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A formal validation of a deep learning-based
automated workflow for the interpretation
of the echocardiogram

Jasper Tromp1,2,9, David Bauer 3,9, Brian L. Claggett3, Matthew Frost4,
Mathias Bøtcher Iversen4, Narayana Prasad3, Mark C. Petrie5, Martin G. Larson6,
Justin A. Ezekowitz 7,8 & Scott D. Solomon 3

This study compares a deep learning interpretation of 23 echocardiographic
parameters—including cardiac volumes, ejection fraction, and Doppler mea-
surements—with three repeatedmeasurements by core lab sonographers. The
primary outcome metric, the individual equivalence coefficient (IEC), com-
pares the disagreement between deep learning and human readers relative to
the disagreement among human readers. The pre-determined non-inferiority
criterion is 0.25 for the upper bound of the 95% confidence interval. Among
602 anonymised echocardiographic studies from 600 people (421 with heart
failure, 179 controls, 69%women), the point estimates of IEC are all <0 and the
upper bound of the 95% confidence intervals below 0.25, indicating that the
disagreement between the deep learning and human measures is lower than
the disagreement among three core lab readers. These results highlight the
potential of deep learning algorithms to improve efficiency and reduce the
costs of echocardiography.

Deep learning algorithms, a subset ofmachine learning algorithms, can
analyze medical images more efficiently, with improved consistency
and fewer errors than humans1–9. Previous studies showed that deep
learning models could accurately diagnose different types of skin
cancers2, identify metastases in breast cancer patients4 and interpret
arrhythmia on the electrocardiogram5. Compared to human inter-
pretation of medical images, deep learning models can provide faster,
more efficient, and more reproducible results.

Echocardiography is the most commonly used imaging modality
for assessing cardiac structure and function due to its low cost, utility,
and safety10. Efforts have beenmade to standardize the acquisition and
interpretation of echocardiographic images11–15, which generally
require dozens of measurements following the acquisition of images.
However, these measurements are time-consuming and subject to

high inter-and intrareader variability and human error, even amongst
specialists13,16. Several studies have shown that deep learning algo-
rithms can classify echocardiographic images according to their spe-
cific view (e.g., apical 4 chamber [A4C], or parasternal long axis
[PLAX])17–20, quantify cardiac volumes and assess cardiac systolic
function18,19,21–24. We previously demonstrated the development and
external validation of an automated deep learning-based workflow for
the classification and annotation of echocardiographic videos and
images25.

However, few adequately powered studies have compared the
interchangeability of deep learning algorithms against expert human
measurements for interpreting the echocardiogram. In this study, we
perform a formally powered validation of an automated deep learning
workflow against ‘gold-standard’ Echocore lab measurements.
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Results
Participant characteristics
Supplementary Table 1 shows the characteristics of participants. The
mean age of 600 participants was 57 (±16) years, 186 (69%) were
women, and 421 (70%) had HFrEF. The mean systolic blood pressure
was 120 (±17) mm Hg. The mean LVEF was 42% (±14%), the mean E/e’
was 12 (±7). The three readers were physicians with extensive echo-
cardiography experience and worked in an echo-core laboratory, with
a range of 5–15 years of experience. The analysis time per study on an
eight-core CPU ranged from 0.3 to 9.3min with a median of 1min
(interquartile range, 0.8–1.3min).

Primary outcome
Table 1 shows the average yield for each parameter. The absolute yield
of study variables in the datasetmeasurable by all three human readers
ranged from a high of 585 studies (left atrial end-systolic volume
[LAESV]) to a low of 217 studies (tricuspid regurgitation [TR] velocity).
The yield of study variables measured by all three human readers and
deep learning workflow ranged from a high of 547 (Inter Ventricular
Septal diameter [IVSd] and Left Ventricular Posterior Wall diameter

[LVPWd]) to a low of 149 (TR Vmax). The yield proportions ranged
from a high of 0.97 (right atrial area [RA] area in apical four-chamber
[A4C]) to a low of 0.69 (TR Vmax), with an average of 0.88 across all
23 study parameters. Supplementary table 2 demonstrates the con-
sequences of relaxing the confidence filters for TR Vmax, s’ lateral, and
s’ septal, by turning all of them off, moving all automated “low con-
fidence”measurements into “high confidence. AmongTRVmax signals
with 3 human reads, automated workflow “low confidence” explains
only 18% of missing reads. Relaxing the confidence threshold resulted
in better yield and reduced IEC.

Figure 1 shows the results of the primary outcome. A mean IEC of
−0.25, means that the variability (i.e., differences) between automated
and human measurements were 25% lower than the variability among
humans. A mean IEC of 0.25 means that the variability between auto-
mated and humanmeasurements were 25% higher than the variability
among humans. The mean IEC ranged from −0.04 for left ventricular
posterior wall diameter to −0.81 for left ventricular diastolic volume.
The upper 95% confidence interval fell below the prespecified success
criterion of 0.25 for all 23 prespecified parameters, ranging from 0.20
(s’ lateral) to −0.71 (Left Ventricular Ejection Fraction [LVEF]). The
relative absolute differences among humans and between automated
and human measurements for key measurements are shown in Fig. 2.
The relative absolute differences for LVEF, LAESV, E/e’ and e’ lateral
were similar or lower for automated versus humanexperts than among
human experts. Supplementary Table 3 shows that automated mea-
surements were equivalent or superior to individual expert
measurements.

Secondary outcomes
Table 2 shows the exploratory outcomes. The ICC reflects the within-
patient correlations between automated and human expert measure-
ments or the correlations among human experts. The ICC for all
comparisons (e.g., automated versus each human expert and all
human experts versus each other) improved for all measurements
when we added the comparisons between the automated and each
human expert reader to comparisons among human expert readers.
The ICCs automated versus human measurements were higher than
the ICC among human experts (Supplementary Table 4).

The MAD reflects the absolute deviation between automated and
human expert measurements. The average MAD for all comparisons
decreased when we added the comparisons between the automated
and each human expert reader to the comparisons among human
expert readers (Table 2). The MAD between automated and individual
human measurements was comparable or lower than the MAD among
human experts (Supplementary Table 5).

The wCV reflects the within-patient variability of individual mea-
surements relative to the within-patient mean. The wCV improved
(decreased) for all measurements when automated measurements
were included (Table 2). The RMSE reflects the spread of the residuals:
the lower the RMSE, the better the agreement among the different
measurements. The RMSE improved (decreased) when the total
comparisons included automated versus humanmeasurements on top
of the comparisons among experts, relative to when all comparisons
only included expertmeasurements (Table 2). SupplementaryTables 6
and 7 and show that thewCV andRMSE, respectively, were superior for
automated versus humanmeasurements relative to thewCV andRMSE
between individual experts.

The correlation between automated and human expert mea-
surements ranged from 0.41 for mitral valve (MV) A duration to 0.97
forMV-E andMV-A (Table 2). The correlations between automated and
human expert measurements were higher than those among human
readers (Supplementary Table 8).

The LOA between automated and human expert measurements
ranged from 0.05 ± 0.39 for TR Vmax to 11.12 ± 88.10 for Deceleration
time but showed generally good agreement between automated and

Table 1 | Yield results of the primary endpoint

Measurement n
(3 reader sets)

n
(Automated)

Yield
proportion

Yield (95%CI)

Lower Upper

IVSd 584 547 0.94 0.92 0.95

LVIDd 579 550 0.95 0.93 0.96

LVIDs 572 537 0.94 0.92 0.95

LVPWd 579 547 0.94 0.93 0.96

LVEDV MOD
biplane

583 534 0.92 0.89 0.93

LVESV MOD
biplane

583 535 0.92 0.9 0.93

LVEF MOD
biplane

583 531 0.91 0.89 0.93

LAESV MOD
biplane

585 507 0.87 0.84 0.89

RA area A4C (s) 497 480 0.97 0.95 0.98

RVIDd 412 372 0.9 0.88 0.92

LVSV MOD
biplane

583 533 0.91 0.89 0.93

MV-Adur 371 326 0.88 0.85 0.9

MV-E 560 508 0.91 0.88 0.92

MV-A 494 433 0.88 0.85 0.9

DecT 501 446 0.89 0.86 0.91

e’ lateral 547 458 0.84 0.81 0.86

e’ septal 541 490 0.91 0.88 0.92

E/e’ mean 511 388 0.76 0.73 0.79

a’ lateral 492 408 0.83 0.8 0.85

a’ septal 485 430 0.89 0.86 0.91

s’ lateral 547 445 0.81 0.78 0.84

s’ septal 549 459 0.84 0.81 0.86

TR Vmax 217 149 0.69 0.63 0.73

DecT deceleration time of early diastolic MV transmitral flow, IVSd interventricular septal dia-
meter enddiastolic,LAESVMODbiplane left atrial end systolic volumebiplanecalculation based
onmethodofdiscs, LVEDVMODbiplane left ventricular enddiastolic volumebiplanecalculation
based onmethod of discs, LVEF MOD biplane left ventricular ejection fraction biplane based on
method of discs, LVESV MOD biplane left ventricular end systolic volume biplane calculation
based on method of discs, LVIDd left ventricular internal diameter at end diastole, LVIDs left
ventricular internal diameter at end systole, LVPWd left ventricular posterior wall thickness
measured end diastolic, LVSV MOD biplane left ventricular stroke volume biplane calculation
based onmethod of discs,MV-A late diastolic transmitralflow,MV-Adurduration of late diastolic
transmitral flow,MV-E early diastolic transmitral flow, RA area a4c right atrial area at end systole
in A4C, RVIDd right ventricular end diastolic internal diameter, TR Vmax tricuspid regurgitation
maximum velocity.
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human measurements. Supplementary Fig. 1 shows the Bland-Altman
graphs for LVEF, LAESV, e’ lateral and E/e’ mean.

In secondary analyses, the ICC for monoplane measurements of
all available images or videos passing the view confidence threshold
ranged from 0.74 for LVEF to 0.96 for IVSd (Supplementary table 9)

Discussion
This study demonstrated that the differences between deep learning-
based measurements of and human experts of echocardiographic
images are smaller or similar to differences in measurements among
human expert interpretation of the same image. The mean absolute
deviation between automated and human expert measurements was
smaller than thedifferenceamonghumanexperts formost parameters
investigated. The median analysis time of a full echocardiographic
study was only 1min. Our results suggest that echocardiographic

measurements performed by deep learning algorithms may be inter-
changeable with human expert assessment. These results emphasise
the potential of deep learning algorithms to automate the tedious
assessment of echocardiographic measurements, which can help
increase access to-and reduce costs of echocardiography.

In the echo core lab, the sonographer or physician commonly
selects the highest quality image/video to annotate based on his/her
expertise. The automated workflow automated and standardized
image/video selection by choosing only those images with the highest
output probability of the view selection CNN. Our study compared
deep learning based automated measurements with human sono-
graphers on a study level. However, this was not a beat-for-beat com-
parison. There might be differences observed between expert
sonographers and the automated workflow in a beat-for-beat com-
parison. Previous studies demonstrated the, albeit low, presence of

Fig. 1 | Forest plot showing the individual equivalence coefficients for twenty-
three parameters. The blue box depicts the average individual equivalence coef-
ficient. The error bars depict the upper and lower limits of the 95% confidence
interval. The red line indicates the pre-determined non-inferiority criterion of 0.25
for the upper bound of the 95% confidence interval. Abbreviations and N (number
of studies): a’ lateral (N = 408); a’ septal (N = 430); e’ lateral (N = 458); e’ septal
(N = 490); E/e’ (N = 388); DecT, deceleration time of early diastolic MV transmitral
flow (N = 446); IVSd, interventricular septal diameter end diastolic (N = 547); LAESV
MODbiplane, left atrial end systolic volumebiplane calculationbasedonmethodof
discs (N = 507); LVEDV MOD biplane, left ventricular end diastolic volume biplane
calculation based on method of discs (N = 534); LVEF MOD biplane, left ventricular

ejection fraction biplane based on method of discs (N = 531); LVESV MOD biplane
left ventricular end systolic volume biplane calculation based on method of discs
(N = 535); LVIDd, left ventricular internal diameter at end diastole (N = 550); LVIDs
left ventricular internal diameter at end systole (N = 537); LVPWd, left ventricular
posterior wall thickness measured end diastolic (N = 547); LVSV MOD biplane, left
ventricular stroke volume biplane calculation based on method of discs (N = 533);
MV-A, late diastolic transmitral flow (N = 433); MV-Adur, duration of late diastolic
transmitral flow (N = 326); MV-E, early diastolic transmitral flow (N = 508); RA area
a4c, right atrial area at end systole in A4C (N = 480); RVIDd, right ventricular end
diastolic internal diameter (N = 372); s’ lateral (N = 445); s’ septal (N = 459); TRVmax,
tricuspid regurgitation maximum velocity (N= 149).
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intra-observer variability for most 2D volumes26–28 and Doppler
measurements26,29. For example, in Frikha et al. the intra-observer ICCs
was as low as 0.89 for LVEF26. The automated workflow selects the
same video and performs the same measurement on re-analysis.
However, this also means that the larger measurement variability
among humans than between automated and human measurements
could be explained by differences in video or beat selection by the
human sonographers.

Our study showed that differences in measurements between
human experts was often more significant than the differences
between deep learning and human expert measurements. Previous
studies using deep learning for echocardiography showed that deep
learning algorithms could automatically interpret cardiac volumes18

and LVEF18,19. However, only a few studies tested the performance of
their algorithms in external datasets. We previously showed that a
deep learning algorithm successfully measured cardiac volumes,
ejection fraction and Doppler measurements—with high correlation
with human measurements—in external datasets, not used to train
the algorithms25. The ICC was low for some of the linear (IVSd,
LVPWd, RVIDd) and Doppler (MV A dur, DecT) measurements
among humans. This could be explained by differences in selection
of beats or videos by different sonographers. Our previous study
showed that automated measurements from our deep learning-
based workflow showed good agreement with locally measured
values in a curated dataset from Canada, a real-world dataset from
Taiwan and the US-based EchoNet-Dynamic dataset, which were
analysed retrospectively25. Few fully powered deep learning studies
exist in medical imaging30, which remains an important unmet need
to demonstrate usability. In the present study, the point estimates
of the IEC were below 0 for all parameters, this suggests that the
disagreement among the three sonographers was larger than the
disagreement between each individual sonographer and the auto-
mated workflow. However, reasons for disagreement between
automated and human measurements could have been disagree-
ment in the selection of videos, beats, frame or annotations among
the trained sonographers and automated workflow, or poor

performance of the CNNs. In our previous study, we found that,
after blinded review of the top 15 outliers with the highest dis-
agreement between clinical (manual) and automated measure-
ments, sonographers preferred the automated over the manual
measurement for most of the outliers25. In the present study, the
yield was lower for some of the parameters, such as TRV max or s’
lateral and septal, which might have been caused by the quality
control threshold. Indeed, when we relaxed the quality control
threshold the yield increased but the IEC decreased for these
parameters. These results emphasized the need for including some
of these decision rules thus prioritizing reliability over yield as a
decision support tool. Our study extends our previous work by
formally testing the agreement of deep learning measurements of
the echocardiogram with expert human measurements. Because
the echocardiograms in the current study came from an echo core
lab, the yield of the algorithms was higher in the present study than
in our previous work.

Deep learning algorithms have shown the potential to substitute
or supplement medical practitioners in repetitive tasks2–4. Deep
learning algorithms can automatically detect lymph node metastases
in women with breast cancer4, diabetic retinopathy on retinal fundus
photographs3, or skin cancer2, with similar or superior accuracy com-
pared to human experts. In echocardiography, previous attempts
showed the potential of deep learning algorithms to automate the
measurement of cardiac volumes and Doppler measurements18,19,21–24.
A recent meta-analysis highlighted that only nine out of 81 studies
validateddeep learning algorithms against humanexperts. Noneof the
studies was formally powered for the comparisons using an estab-
lished protocol30. Therefore, our study is an important step forward
and among the first studies powered to test the agreement of deep
learning measurements against expert human measurements in a
controlled setting.

Our study has several limitations. All included echocardiographic
studies were of investigational grade quality. However, in a previous
publicationwe showed good agreement between automated and ‘real-
world’ clinicalmeasurements.Nevertheless, the yield andperformance

Fig. 2 | Box plot showing the relative absolute differences for four key para-
meters among expert sonographers and between automated readings and
expert sonographers.Relative absolute difference among humans (dark blue) and
between automated measurements and humans (light blue). The box plots centre
line refers to the median. The box’ bounds reflect the 25th and 75th percentile. The

distance between the box’ bounds and whiskers reflect the 25th or 75th percentile
plus 1.5 times the interquartile range (i.e., the difference between the 25th and 75th
percentile. Abbreviations and N (number of studies): E/e’ (N = 388); e’ lateral
(N = 458); LAESV, left atrial end systolic volume (N = 507); LVEF, left ventricular
ejection fraction (N = 531).
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of the automated workflow might be affected by the quality of the
videos and images25. Our automated workflow includes decision rules
to prevent reading low-quality images and providing low-quality
results, as earlier published25. Therefore, the yield of our workflow
might be lower in clinical practice. Second, our study did not include
patients with heart failure with preserved ejection fraction (HFpEF)
and atrial fibrillation. However, previous results showed that our
algorithms perform equally well in patients with atrial fibrillation,
HFrEF and HFpEF25. Therefore, it is unlikely that we would have
observed a difference in our study.

The presented deep learning workflow can augment clinical care
in several importantways. First, deep learning algorithms can augment
the work of practicing cardiologists and sonographers. An intuitive
user interface would allow the human reader to adjust the automated
annotations directly on still images, reducing time spent on repetitive
annotations while guaranteeing human control over output and
quality. Second, deep learning algorithms can reduce the effects of
intra-observational differences because frame and video selection are
standardized. However, future challenges remain. The proposed
automated workflow has not been validated for pediatric patients.
Furthermore, our study only included patients in sinus rhythm. Our
previous study suggested limited differences in the agreement
between automated and manual measurements in patients with and
without atrial fibrillation25. Together, our results show the potential of
deep learning algorithms to democratize access to expert measure-
ments and interpretation of the echocardiogram in settings with lim-
ited resources or expertise.

Methods
The deep learning workflow
Details on the design and development of the deep learning work-
flow were published previously25. Supplementary Fig. 2 shows an
overview of the automated workflow. First, the DICOM tag is used to
identify Doppler modalities from 2D videos. 2D videos and Doppler
images are then parsed through two separate CNNs classifying them
into their respective views (e.g., A2C, PLAX, A4C) and images (e.g.,
PW Doppler, CW Doppler, etc). An additional unsupervised clus-
tering algorithm is used to classify 2D images. The probabilities of
the CNN and clustering algorithm for 2D videos are then averaged.
Furthermore, for each 2D video, the probability is averaged over the
frames. Videos and images which do not reach a view-dependent
probability threshold are considered of “poor view quality” and
excluded from analysis. The remaining videos and Doppler images
are then classified based on the highest (average) probability into
their respective view or image-type. We used the confidence score
to pick the video of the highest quality because we found that this
empirically led to better performance of the algorithms. This choice
was based on a precedent in literature18. The workflow annotates the
video or image with the highest (average) confidence score of all
frames. Depending on the measurement, the workflow takes the
median or mean of all available beats or, in the case of TRV max, the
highest value available in all images. We determined the median for
an even beat number by dividing the number of measurements by
two and floor the value. This means that in case of four ordered
beats, we will use the second beat. In case of the mean, we summed
each measured value per beat within the video and divided this by
the total number of measured beats. Supplementary table 10 out-
lines for each measurement whether the mean, mean or highest
value (for TRV max) was taken per video or per study. If multiple
videos or images pass the confidence-based threshold, theworkflow
will select the video with the highest view confidence value. Anno-
tation of each video frame and Doppler image is performed using
CNNs based on a U-Net style architecture. Volume curves are gen-
erated based on the annotation of 2D videos. These volume curves
are used to determine peak systole and diastole phases. The

workflow will annotate all available beats in the 2D video or Doppler
image. The measurement quality is based on a number of Boolean
statements relating to the shape and placement of the annotation
trace (i.e., the shape is as expected and the placement of the
annotation is within expected bounds within the frame), con-
gruency between systolic and diastolic phases (i.e., the timing of the
systolic and diastolic phase identified from the volume curves are
similar to those identified on ECG) or timing of the beats (i.e., if the
heart rate is >120 BPM, Doppler will not be measured), and the
physiological range of the quantitative results of the annotation. If
any of these conditions is not met, the measurement quality is
considered poor. When measurement quality is poor the workflow
will not output a result25.

Study design and echocardiographic studies
The deep learning workflow was installed at the Brigham & Women’s
Hospital Cardiac Imaging Core Laboratory (Boston, MA). Two study
cohorts with patients with HFrEF and individuals without HF were
manually selected based on the in- and exclusion criteria outlined in
the study protocol. There were no pre-determined criteria regarding
the inclusion of participants without HF. In this study, participants
without HF compromised roughly a third of the total. Patients with
HFrEF were enrolled in a single-arm clinical trial (NCT02887183).
Patients enrolled in this trial provided written informed consent, were
men andwomen ≥18 years, hadHFrEF (left ventricular ejection fraction
<40%) and New York Heart Association (NYHA) class II-IV. All echoes
were performed at baseline before starting study treatment. Addi-
tional individuals without heart failure were similarly enrolled in a
separate clinical trial (NCT03767855). Participants without HF were
men andwomenbetween 18 and 55 yearswith a bodymass index (BMI)
of 18–32 kg/m2, and were in good health in the opinion of the inves-
tigator and were not taking medications for the treatment of any
chronic or episodic medical disease or condition. In total, 421 exams
were selected from patients who had previously diagnosed HFrEF,
while the additional 179 images were selected from individuals
without HF.

Two expert sonographers evaluated each study once on top of
previousmeasurement performed for other study purposes for a total
of three manual evaluations per study. Annotations by the sono-
graphers were made using using Echostation Version 5.015 (MV-Adur,
RVIDd) and Version 5.014 (all other measurements). Echostation is a
proprietary validated echocardiographic analysis software, which
allows for all measurements to be directly input and tracked within an
automated database system. The sonographerswere unawareor could
not see the annotation by the other sonographers or the automated
workflow. Similarly, the automated workflow did not have access to
any of the manual annotations. For each study, the human experts
chose the best video or image and beats for their annotations
according to existing ASE guidelines11. The deep learning workflow did
not have access to the previous study annotation and the new two
human annotations. The 23 echocardiographic parameters considered
are listed in Table 1.

All echocardiographic images had been anonymized at the site
level. Patients whose echocardiograms were utilized for this analysis
provided written informed consent for providing echocardiographic
images, and analysis of anonymized echocardiographic images was
approved by the Mass General Brigham Institutional Review Board.

Primary and secondary endpoints
The primary outcome was the interchangeability of deep learning and
human measurements. We considered that deep learning measure-
ments were completely interchangeable with human measurements
when the variance of differences between deep learning and human
measurements is no larger than the variance of differences in mea-
surements between human experts31, i.e., individual bioequivalence.
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To assess the interchangeability of human and machine-generated
measurements, we used the individual equivalence coefficient (IEC) as
the study’s primaryendpoint. The IEC is a scale-freemeasureof relative
differences, helpful in assessing agreement between multiple
observers31. The IEC can be calculated as IEC = [QTR −QRR]/(QRR/2).QTR

is the mean of the squared differences between within-patient
responses from the automated workflow and each of 3 human refer-
ence measurements, QRR is the mean of the squared differences
between three pairs of within-patient reference measurements. The
expected value of IEC is 0 if the differences between deep learning
algorithms and human experts have the same variability as the dif-
ferences between human experts. The expected value of IEC is less
than 0 if the differences between deep learning algorithms and the
three human experts are less variable than the differences in mea-
surements among the three human experts.

We pre-determined the success criterion as a non-inferiority
margin of Δ =0.25, such that automated measurements are deemed
inferior to human measurements if IEC + 1.96*standard deviation (SD)
of IEC > 0.25, coinciding with automated measurements having a 25%
higher variance of within-patient errors than human measurements.
We conducted bootstrap resampling (10,000 replicates) to estimate
SD(IEC) for each echocardiographic feature.

Exploratory endpoints included measurements of agreement
between automated and human expert measurements, including the
interclass correlation coefficient (ICC), mean absolute deviation
(MAD), within-patient coefficient of variation (wCV), concordance
correlation coefficient (CCC), and limits of agreement (LOA) by Bland-
Altman testing31,32. In secondary analysis, we calculated the ICC and
standard deviation (STD) for the automated measurements of all
available images and videos per study.

Sample size calculation
To calculate the sample size for this study, we performed
10,000 simulations to estimate power at various thresholds for the SD
of the IEC. We estimated that a sample size of N = 600 patients, would
provide 80% power at a Gamma of 0.96. N = 600 refers to the number
of participants (not images). A full explanation of the sample size
calculation is provided in the supplementary material.

Statistical analysis
Characteristics of participants are presented as the mean and SD, or
numberwith percentages depending on the nature of the variable. The
primary outcome, the individual equivalence coefficient (IEC), was
calculated by comparing differences between the automated and each
individual human measurement (e.g., the average of automated vs.
human 1, automated vs. human 2, and automated vs human 3) against
the differences for each study between the three humans (e.g, human1
vs human2, human 1 vs human3 and human 2 vs human 3). Thismeans
that the IEC was calculated by subtracting the mean of the squared
differences between the three pairs of within-patient human mea-
surements (QRR) from the mean of the squared differences between
within-patient responses from the automated workflow and each of
three humanmeasurements (QRR). The ICC, MAD, wCV, CCC, LOA and
CP were calculated using sklearn.metrics using mixed-effects model-
ling. In secondary analyses, we calculated the IEC and secondary
endpoints separately for pairs of human readers and automated versus
human readers and for automated versus individual human readers,
where appropriate. Because the automated workflow has decision
rules which exclude low-quality images or measurements, we esti-
mated the yield per measurement of the automated workflow. The
yield was the proportion of studies measured by the automated
workflow among studies with three human readers, calculated as x/n,
where n equals the number of participants with three reads, and x
equals the number of participants with three reads and an automated
read. The 95%CI of the yield was calculated using the 0.05 and 0.95

quantiles of the binomial distribution. In sensitivity analysis, we
relaxed the measurement quality filters by moving all automated “low
confidence” measurements into “high confidence for three of the
parameters with the lowest yield. Other packages used includeNumPy,
pandas, seaborn, and SciPy. All analyses were performed using Python
3.8. All tests were considered two-sided.

Reporting summary
Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
The DICOM videos are housed at the Brigham and Women’s Hospital
core laboratory. Third-party contractual agreements prohibit sharing
the DICOM videos publicly. Assessment of the original videos can be
made on-site at Brigham and Women’s Hospital core laboratory by
request to the corresponding author and with appropriate data-use
agreements.

Code availability
The code used for calculating measures of agreement and the IEC are
included in the supplementary material. The code utilized in the
software is not publicly available as this is considered proprietary
intellectual property by the sponsor (United States patent number
10,631.828 B1). The software will be made available by request to the
sponsor (US2.AI) for the purposes of reproducing the presented
results.
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