.599 (2) 2.2 (2) 2.68 (4) 0.891 (11)
7 400 (2) 0.50 (5) 385.902 (4) 57.469 (2) 1.8 (2) 2.71 (4) 0.893 (11)
8 350 (2) 0.50 (5) 385.632 (4) 57.348 (2) 1.5 (2) 2.54 (4) 0.903 (11)

1 The stoichiometric ratio of Fe to Pd atoms was fixed at 1:3.
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Table A4. Residual parameters of the Rietveld refinement of FePd3 (long-time annealed sample,
Pm3m) based on in situ XRPD data (see Figures A5 and A6, and Table A3) using Topas [25].

Frame Rp1 Rp2 Rwp1 Rwp2 χ2 RBragg

0 0.155 0.41 0.273 0.51 1.06 5.34
1 0.158 0.41 0.275 0.51 1.08 5.78
2 0.153 0.42 0.266 0.52 0.98 5.7
3 0.154 0.42 0.263 0.52 0.96 5.58
4 0.161 0.42 0.270 0.53 1.02 5.84
5 0.156 0.41 0.268 0.52 1.00 5.74
6 0.150 0.41 0.262 0.52 0.96 5.83
7 0.151 0.42 0.266 0.52 1.00 5.44
8 0.152 0.42 0.265 0.52 1.00 5.38
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Figure A7. Rietveld refinement of the crystal structure of disordered Fe0.25Pd0.75 before hydrogena-
tion (top, Cu type, Fm3m, a = 385.12(4) pm, Biso(1a) = 1.52(5) 10−4 pm2, RBragg(pat.1) = 3.39, Rp(pat.1)
= 0.073, Rwp(pat.1) = 0.093, GOF = 2.54) and after hydrogenation (pmax(D2) = 8.3 MPa, Tmax = 558 K)
at 8.00(2) MPa deuterium pressure (bottom, Cu type, Fm3m, a = 385.18(5) pm, Biso(1a) = 1.47(5) 10−4

pm2, RBragg(pat.1) = 3.47, Rp(pat.1) = 0.065, Rwp(pat.1) = 0.084, GOF = 3.61) at 297(1) K based on
neutron powder diffraction data (NUMORs 132451 and 132636 [21], λ = 186.80(2) pm, D20 ILL,
Grenoble) using FullProf [24].

Table A5. Set constraints of the simultaneous Rietveld refinement of FePd3 (Pm3m) based on NPD
(Figure 2) and XRPD data (Figure A1) using FullProf [24].

Phase1 Phase2
(Magnetic Phase) Phase3

contribution to
pattern 1

pattern 1 NPD pattern 1 NPD pattern 1 XRPD
pattern 2 NPD pattern 2 NPD pattern 2 XRPD

a a1 a1 a3
So(Fe) SOF(Fe) SOF(Fe) SOF(Fe)

Biso(1a) Biso1(1a) Biso1(1a) Biso3(1a)
Biso(3c) Biso1(3c) Biso1(3c) Biso3(3c)

1 Scale factors of patterns 1 and 2 of NPD and XRPD data are constrained, respectively; the profile parameters of
each pattern are refined separately.
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Table A6. Conditions and refined parameters of the Rietveld refinement of FePd3 (Pm3m) based on
in situ NPD data (see Figures 2–4 and A9–A14, and Table A7) using FullProf [24].

p/MPa T/K a/pm V/106 pm3 Biso(1a)/10−4

pm2
Biso(3c)/10−4

pm2
SOF(Fe, 1a)

1,2 SOF(D)

0.0001 (1) 296 (1) 385.204 (3) 57.157 (1) 2.17 (6) 1.11 0.875 (3) - 2

0.50 (1) 296 (1) 385.217 (4) 57.163 (1) 2.03 (6) 1.19 0.847 (4) 0.013 (8)
1.00 (1) 296 (1) 385.230 (3) 57.169 (1) 1.80 (6) 1.27 0.847 (4) 0.015 (8)
2.00 (1) 296 (1) 385.254 (4) 57.180 (1) 1.69 (6) 1.28 0.844 (4) 0.017 (8)
4.00 (1) 296 (1) 385.290 (3) 57.196 (1) 2.00 (7) 1.13 0.834 (4) 0.027 (8)
8.00 (2) 296 (1) 385.372 (4) 57.232 (1) 2.15 (7) 1.05 0.794 (4) 0.047 (9)

1 The stoichiometric ratio of Fe to Pd atoms was fixed at 1:3; 2 the Wyckoff position 1b is not occupied.

Table A7. Residual parameters of the Rietveld refinement of FePd3 (Pm3m) based on in situ NPD
data (see Figures 2–4 and A9–A14, and Table A6) using FullProf [24].

p/MPa Rp1 Rp2 Rwp1 Rwp2 χ2 RBragg1 RBragg2

0.0001 (10) 0.057 0.069 0.080 0.087 2.38 2.15 7.03
0.50 (1) 0.058 0.073 0.084 0.090 2.49 2.59 15.1
1.00 (1) 0.057 0.068 0.080 0.086 2.42 2.32 11.0
2.00 (1) 0.057 0.065 0.079 0.083 2.37 2.14 10.3
4.00 (1) 0.056 0.064 0.077 0.081 2.32 1.97 13.2
8.00 (1) 0.058 0.062 0.077 0.081 2.52 2.74 18.3
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FullProf [24].
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using FullProf [24].
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using FullProf [24].
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(NUMOR 131746 [21], λ = 186.80(2) pm, D20 ILL, Grenoble) in a single-crystal sapphire cell at 296(1) K
and 8.00(1) MPa deuterium pressure using FullProf [24].

Table A8. Conditions and refined parameters of the Rietveld refinement of FePd3 (Pm3m) based on
in situ NPD data (see Figures 2–4 and Table A9) using FullProf [24].

T/K p/MPa a/pm V/106 pm3 Biso(1a)/10−4

pm2
Biso(3c)/10−4

pm2 SOF(Fe, 1a) 1,2 SOF(D) Rz(Fe)/µB
1

298 (1) 8.00 (1) 385.372 (4) 57.232 (1) 2.15 (7) 1.05 0.794 (3) 0.047 (9) 2.37 (11)
325 (3) 8.03 (1) 385.518 (4) 57.297 (1) 1.72 (6) 1.29 0.797 (4) 0.046 (9) 2.36 (12)
348 (3) 8.06 (1) 385.618 (3) 57.342 (1) 2.05 (7) 1.21 0.796 (4) 0.045 (9) 2.47 (11)
376 (3) 8.10 (1) 385.762 (4) 57.406 (1) 1.74 (7) 1.42 0.789 (4) 0.051 (9) 2.24 (12)
396 (3) 8.12 (1) 385.868 (4) 57.453 (1) 1.86 (7) 1.4 0.789 (4) 0.055 (9) 1.90 (13)
424 (3) 8.15 (1) 386.013 (4) 57.518 (1) 1.89 (7) 1.5 0.786 (4) 0.063 (9) 1.89 (14)
447 (3) 8.18 (1) 386.149 (4) 57.579 (1) 1.65 (8) 1.54 0.785 (4) 0.062 (10) 1.8 (2)
475 (3) 8.21 (1) 386.304 (4) 57.649 (1) 2.19 (8) 1.46 0.786 (4) 0.062 (10) 1.4 (2)
490 (3) 8.22 (1) 386.377 (4) 57.681 (1) 2.09 (8) 1.55 0.782 (4) 0.067 (10) 0.9 (3)
519 (2) 8.25 (1) 386.539 (4) 57.754 (1) 2.09 (9) 1.59 0.776 (4) 0.065 (11) 0.4 (7)
539 (1) 8.29 (1) 386.639 (4) 57.799 (1) 1.92 (9) 1.68 0.731 (4) 0.064 (10) 0 3

473 (2) 8.25 (1) 386.280 (4) 57.638 (1) 2.28 (9) 1.43 0.785 (4) 0.057 (9) 1.2 (2)
423 (2) 8.20 (1) 385.983 (4) 57.505 (1) 1.98 (7) 1.43 0.792 (3) 0.052 (9) 1.73 (13)
384 (1) 8.14 (1) 385.792 (3) 57.420 (1) 1.74 (6) 1.46 0.788 (3) 0.058 (9) 2.13 (12)
313 (1) 8.00 (1) 385.461 (4) 57.272 (1) 2.06 (7) 1.17 0.795 (4) 0.045( 10) 2.39 (12)

1 Rz was refined with fixed occupation from coupled refinement (Table 1); then, SOF was refined with fixed Rz;
2 The stoichiometric ratio of Fe to Pd atoms was fixed at 1:3; 3 Rz was fixed at 0.

Table A9. Residual parameters of the Rietveld refinement of FePd3 (Pm3m) based on in situ NPD
data (see Figures 2–4 and Table A8) using FullProf [24].

T/K Rp1 Rp2 Rwp1 Rwp2 χ2 RBragg1 RBragg2 RMagn1 RMagn2

298 (1) 0.058 0.062 0.077 0.081 2.52 2.74 18.3 2.60 20.5
325 (3) 0.059 0.058 0.081 0.074 2.54 3.41 21.3 3.97 14.5
348 (3) 0.056 0.059 0.075 0.073 2.29 2.03 9.46 2.38 9.68
376 (3) 0.054 0.057 0.075 0.073 2.31 2.07 10.5 2.28 10.3
396 (3) 0.054 0.058 0.075 0.074 2.33 2.74 13.6 3.28 10.2
424 (3) 0.057 0.055 0.079 0.070 2.45 3.38 13.5 3.59 12.7
447 (3) 0.058 0.057 0.080 0.072 2.54 3.57 9.79 3.31 6.46
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Table A9. Cont.

T/K Rp1 Rp2 Rwp1 Rwp2 χ2 RBragg1 RBragg2 RMagn1 RMagn2

475 (3) 0.060 0.055 0.083 0.071 2.71 4.00 17.0 4.14 15.9
490 (3) 0.058 0.057 0.082 0.073 2.70 3.69 26.1 3.86 22.7
519 (2) 0.060 0.055 0.087 0.069 2.95 4.56 27.0 5.32 25.0
539 (1) 0.058 0.056 0.085 0.070 2.86 3.65 31.6 - 1 - 1

473 (2) 0.059 0.058 0.082 0.074 2.78 4.38 36.9 4.51 24.7
423 (2) 0.057 0.055 0.079 0.070 2.42 3.38 28.0 3.73 12.7
384 (1) 0.053 0.059 0.073 0.074 2.24 2.44 9.15 2.55 10.3
313 (1) 0.062 0.062 0.085 0.078 2.79 3.16 31.5 3.98 15.1

1 Rz was fixed at 0.
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in Tables A8 and A9) based on neutron powder diffraction data (NUMOR 131755 [21], λ = 186.80(2)
pm, D20 ILL, Grenoble) in a single-crystal sapphire cell at 325(3) K and 8.03(1) MPa deuterium
pressure using FullProf [24].
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Figure A15. Rietveld refinement of the crystal structure of FePd3D0.045(9) (for details, see third row in
Tables A8 and A9) based on neutron powder diffraction data (NUMOR 131760 [21], λ = 186.80(2) pm,
D20 ILL, Grenoble) in a single-crystal sapphire cell at 348(3) K and 8.06(1) MPa deuterium pressure
using FullProf [24].
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Figure A16. Rietveld refinement of the crystal structure of FePd3D0.051(9) (for details, see fourth row 
in Tables A8 and A9) based on neutron powder diffraction data (NUMOR 131765 [21], λ =186.80(2) 
pm, D20 ILL, Grenoble) in a single-crystal sapphire cell at 376(3) K and 8.10(1) MPa deuterium 
pressure using FullProf [24]. 

 
Figure A17. Rietveld refinement of the crystal structure of FePd3D0.055(9) (for details, see fifth row in 
Tables A8 and A9) based on neutron powder diffraction data (NUMOR 131768 [21], λ =186.80(2) 
pm, D20 ILL, Grenoble) in a single-crystal sapphire cell at 396(3) K and 8.12(1) MPa deuterium 
pressure using FullProf [24]. 

Figure A16. Rietveld refinement of the crystal structure of FePd3D0.051(9) (for details, see fourth row
in Tables A8 and A9) based on neutron powder diffraction data (NUMOR 131765 [21], λ = 186.80(2)
pm, D20 ILL, Grenoble) in a single-crystal sapphire cell at 376(3) K and 8.10(1) MPa deuterium
pressure using FullProf [24].
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Figure A17. Rietveld refinement of the crystal structure of FePd3D0.055(9) (for details, see fifth row in
Tables A8 and A9) based on neutron powder diffraction data (NUMOR 131768 [21], λ = 186.80(2) pm,
D20 ILL, Grenoble) in a single-crystal sapphire cell at 396(3) K and 8.12(1) MPa deuterium pressure
using FullProf [24].
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Tables A8 and A9) based on neutron powder diffraction data (NUMOR 131772 [21], λ =186.80(2) 
pm, D20 ILL, Grenoble) in a single-crystal sapphire cell at 424(3) K and 8.15(1) MPa deuterium 
pressure using FullProf [24]. 

 
Figure A19. Rietveld refinement of the crystal structure of FePd3D0.062(10) (for details, see seventh row 
in Tables A8 and A9) based on neutron powder diffraction data (NUMOR 131776 [21], λ =186.80(2) 
pm, D20 ILL, Grenoble) in a single-crystal sapphire cell at 447(3) K and 8.18(1) MPa deuterium 
pressure using FullProf [24]. 

Figure A18. Rietveld refinement of the crystal structure of FePd3D0.063(9) (for details, see sixth row in
Tables A8 and A9) based on neutron powder diffraction data (NUMOR 131772 [21], λ = 186.80(2) pm,
D20 ILL, Grenoble) in a single-crystal sapphire cell at 424(3) K and 8.15(1) MPa deuterium pressure
using FullProf [24].
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Figure A19. Rietveld refinement of the crystal structure of FePd3D0.062(10) (for details, see seventh row
in Tables A8 and A9) based on neutron powder diffraction data (NUMOR 131776 [21], λ = 186.80(2)
pm, D20 ILL, Grenoble) in a single-crystal sapphire cell at 447(3) K and 8.18(1) MPa deuterium
pressure using FullProf [24].



Crystals 2022, 12, 1704 23 of 28Crystals 2022, 12, x FOR PEER REVIEW 24 of 29 
 

 

 
Figure A20. Rietveld refinement of the crystal structure of FePd3D0.062(10) (for details, see eighth row 
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pm, D20 ILL, Grenoble) in a single-crystal sapphire cell at 475(3) K and 8.21(1) MPa deuterium 
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in Tables A8 and A9) based on neutron powder diffraction data (NUMOR 131783 [21], λ =186.80(2) 
pm, D20 ILL, Grenoble) in a single-crystal sapphire cell at 490(3) K and 8.22(1) MPa deuterium 
pressure using FullProf [24]. 

Figure A20. Rietveld refinement of the crystal structure of FePd3D0.062(10) (for details, see eighth row
in Tables A8 and A9) based on neutron powder diffraction data (NUMOR 131781 [21], λ = 186.80(2)
pm, D20 ILL, Grenoble) in a single-crystal sapphire cell at 475(3) K and 8.21(1) MPa deuterium
pressure using FullProf [24].
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Figure A21. Rietveld refinement of the crystal structure of FePd3D0.067(10) (for details, see ninth row
in Tables A8 and A9) based on neutron powder diffraction data (NUMOR 131783 [21], λ = 186.80(2)
pm, D20 ILL, Grenoble) in a single-crystal sapphire cell at 490(3) K and 8.22(1) MPa deuterium
pressure using FullProf [24].
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in Tables A8 and A9) based on neutron powder diffraction data (NUMOR 131791 [21], λ =186.80(2) 
pm, D20 ILL, Grenoble) in a single-crystal sapphire cell at 519(2) K and 8.25(1) MPa deuterium 
pressure using FullProf [24]. 

 
Figure A23. Rietveld refinement of the crystal structure of FePd3D0.064(10) (for details, see eleventh 
row in Tables A8 and A9) based on neutron powder diffraction data (NUMOR 131815 [21], λ 
=186.80(2) pm, D20 ILL, Grenoble) in a single-crystal sapphire cell at 539(1) K and 8.29(1) MPa deu-
terium pressure using FullProf [24]. 

Figure A22. Rietveld refinement of the crystal structure of FePd3D0.065(11) (for details, see tenth row in
Tables A8 and A9) based on neutron powder diffraction data (NUMOR 131791 [21], λ = 186.80(2) pm,
D20 ILL, Grenoble) in a single-crystal sapphire cell at 519(2) K and 8.25(1) MPa deuterium pressure
using FullProf [24].
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Figure A23. Rietveld refinement of the crystal structure of FePd3D0.064(10) (for details, see eleventh
row in Tables A8 and A9) based on neutron powder diffraction data (NUMOR 131815 [21],
λ = 186.80(2) pm, D20 ILL, Grenoble) in a single-crystal sapphire cell at 539(1) K and 8.29(1) MPa
deuterium pressure using FullProf [24].
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in Tables A8 and A9) based on neutron powder diffraction data (NUMOR 131833 [21], λ =186.80(2) 
pm, D20 ILL, Grenoble) in a single-crystal sapphire cell at 473(2) K and 8.25(1) MPa deuterium 
pressure using FullProf [24]. 
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row in Tables A8 and A9) based on neutron powder diffraction data (NUMOR 131847 [21], λ 
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terium pressure using FullProf [24]. 

Figure A24. Rietveld refinement of the crystal structure of FePd3D0.057(9) (for details, see twelfth row
in Tables A8 and A9) based on neutron powder diffraction data (NUMOR 131833 [21], λ = 186.80(2)
pm, D20 ILL, Grenoble) in a single-crystal sapphire cell at 473(2) K and 8.25(1) MPa deuterium
pressure using FullProf [24].

Crystals 2022, 12, x FOR PEER REVIEW 26 of 29 
 

 

 
Figure A24. Rietveld refinement of the crystal structure of FePd3D0.057(9) (for details, see twelfth row 
in Tables A8 and A9) based on neutron powder diffraction data (NUMOR 131833 [21], λ =186.80(2) 
pm, D20 ILL, Grenoble) in a single-crystal sapphire cell at 473(2) K and 8.25(1) MPa deuterium 
pressure using FullProf [24]. 

 
Figure A25. Rietveld refinement of the crystal structure of FePd3D0.052(9) (for details, see thirteenth 
row in Tables A8 and A9) based on neutron powder diffraction data (NUMOR 131847 [21], λ 
=186.80(2) pm, D20 ILL, Grenoble) in a single-crystal sapphire cell at 423(2) K and 8.20(1) MPa deu-
terium pressure using FullProf [24]. 

Figure A25. Rietveld refinement of the crystal structure of FePd3D0.052(9) (for details, see thir-
teenth row in Tables A8 and A9) based on neutron powder diffraction data (NUMOR 131847 [21],
λ = 186.80(2) pm, D20 ILL, Grenoble) in a single-crystal sapphire cell at 423(2) K and 8.20(1) MPa
deuterium pressure using FullProf [24].
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Figure A26. Rietveld refinement of the crystal structure of FePd3D0.058(9) (for details, see four-
teenth row in Tables A8 and A9) based on neutron powder diffraction data (NUMOR 131859 [21],
λ = 186.80(2) pm, D20 ILL, Grenoble) in a single-crystal sapphire cell at 384(1) K and 8.14(1) MPa
deuterium pressure using FullProf [24].
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Figure A27. Rietveld refinement of the crystal structure of FePd3D0.045(10) (for details, see fifteenth row
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