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1. Introduction

In an influential paper [27], Van den Bergh introduced the notion of double Poisson brackets, which
are non-commutative analogues of Poisson brackets. For a unital associative algebra A over a field k of
characteristic 0, a double bracket is a k-bilinear map {—, —}} : A x A - A ® A (where ® = ®x)
satisfying the following rules for any w, x, y,z € A:

lx ) = =t {{pxl} (1.12)
iyl =@ D+ {{xy}} A®2), (1.1b)
{wey)) =a@w) {{xy)} + {{wy)} @D, (1.1¢)

where 712 x®y = y®x and (W® y) (x ® z) = wx ® yz. Furthermore, a double bracket is called Poisson
if it satisfies some version of Jacobi identity valued in A®3, Their importance is rooted in representation
theory: if A is equipped with a double Poisson bracket, then for each n > 1 the representation space
Rep(A, n) parametrizing representations of A on k" inherits a Poisson bracket {—, —}. Furthermore,
if we reinterpret [27], we can characterize the Poisson bracket on Rep(A, n) in terms of an operation
{{—> —}(n) which is defined for two n x n matrix-valued functions X, Y on Rep(A, n) (e.g. matrices
representing elements x, y € A) through

(X, YW= Y, (X Yu)Ey®Ea. (1.2)
1<ijjk,l<n

Here, Ej; € Mat,xn(k) is the elementary matrix satisfying (E;;)77 = d;78j7. This operation thus takes
two matrices as an input, and it yields (a linear combination of tensor products of) two matrices as an
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output. The advantage of this notation stems from translating the antisymmetry and Leibniz rules of the
Poisson bracket {—, —} in the form

X Yho) = — a2 (Y. XB » (1.3a)
(X YZR ) =(Y @ Idn) (X, Z} () + {X, Y () (Idn ®2), (1.3b)
{XZ, Y}y =1dn @X) {(Z, Y} () + X Yy (Z®1dy) . (1.3¢0)

(Jacobi identity can also be recast into this matrix notation, but we shall not need it in the introduction.) A
direct comparison of (1.1) and (1.3) thus motivates a double Poisson bracket as the natural formalization
of a family of Poisson brackets defined on Rep(A, n), n > 1. In particular, this principle emphasizes an
important reason for the development of the study of double Poisson brackets. Some other useful aspects
of this theory include classification results [5, 22, 23, 25, 28], double Poisson cohomology [1, 24, 28],
connection to (pre-)Calabi-Yau algebras [6, 13, 15, 19], study from the point of view of properads [18, 19]
and relation to integrable systems [7, 10-12].

Let us now adopt a completely different perspective. In the field of integrable systems, an effective
method used to perform computations involving a Poisson bracket {—, —} on a space parametrized by
matrices, such as Rep(4A, ), consists in using a “tensor notation" as follows. We introduce an operation
{— ® —} such that, for two matrices X, Y of size n x n which are seen as matrix-valued functions on the
given space, we set (see e.g. [4])

X8Y)= Y (X Yu}E;®Eu. (1.4)

1<ijjk,l<n

Note the similarity with (1.2), but the different arrangement of the indices. In particular, the antisym-
metry of the Poisson bracket on Rep(A, n) still takes the form {X © Y} = —7(12{Y € X} asin (1.3a),
but the Leibniz rules now imply

(X% YZ} =(1d, ®V){X § Z} + {X § Y}(Id, ®2), (1.5a)
XZ9Y}=X®@UW)ZZ? Y} +{XSY}Z®IdW). (1.5b)

It is clear that, given a Poisson bracket on Rep(A, n), the notations {{—, —},) and {— ® —} can be used
interchangeably (we only need to know {Xj;, Y} to define both (1.2) and (1.4)). However, if we want
to formalize these two operations at the level of the associative algebra A in the spirit of Van den Bergh
[27], such operations will no longer be equivalent. This idea is at the core of the present note, and the
key motivation is that the different matrix Leibniz rules given in (1.3b)-(1.3¢) and (1.5a)-(1.5b) have a
non-commutative origin based on different A-bimodule structures on A ® A.

In Section 2, we start by introducing double brackets as k-bilinear maps f{—, —}} : Ax A > A® A
satisfying the cyclic antisymmetry {{x, y}} = —t12) {3, x}} forall x, y € A together with Leibniz rules
for both arguments, see Definition 2.2. Each Leibniz rule is determined by an A-bimodule structure on
A ® A. Compatibility of these Leibniz rules with the cyclic antisymmetry puts some constraint on the
choice of A-bimodule structures, which must be swap-commuting in the sense of Definition 2.1. Then,
we define in §2.3 the notion of double (weak) Poisson brackets, where we require the vanishing of a
map A*® — A®3 called the (weak) double Jacobiator. This requirement should be seen as an analogue
of Jacobi identity. While the notion of double Poisson brackets is due to Van den Bergh [27] for the
case (1.1) associated with the outer bimodule structure, we are forced to consider weaker versions in
order to encompass the formalization of the operation (1.4) on associative algebras. We then move on
to derive general properties of double brackets in §2.4. We finish the section by defining morphisms
and equivalences of double brackets which allow us to compare such operations even in the presence of
different swap-commuting bimodule structures, see Figure 1.

In Section 3, we study four families of double brackets that are associated with the most important
swap-commuting bimodule structures on A®A (hence this fixes the Leibniz rules of the double brackets).
The case originally considered by Van den Bergh [27] comes from the outer bimodule structure (2.3)
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which is studied in §3.1. The formalization of the operation (1.4) comes from the right bimodule
structure (2.2) which is studied in 3.3. We advise the reader to have a look at these examples while
studying the general theory from Section 2. In particular, it will be clear from Lemma 3.1 that it is
more natural to verify the vanishing of the double Jacobiator in the case associated with the outer
bimodule structure (2.3), while we see from Lemma 3.12 that the vanishing of a weak double Jacobiator
is fundamental in the case associated with the right bimodule structure (2.2).

Following Van den Bergh [27], we investigate as part of Section 4 how to induce a bilinear operation on
each representation space Rep(A, n), n > 1, when we have a double bracket on A. In fact, we consider the
different families of double brackets from Section 3 because we can explicitly induce bilinear operations
in their presence. We also explain how, in the cases of the outer and right bimodule structures, the
induced operations are nothing else than the operations {{—, —}},) (1.2) and {— ® —} (1.4) mentioned
above, which motivated the present work. We prove as part of Theorems 4.5 and 4.11 that these induced
operations are Poisson brackets provided that the underlying double bracket on A is (weak) Poisson.

We conclude with Section 5 where we compare the two most important classes of double brackets.
Namely, the one associated with the outer bimodule structure (2.3) due to Van den Bergh [27], and the
one associated with the right bimodule structure (2.2) which formalizes the operation (1.4). To help
the reader understand how to perform computations with double brackets in more details, we start in
Appendix A the classification of gradient double Poisson brackets (associated with the outer bimodule
structure, in the original sense of Van den Bergh [27]).

Let us end by emphasizing that our study consists of a modification of Van den Bergh's theory of
double brackets in the presence of other bimodule structures on A ® A. This differs from the double
Poisson bimodules from [8] which are maps A x M — (A ® M) & (M ® A) where M is a fixed A-
bimodule. Another completely different point of view that was undertaken by Arthamonov [2], then
extended by Goncharov and Gubarev [14], relies on a modification of the antisymmetry rule of a double
bracket. We do not pursue these directions at all.

2. A general theory of double brackets

We introduce a general definition of double brackets, before giving their main properties and ways to
compare them. Many examples illustrating this theory can be found in Section 3.

2.1. Notations

Throughout the paper, we use the following conventions. All algebras are finitely generated, unital and
taken over a fixed field k of characteristic 0. Tensor products are not decorated when taken over the base
field: ® = ®. For two algebras A, B, an element d € A ® Bis denotedasd' ® d” (:= }_; dJ/. ® d;/) using
Sweedler’s notation; no confusion should arise from this notation because all operations that we will use
are k-linear. There is a left action of the symmetric group S, on A®" through

T:S x A% 5 A%, 1(0,a1® Qa) =To (@ ® ®ay) =ay-1() @+ ® -1y -

For n = 2, 7(12) swaps the two tensor factors of A%? and we denote this operation ® : d > d° = d’ ® d';
we call the map ° : A®2 — A®2 the swap automorphism. We will regularly see A®? as an algebra for the
multiplication (a; ® b1) (a2 ® by) = a1a, ® b1 by, for ay,a,b1, b, € A.

The following A-bimodule structures on A®? will be used: for a,b € A and d € A®?,

aqdgb=adbed’, (left bimodule structure); (2.1)
a,db=d ®ad'b, (right bimodule structure); (2.2)
aoutdob=ad @d'b, (outer bimodule structure); (2.3)

a-ind-inb=db®ad’, (inner bimodule structure). (2.4)
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Given two automorphisms a, 8 of A, we can modify a bimodule structure - on A®? into another
bimodule, denoted by -%#, in the following way:

a P d.ePy.=q@)-d B, ( (o, B)-twisted bimodule structure). (2.5)

We denote -“ := -*“ the corresponding a-twisted bimodule structure. For example, the left bimodule
structure can be modified as follows:

a .;x,ﬁ d '7”3 b=a@d b ®d, ( (a, B)-twisted left bimodule structure). (2.6)

(The right, outer and inner bimodule structures can be twisted in the exact same way.) These twists
amount to precomposing the bimodule multiplication with the map o x 8 : A*? — A*2,
Finally, N ={0,1,2,...},Z={...,—1,0,1,...}, while N* and Z* denote these sets without 0.

2.2. Double brackets

Definition 2.1. Fix a A-bimodule structure denoted - on A®2. The swap A-bimodule structure * on A®?
associated with - is defined for a,b € A and d € A®? by

axd+xb=(a-d° b)°. (2.7)

We say that - is swap-commuting if it commutes with its swap A-bimodule structure *; that is, for any
ai,az, b, by € Aand d € A®?, we have

ar-(ayxdxby)-by=ayx(a;-d-by) xby. (2.8)

In the case of a swap-commuting bimodule structure, we can forget to write the braces in iterated
bimodule multiplications such as (2.8). Note that a bimodule structure is swap-commuting if and only
if its swap bimodule structure is swap-commuting.

As examples of swap-commuting bimodules, we can consider the left bimodule structure (2.1) with
swap given by the right bimodule structure (2.2), or the outer bimodule structure (2.3) with swap given
by the inner bimodule structure (2.4), and vice-versa. However, an arbitrary bimodule is not necessarily
swap-commuting: given an anti-automorphism v of A, the bimodule structure defined by

a-d-b=ad @vb)d", (2.9)

does not necessarily commute with its swap bimodule structure.

Definition 2.2. Fix a swap-commuting A-bimodule structure - on A®2. A double bracket (associated
with -) on A is a k-bilinear map {{—, —}} : A x A - A ® A such that for any a,b,c € A,

fla,b}} = — {{b,a}}°, (2.10a)
{la,bel} =b - {a,c}} + {{a, b} - ¢, (2.10b)
{{bc, al} =b * {{c,al}} + {{b,a}} *c, (2.10¢)

where * denotes the swap A-bimodule structure of -.
Remark 2.3. Van den Bergh’s original definition [27] corresponds to the outer bimodule -4, (2.3).

The properties (2.10a), (2.10b), and (2.10c) of a double bracket are respectively called the (cyclic)
antisymmetry, the right Leibniz rule, and the left Leibniz rule. It is important to note that the fixed
bimodule structure - appears in the definition of the right Leibniz rule. Then, the Leibniz rules (2.10b)
and (2.10c) are equivalent due to the antisymmetry (2.10a), by definition of * as the swap A-bimodule
structure of -. Furthermore, the double bracket is well-defined as we can apply the Leibniz rules in any
order because - is swap-commuting. Let us finally remark that Definition 2.2 can equivalently be restated
in terms of ak-linearmap f{—, —} : AQ A —> A® A, a® b+ {{a,b}}.
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Remark 2.4. It is possible to work in even greater generalities by considering an arbitrary involution
°: A®2 5 A®2 d s d° in the above definitions. Since all the examples presented in this paper rely on
the involution ® = 7(12), we do not consider this generalization any further.

2.3. Double (weak) Poisson brackets

Fix a double bracket {{—, —}} on A. We can consider the map

f— -0 Ax A% > A%, (@b @bl = (@b} @ bs. (2.11)
Definition 2.5. The double Jacobiator of {{—, —}} is the map {{—, —, —}} : A*3 — A®3 that satisfies
la, b, cl} = {{a, {b, BB + a123) {6 e, altBL + T3 e fla. bR - (2.12)

If the double Jacobiator identically vanishes, we say that {{—, —}} is a double Poisson bracket. We call the
pair (A, {—, —}}) a double Poisson algebra.

The double Jacobiator is cyclically symmetric:
{la, b, c}} = 1123 {bs ¢, al} = T132) i, a, b} Va,b,c € A. (2.13)
In particular cases (depending on the underlying swap-commuting bimodule, see Section 3), the double

Jacobiator is a derivation in each argument for some specific bimodule structures on A®.

Remark 2.6. A k-bilinear operation on A (seen as a k-vector space) satisfying the cyclic antisymmetry
(2.10a) and with vanishing double Jacobiator (2.12) is called a double Lie algebra. Such structures have
been independently introduced by Schedler [26], Odesskii, Rubtsov and Sokolov [23], as well as De Sole,
Kac and Valeri [10]. Therefore, our definition of double Poisson brackets extends the notion of a double
Lie algebra in the presence of a multiplication on A and a swap-commuting A-bimodule structure on
A®2,

While (2.13) tells us that the double Jacobiator satisfies {—, —, =} = 7! o {—,—, =} o 7, for

o

o € {id, (123), (132)}, this is not the case for the other permutations {(12), (13), (23)}.

Definition 2.7. Let 0 € {(12),(13),(23)}. The o-weak double Jacobiator of {—,—}} is the map
owk{{—, —, —}} : A3 — A®3 given by

UWk{{_’ > _}} = {{_’ > _}} - Tg_l o {{_) > _}} S 2o (214)

If the o -weak double Jacobiator identically vanishes, we say that {—, —}} is a double o -weak Poisson
bracket. We call the pair (A, {{—, —}}) a double o -weak Poisson algebra.

In some cases, we will need to work in even greater generalities.

Definition 2.8. Let 0,0’ € {(12), (13), (23)}. The [0, 0']-weak double Jacobiator of {{—, —}} is the map
[0, 0 Twk{{—, —, —}} : A*3 — A®3 given by

[0)0/]Wk{{_) > _}} = {{_) > _}} - Tg_l o {{_) > _}} O T4/ . (215)

If the [0, 0’]-weak double Jacobiator identically vanishes, we say that {{—, —} is a double [0, 0”]-weak
Poisson bracket. We call the pair (A, {—, —}}) a double [0, 0']-weak Poisson algebra.

Due to the definitions, it is obvious that a double Poisson bracket is a double [o,c’]-weak
Poisson bracket for any choice of 0,0’ € {(12),(13), (23)} (hence o-weak when ¢/ = o). We also
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note that, due to (2.13) and 1(3123) Ty = Ty t653), the [0, 0']-weak double Jacobiator enjoys the cyclic
symmetry1

[o,0'lwk{{a, b, c}} = t123) [0, 0" Iwk{{b, ¢, al} = t132) [0, 0" Iwk{{c,a, b} , Va,b,ce A. (2.16)

Moreover, we can get from (2.13) that the property of being [0, 0']-weak Poisson, [0 (123), (132)0”]-
weak Poisson, and [0 (132), (123)0’]-weak Poisson are equivalent. Therefore, it suffices to consider the
following three groups of double (weak) Poisson brackets:

« double Poisson brackets, see Definition 2.5;

o double (12)-weak Poisson brackets, see Definition 2.7;

o double [(12), (13)]-weak or [(12), (23)]-weak Poisson brackets, see Definition 2.8.

These different cases will appear naturally as part of the families of examples considered in Section 3.

2.4. General properties

Fix a swap-commuting A-bimodule structure - on A®? and let {{—, —}} be a double bracket associated
with that bimodule. For the next results, we consider a set of generators S = {a; | j € J} for the algebra A.

Lemma 2.9. The double bracket is completely determined by its value on the elements of S. Furthermore,
if < is a total order on ], the double bracket is completely determined by the elements {{a;, a;}} € A®* for
i<jin], and {a;, a;}) € A®? forie]J.

Proof. 1t follows from the Leibniz rules that fora = a;, ...a; € A, with
ilye v esimsfls-->jn € J, we have

€ Aand b = aj, ...aq;

m n

m n
{{a, b} = ZZail cai ok ay i aieap )y e, gy, v ai, - a,
k=1 I=1

(We follow the convention that any empty product equals 1.) Any two elements in A are sums of terms
of that form, so we can conclude by k-bilinearity.

For the second part, the cyclic antisymmetry (2.10a) allows to get {{aj,a;}} = — {{a:, a5 }}O fori < j.
Hence the value of the double bracket is known on the elements of S, and we can use the first part. [

As a consequence of Lemma 2.9, we can easily construct double brackets.

Example 2.10. On A = k(x*1, y), fix dy, dy, d3 € A®2. Then the values
ot =di, fexh=d—d5, {{yyl}=ds—d5,

completely characterize a double bracket on A (for any fixed A-bimodule structure - on A®?). We have
{{y>x}} = —d5 and, due to k-bilinearity, we can find the value of the double bracket on inverses, e.g.

{{a, b_l}} =-b1. {{a, b} - b1, {{b_l,a}} =—blx {b, al} % b~l, foracA, b= %Y.
The next lemma (and its weak version, Lemma 2.15) will play an important role in Section 3.
Lemma 2.11. Assume that there exists a A-bimodule structure on A®3 for which the double Jacobiator

(2.12) is a derivation in one of its arguments. Then it is a derivation in all of its arguments. Furthermore,
the double bracket is Poisson if and only if the double Jacobiator vanishes on any 3 elements of S.

This is an important cyclicity property that we are willing to preserve. For that reason, Definition 2.8 does not encompass
cases where o, ¢’ have different parity, such as o = (12) witho’ = id.
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Proof. Let us suppose that the assumption is satisfied for the third argument, i.e. there exists a A-
bimodule structure on A®3, denoted -3, such that

fla.b,ccl =ca 3 fabaol+{abalsca.
Using the cyclic symmetry (2.13), we get derivation rules in the other arguments:
fla, biby, cl} = by -2 {{a, bz, ¢} + {{a, bis cf} 2 b2,
flaraz, b, c} = a1 1 a2, b, ¢} + {{ar, b,c} -1 az,
where we define the A-bimodules -1, on A®3 by
i = T(32) © -i+1 © (idg X T(123) X ids) + A % A®3 A > A% i=12.
For the second part of the statement, the forward part is obvious. For the backward part, we can write
any double Jacobiator as a sum over j,k,I € ] whose terms are obtained by applying some bimodule

multiplications ;, 1 < i < 3,to {{ aj, ak al}}. If each {{aj, ag, al}} = 0, any double Jacobiator vanishes.
This proof is easily adapted if we start with a derivation in the other two arguments. O

Lemma 2.12. Under the assumptions of Lemma 2.11, if the double bracket takes constant values on the
elements of S (i.e. {{ai,aj}} = Xij 1 ® 1 for A € k, with Ajj = —Aj;), then it is Poisson.

Proof. By k-bilinearity, {{ aj, {ax, arl} }} . = M {{ aj, 1}} ® 1 = 0. Thus, the double Jacobiator vanishes
on any triple from S by (2.12), and we can conclude using Lemma 2.11. O

Example 2.13. All double brackets with constant values on generators of A = k(x*!, y*1) (which arise
as a special case of Example 2.10) must satisfy {{x,y}} = A1 ® 1 for A € kand {{x,x}} = 0 = {{y.»}}.
Provided that the double Jacobiator is a derivation in its third argument, these are double Poisson
brackets by Lemma 2.12.

We finish by giving equivalent definitions of the double Jacobiator (2.12). To this end, we introduce
in analogy with (2.11) the following maps

= —Nr:AxA®? 5 A% {la,by @bl =b ® (@b}, (2.17a)
=P : A% x A - A%, {a; ® ap, b}, = {{a1, b)) ® ay ® {a1,b)), (2.17b)
= —Nr:A®* x A — A®? | {{a; ® ap, b} = a1 ® {{az, b} . (2.17¢)

(Our convention for {{a; ® as, b}y is different from the one in [10].)

Lemma 2.14. For any a,b,c € A, we have that

fla. b, c} = {{a, {b, BB — b, fa. BYr — {Ha b}, cBr (2.18)
fla. b, c} = —{{b, fla, B Br — T123) e {0 alPr — 132 f{a, i, bR BR (2.19)
fla, b, chh =t (Hlib, all, Wr + Ta23) lla, B, bR + Ta32) (i, b)), allg) - (2.20)

Equivalently, we can write (2.19) and (2.20) as
(=B == D" i oll—f——Mrotar o3>

s=0,1,2

{{_) ) _}} = Z T(12) © T(5123) © {{{{_) _}} > _}}R o T(T;:i) © 7(12) -
s=0,1,2

Proof. Equation (2.18) is Remark 2.2 in [10]. Indeed, the definition of the double Jacobiator (2.12) does
not require to know the underlying swap-commuting A-bimodule structure.

For (2.19) this follows from {{a, {{b, c}}} = —t132) {4, l{c, b} }}r. For (2.20), it is a consequence of
fla, {6, BW L = s e, b}, alir. O
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Similar statements hold in the weak case. We only state the following two results (the o-weak case
follows by taking ¢’ = o), which are easily adapted from Lemmas 2.11 and 2.12 using the cyclic
symmetry (2.16) of the [0, 0']-weak double Jacobiator.

Lemma 2.15. Let 0,0’ € {(12),(13),(23)}. Assume that there exists a A-bimodule structure on A®>
for which the [0, 0']-weak double Jacobiator (2.15) is a derivation in one of its arguments. Then it is a
derivation in all of its arguments. Furthermore, the double bracket is [0, o']-weak Poisson if and only if the
[0, 0']-weak double Jacobiator vanishes on any 3 elements of S.

Lemma 2.16. Under the assumptions of Lemma 2.15, if the double bracket takes constant values on the
elements of S, then it is [0, 0']-weak Poisson.

2.5. Morphisms and equivalences

For i = 1,2, let A; be equipped with a double bracket {—, —}}; associated with a swap-commuting
bimodule structure -; on A?Z.

Definition 2.17. A morphism of double brackets is an algebra homomorphism ¢ : A; — A; such that
fe@,0)}, = (@) ({a,bl}),  VabeA;. (2.:21)

If both double brackets {{—, —}}; are Poisson (resp. o -weak Poisson or [0, o']-weak Poisson), we say that
¢ is a morphism of double Poisson algebras (resp. of double o -weak Poisson algebras or of double [o,0']-
weak Poisson algebras).

In the presence of a morphism of double brackets, the two bimodule structures could be unrelated.
Indeed, any algebra homomorphism is a morphism of double Poisson algebras if we take the zero
double bracket on both algebras (for any two swap-commuting bimodule structures). Nevertheless, the
bimodule structures are not arbitrary in general, since the Leibniz rules yield identities such as

¢ (b)2f¢ (@), p (OB, +{¢(a), ¢ (D) }22¢ (0) = (@) (b-1{{a, ch1)+(@®¢) (fa, bl}1-10),  a,b,c € Ay

In particular, we can consider morphisms when the two double brackets are associated with the left
bimodule structure (2.1) on A; and A; respectively. This observation can also be made for the right
(2.2), outer (2.3) or inner (2.4) bimodule structures, see §3.5 for some examples.

A morphism of double brackets transforms the double Jacobiators (2.12) according to

{@), (), 0N, = ¢ Ha,b,c}),  abceA. (2.22)

As a consequence, we get the following generalizations of [11, Lemma 3.2].

Lemma 2.18. Let ¢ : Ay — A, be a morphism of double brackets.

If ¢ is surjective as an algebra homorphism and A, is a double Poisson algebra, then A, is a double Poisson
algebra. If ¢ is injective as an algebra homorphism and A; is a double Poisson algebra, then A, is a double
Poisson algebra. In both cases, ¢ is a morphism of double Poisson algebras.

Lemma 2.19. Let ¢ : Ay — A, be a morphism of double brackets, and 0,0’ € {(12), (13), (23)}.

If ¢ is surjective as an algebra homorphism and A, is a double [0, 0']-weak Poisson algebra, then A, is a
double [0, 0']-weak Poisson algebra. If ¢ is injective as an algebra homorphism and A, is a double [0, 0']-
weak Poisson algebra, then A is a double [0, 0']-weak Poisson algebra. In both cases, ¢ is a morphism of
double [, o' ]-weak Poisson? algebras.

2All statements work for the o-weak case by taking o’ = o.
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Proof. Knowing the transformation of the double Jacobiator (2.22), we have by (2.15) the same transfor-
mation for the [0, o']-weak double Jacobiator: [0, o' Twk{{¢ (@), ¢ (b), P ()}, = ¢®* ([0, o' Twk{{a, b, ¢}, ).
So this follows by a straightforward adaptation of [11, Lemma 3.2]. O

Definition 2.20. A warped morphism of double brackets is an algebra homomorphism ¢ : A} — A;
such that there exists a morphism W : A% — A$? that intertwines the bimodule structures, i.e.

Va1d1b)=v@ 2 ¥d2v®), abeAn,deAf?, (2.23)
in such a way that ¥ ({{a, b}};) = {¥ (@), ¥ (b)}},.

A morphism of double brackets is easily seen to correspond to the case of a warped morphism of
double brackets where ¥ = ¢ ® . If we denote by x*; the swap bimodule of -;, i = 1,2, then the
analogue of identity (2.23) with the corresponding swap bimodule structures is

W(as) d* b)=y(a@) % V() x¥(b), abeA, deA®, (2.24)

where U : A®? — A2, U(d) = W(d°)°.

Definition 2.21. Assume that A := A; = A,. An equivalence of double brackets is a warped morphism
of double brackets with ¥ = id4 such that W is an automorphism of A®2,

The different ways to compare double brackets are depicted in Figure 1.

Lemma 2.22. Let {{—, —}}; be a double bracket associated with a swap-commuting A-bimodule structure
-1 0n A®2, Let U be an arbitrary automorphism of A®? commuting with the swap automorphism ° of A%2.
Then

2 AXA®T XA A%, aodabi=V(a V() b), (2.25)
defines a swap-commuting A-bimodule structure on A®? while
f=-th=¥ol—-h, (2.26)

is a double bracket associated with 5. Furthermore, ¥ induces an equivalence of the double brackets

fi— = and {—, -1

A1XA1&A2XA2 A1XA1uA2XA2
f——h (D) - f——h 2) fi— -
AlRA ———— Ay ® A AlQA ——— Ay ® A
¢ Ad v

f——h G) \{—-h

A®A — A®A
® v ®

Figure 1. Commutative diagrams representing the definitions of: 1. Morphism of double brackets; 2. Warped morphism of double
brackets; 3. Equivalence of double brackets.
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Proof. Note that the assumption W(d°) = (¥ (d))° for all d € A®? also holds with W~ in place of W.
This allows us to show that the swap A-bimodule *; associated with -, (2.25) satisfies
%t AXAD? X A > A%, axydxybi=W(ax Y I(d) % b), (2.27)

where *; is the swap A-bimodule of -;. In particular, we can check that (2.8) for -, *; is satisfied (i.e. -»
is swap-commuting) because -; is swap-commuting.

Since {{—, —}}; is cyclically antisymmetric and ¥ commutes with °, then {—, —}}, satisfies (2.10a).
To check the right Leibniz rule (2.10b) for {{—, —}}, (with -;) using that of {—, —}}; (with -), we note

fla,bch, = V(b1 fla.ch +{abh10=b2¥{acl) +V({{a, b}}y) 2 ¢
=bflacl+ fla bl 2c.

In the same way, the left Leibniz rule (2.10¢) is satisfied for {—, —J}}, (with %) because it holds for
{{—, —}1 (with %;). Hence, we have that {—, —}}, is a double bracket. The fact that W defines an
equivalence is direct from the definition of the second double bracket (2.26). O

Finally, an equivalence of double brackets may or may not preserve double Poisson brackets. Two
opposite behaviors are given in Example 2.23 and Proposition 2.24.

Example 2.23. Let A be an arbitrary algebra, and assume that {—, —}}; is a double bracket associated
with -] = o, the outer bimodule structure (2.3) on A%2. Fix an automorphism o of A. Using Lemma 2.22
with ¥ = ¢ ®@a, themap {{—, —}}, = (¢®@a)of{—, —}}; is a double bracket associated with the a-twisted
outer bimodule structure -, = %, on A®2, which satisfiesa 2 d 2 b = a(a)d’ ® d"a(b). In particular,
o ® o induces an equivalence of double brackets.
As a special case, consider A = C(x, y) with

flrx}; =xR1-1Qx, {{y,y}}l =yR1-1Qy, {{x,y}}l =0. (2.28)
(This completely determines a double bracket {{—, —}}; associated with the outer bimodule structure by
Lemma 2.9.) From the work of Van den Bergh [27], we have that (4, {—, —}};) is Poisson. Take « to be
the automorphism « : x > y,y > x. This yields an equivalence of double brackets between {{—, —}};
and {{—, —}}, (associated with the a-twisted outer bimodule structure) defined by

foxh=y®1-10y, {{ryl},=x01-10x {{xy}},=0. (2.29)
This equivalent double bracket is not Poisson. Indeed, we claim that {{x, y, y}}2 # 0, which implies that
the double Jacobiator {{—, —, —}}, is nonzero. To see this, note that {{x,y.y}}, = {{x {{».y}},}},, by
(2.12) because {{x, y}}2 = 0. We compute the above term,

{{x’ {{y>y}}2}}2’L = {{xax® 1}}2,L - {{X,l ®x}}2,L =)/® I1®1—-1 ®y® L,

which is nonzero and proves our claim.

Proposition 2.24. Let {{—, —}}; be a double Poisson bracket associated with a swap-commuting A-
bimodule structure -1 on A®2. Then {{—, -}, = {{—, —}}5 is a double Poisson bracket associated with
the swap A-bimodule -, = %1 of -1 on A®2. Furthermore, the swap automorphism ° induces an equivalence
of the double brackets {{—, —}}; and {{—, —}}».

Proof. Taking W = ° in Lemma 2.22, we have all the claims except the fact that {{—, —}}, is Poisson. For
a,b,c € A, we compute using the cyclic antisymmetry of {{—, —}}; that

@ (0 AWalas = — lla e b oy = —tan) Ha e b
Thus, the double Jacobiator (2.12) becomes
la, b, cll, = — taz) @ e, b} 1 L — Taesy Tz (b, {a, BB L — Tasy T e db, alhi B L
= — 1) [{a e, b1 By 1 + Taazs) e (b ali By + Tas2) (6 fla i ] (2.30)
=—1ay fla.c b} .
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Since {—, —}}; is Poisson, we have {{—, —, —}}; = 0 which implies that {{—, —, —}}, = 0 and thus
{{—, —}}, is a double Poisson bracket. O

We can adapt Proposition 2.24 for double weak Poisson brackets. The following result concerns the
different cases that are not obtained by permutation from one another, see the end of §2.3.

Proposition 2.25. Let {{—, —}}; be a double bracket associated with a swap-commuting A-bimodule
structure -1 on A%?. Let {{(—, —}}, = {—, —15 be the equivalent (under the swap automorphism °) double
bracket associated with the swap A-bimodule -» = 1 of -1 on A®2. Then

(i) {—, — 1 is (12)-weak Poisson if and only if {—, —}}, is [(12), (13)]-weak Poisson.

(i) {{—, — 1 is [(12), (23)]-weak Poisson if and only if {{—, —}}, is [(12), (23)]-weak Poisson.

Proof. Using (2.30), the double Jacobiators are related by {—, —, —}}, = —t2) o {—, — —}}1 0 T23).
(i) For 0 = (12) and ¢’ = (13), we can write that
[U) U/]Wk{{_s > _}}2 = {{_7 > _}}2 - T(12) o {{_x > _}}2 o T(13)
=—tayof{———horey +{{—— —PioTays
=—1tap 0 ({(—— - —taz o {—— -1 o t12) 0 723
= — 112 o owkf{—, —, —}; 0 7(23) .
So the o-weak Jacobiator of {{—, —}}; vanishes if and only if the [0, 0]-weak Jacobiator of {{—, —}},
vanishes.
(ii) For 0 = (12) and o’ = (23), we have
[0, 0 Iwkf{—, — =}, =fl— — =} — taz o f{— — — P2 0 723
= —T12) © {{_S ) _}}1 0 T(23) + {{_> ) _}}1 = [Js U/]Wk{{_) ) _}}l .
We can directly conclude the result. O

2.6. Double brackets over a general base

Let B be a unital subalgebra of A. Given a double bracket {{—, —}} on A, it is sometimes convenient
to require the following B-linearity condition: for any b € B, {{b,—}} : A — A®2 (or equivalently
(= b} : A —> A®%)is identically zero. As was originally observed by Van den Bergh [27], it is
particularly interesting to consider B-linear double brackets when A admits a complete set of orthogonal
idempotents (es)ser and B = @serkes. All the previous definitions and results can be adapted to the B-
linear case in a straightforward way.

3. Specific properties and examples ...

We now describe interesting families of double brackets associated with a swap-commuting bimodule
structure. To compare these families with Van den Bergh’s original definition of double bracket [27], we
derive some of the properties that they share.

3.1. ... from the outer bimodule structure

The case of double brackets associated with the outer bimodule structure (2.3) is due to Van den Bergh
[27]. A more general consideration consists in endowing A®? with the (o, B)-twisted outer bimodule
structure (obtained by combining (2.5) and (2.3)). A double bracket on A associated with this bimodule
structure satisfies the right Leibniz rule

fla, be} = a(b) fla. e} ® {la, cl}” + {{a, b} ® {{a, b} B(O), 3.1)
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and, using e.g. the cyclic antisymmetry (2.10a), we have the left Leibniz rule

flac, b} = fc. b} ® a(a) {{c; b} + {{a, b} B(o) ® {la, b} . (32)

Thus, the left Leibniz rule is a derivation for the (o, 8)-twisted inner bimodule structure.

Next, we want a criterion to determine when a double bracket is Poisson. (This is trivially the case
for the zero double bracket {{—, —}}.) Recall from Lemma 2.11 that it suffices to verify the vanishing of
the double Jacobiator on a set of generators, provided that it is a derivation in its third argument. By
mimicking the proof of Proposition 2.3.1 in [27], we get that the double Jacobiator (2.12) satisfies for
any a,b,ci,c € A

fa.b,cical} = (@ (c) ® 1@ 1) fa, {b, 2} + o (b1} 1 ® 1 ® B(c2))
+ (a(c) ® 1® 1) 7(123) {{bs flca, a1 + (za23) (6> e al}l) A @ 1 ® B (c2))
+ (1) ® 1 ® 1) Ta32) f{eas fa, bR + (taz2) e, {a 0B} ) 1 © 1 ® B(ez))  (3.3)
+ fla, ()} ® fa, a(c))) BU{b, 2})) ® {b, 2"
+ flcr, all” ® a({{cr, a})) {b, B(c)) ® {b, B(c)))” .

Lemma 3.1 ([27]). In addition to the trivial case when {—, —}} = 0, the double Jacobiator (2.12) of a
double bracket {—, —}} associated with the (a, B)-twisted outer bimodule structure is a derivation in each
of its entries when @ = B = ida. In that case the third entry acts as the following derivation A — A®3:
la,bca =1 ) {{ab )+ {abal(1®1®c), foralla,b,ci,c, € A.

Proof. The case « = B = idx for the third entry holds because the last two terms in (3.3) cancel out by
(2.10a). We get derivations in the other two entries by Lemma 2.11. O

Note that Lemma 3.1 does not exhaust all possible cases where {—, —, —}} is a derivation in its
arguments, as the following example shows.

Example 3.2. Take A = k{x, y)/(x?, y%, xy, yx). We can extend

frnx}=x@y—yox, {{xy}}={px}}=0, (3.4)
to a double bracket associated with the o-twisted outer bimodule, for the automorphism a(x) = y,
a(y) = x. Indeed, it suffices to check that {{—, —}} vanishes on any product of generators x, y after

applying Leibniz rules (3.1) and (3.2) (with 8 = «). Next, we note that the double Jacobiator of this
double bracket vanishes on any triple of generators x, y, see e.g. [10, §2.6] (this does not require any
Leibniz rule). Since any product of at least two generators is zero in A, the double bracket is Poisson.

Given an arbitrary double bracket {{—, —}} associated with the (&, 8)-twisted outer bimodule struc-
ture, we can consider the k-bilinear operation
{_) _}m :mo{{—,—}} :A XA_) A> {a)b}m = {{a>b}}/ {{a> b}}// > (35)

where m is the multiplication on A seen as amap A ® A — A. We get the next result from (3.1).

Lemma 3.3. The map {—, —}m is an («, B)-twisted derivation in its second argument. That is, for any
a,b,c € A {a,bclm = a(b){a, c}m + {a, b}mB(C).

Lemma 3.4. Ifa = B, then {—, —}m : A x A — A descends to a map {—, —}m : A/[A,A] Xx A — A,
which is an a-twisted derivation in its second argument. Furthermore, this descends to an antisymmetric
map {—, —}m : A/[A,A] X A/[A,A] — A/[A, Al

Proof. For the first part, note that the identity
{ab, c}m = {la, clf (D) {la, c}” + {{b, cl} «(a) {b.c}”
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implies that {ab — ba, c};, = 0 for any a,b,¢ € A. In particular, the derivation property follows from
Lemma 3.3. For the second part, we compute for {—, —}y, : A/[A,A] x A — A that
{a,bc — cb}ym = [ (D), {a, c}m] + [{b, ¢}m> ¢ (a)],

so that we have a well-defined map A/[A,A] x A/[A,A] — A/[A, A]. Its antisymmetry follows from
(2.10a): {a, b}y = — {b,all’ {b, alY, which is —{b, a};, modulo commutators. O

In the case @ = B = ida, both lemmas can be found in [27, §2.4]. Furthermore, it is proven that in
the presence of a double Poisson bracket, the map {—, —}n (3.5) is a left Loday bracket® which descends
to a Lie bracket on A/[A, A]. In the (o, B)-twisted case, we can compute that

{a,{b, c}m}m — {b:{a, }m}m — {4, b}, €}
=mo B3 fa, {{b, Y}l + mo oy o 723 {b, flcal}l}L + mo By o T3z o fa, b} (3.6)
—mo B3 {b, f{a, c}} — moa o723 fa, e, bR} — mo oz 0 7132 f{c, {0, aB
Here we extended the multiplication by m : A®% — A, while for each 1 < i < 3 an automorphism o
of A defines an automorphism «; of A®3 acting by « on the i-th factor and by id4 on the other two, e.g.
o1 = o ®idg ®id4. Except in particular cases (e.g. « = B = ida), the right-hand side of (3.6) is not
a difference of two double Jacobiators. Hence (3.6) does not vanish in general even for a double Poisson

bracket, and {—, —}, is not a left Loday bracket. Nevertheless, we can modify Van den Bergh’s result as
follows.
Proposition 3.5. Assume that {—, —}} is a double bracket associated with the a-twisted outer bimodule

structure. Introduce the (left) o-twisted double Jacobiator for any a, b, c € A by

fla. b, By == a3 {a. {0, BB + Ta23) o as {{b, . al B + Tz oz e, fa BB . (3.7)

Ifmo{{—,—, —}4 —mo{{—, —, —}y0ta2) =0, then {—, —}n, is a left Loday bracket on A. In particular,
it descends to a Lie bracket on A/[A, A].

Proof. To have a left Loday bracket, we need that the right-hand side of (3.6) vanishes. But it equals m o
{la, b, c}}y —mo{{b,a,c}l,, which is zero by assumption. The map induced on A/[A, A] is antisymmetric
by Lemma 3.4, which finishes the proof since an antisymmetric Loday bracket is a Lie bracket. O

The operation {{—, —, —}}, — {— — — s o Ta2) : A% 5 A®3 does not enjoy nice derivation rules
(compare with (3.3)), so checking the assumption of Proposition 3.5 seems to be a challenging task for
o # ida. When o = id4 the map (3.7) is just the double Jacobiator (2.12), so Proposition 3.5 specializes
to Van den Bergh's result [27, §2.4].

Let us finally comment on the equivalences between double brackets associated with twisted outer
bimodule structures. First, by reverting the argument made in Example 2.23, we can check that any
double bracket associated with the a-twisted outer bimodule structure (where f§ = «) is equivalent
to a double bracket associated with the outer bimodule structure (where 8 = a = idy). Second,
this argument can be adapted in the («, B)-twisted case to give an equivalence with a double bracket
associated either with the (y,id4)-twisted or the (ida, y)-twisted outer bimodule structure (with y =
B~ loaory = a~!op, respectively). Note, however, that such equivalences do not always preserve the
Poisson property as Example 2.23 shows. This is precisely the reason why the «-twisted double Jacobiator
(3.7) appears in Proposition 3.5.

3A left Loday bracket is a bilinear map [—, —] on a vector space V satisfying, forany a, b, c € V, [a, [b, c]] = [[a, b, c]+[b, [a, c]].
Itis aright Loday bracket ifinstead [[q, b], c] = [a, [b, c]]+[[a, c], b]. An antisymmetric Loday bracket is therefore a Lie bracket.
We follow the terminology of [27], as Loday brackets are usually called Leibniz brackets [20].
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3.2. ...from the inner bimodule structure

Given a double bracket {{—, —}} on A which is associated with the («, 8)-twisted inner bimodule
structure, it satisfies the Leibniz rules
fla, bel} = {{a, Y @ a(b) {{a, )’ + {a, b} B(0) @ {{a, b}" , (3.8)
{{ac, b} = a(a) {c, b)) @ {{c, b} + {a, b} @ {{a, b} B(0). (3.9)

These Leibniz rules are consistent with the cyclic antisymmetry (2.10a). By Lemma 2.22, the swap
automorphism ° induces an equivalence with a double bracket associated with the («, B)-twisted outer
bimodule structure. Thus, many results covered in §3.1 in the outer case can be directly rewritten, or
proven in the same way. We start with the following reformulation of Proposition 2.24.

Theorem 3.6. A double bracket {{—, —}} on A associated with the («, B)-twisted inner bimodule structure
is Poisson if and only if the equivalent double bracket {{—, —}}° associated with the (o, B)-twisted outer
bimodule structure is Poisson.

Lemma 3.7. In addition to the trivial case when {{—, —}} = 0, the double Jacobiator (2.12) of a double
bracket {{—, —}} associated with the («, B)-twisted inner bimodule structure is a derivation in each of its
entries when o = B = ida. In that case the second entry acts as the following derivation A — A®:
fla,b1b2,c} =1 Qb1 @ 1) {{a, by, c}} + {{a, b1, c} 1 ®1Q by), foralla, by, by, ¢ € A.

Proof. It suffices to combine Lemma 3.1 with the fact that {{—, —, =)} = —t2) o {—, — —}}; 0 T(23) (see
the proof of Proposition 2.24), where {{—, —, —}}, is the double Jacobiator of {—, —}}°. O
Lemma 3.8. If {{—, —}} is associated with the (o, B)-twisted inner bimodule structure, the k-bilinear
operation

{_’_}m = mo{{_’_}} tAXA— A, {a’ b}m = {{a) b}}/ {{a) b}}// > (310)

is an («, B)-twisted derivation in its first entry. Le. {ab, c}m = a(a){b, c}m + {4, c}mB(b), Ya,b,c € A.
When o = B, the map {—, —}m (3.10) descends to a map {—, —}m : A x A/[A,A] — A, which is an
a-twisted derivation in its first argument. Furthermore, this descends to an antisymmetric map {—, —}m :
AJ[A, Al x AJ[A, A] — AJ[A, Al

Proof. Easily adapted from Lemmas 3.3 and 3.4. O

Proposition 3.9. Assume that {—, —}} is a double bracket associated with the a-twisted inner bimodule
structure. Introduce the (right) «-twisted double Jacobiator for any a,b,c € A by

{la, b, chry = a1 {{{a, bl}, chr + T(123) 0 o1 {{{bs e} allr + T(132) 0 a1 {{{{c, al}, blig - (3.11)

Ifmo{{— — —Jre —mo {{— — —Pre © T23) = O, then {—, —}m is a right Loday bracket on A. In
particular, it descends to a Lie bracket on A/[A, A].

Proof. The definition of (3.11) uses (2.17¢). It suffices to show that we have a right Loday bracket on A
under the given assumptions, i.e. we need the vanishing of

{{a, b}m, c}m — {{a, c}m, blm — {4, {bs m}m - (3.12)
We can compute, thanks to the cyclic antisymmetry (2.10a) of {—, —}}, that
{{a, b}m, chm = {{{a, bY {a, b}, c}m
=m [a({{a,b}) ® {{{a. b}, c}} + {{{a b} . c}} ® a({{a, b}")]
=moo {{{abl},chr —motus) oo {{{bal},clr
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and similarly
{{a, cJms bIm = mo oy {{{a,cl}, b — mo t3z) 0 a1 {{{c,al}, bl
{a,{b, c}m}m = mo T3y o a1 {{{{c, bl},allg — mo T(123y 0 oy {{{b,ch,ally .

Gathering these identities, we see that (3.12) equals

m [a; {({{a, b}, chr + T123) 0 a1 {{{bs e} alr + Ta32) 0 a1 {{{c: al}, bYg]
—m [a1 {({{a, ¢}, b g + T123) 0 o1 {{{c, b}, alr + T(132) 0 1 { b al cPr]

which vanishes under the given assumption. O

We have the equality {—, —, —}} = z12) o {{— — —Jrd, © T(12) between the double Jacobiator
originally defined in (2.12) and its right twisted version (3.11). This follows from a direct comparison of
(3.11) and (2.20) in the case @ = id4. Thus, the assumptions of Proposition 3.9 are satisfied for a double
Poisson bracket associated with the inner bimodule structure (i.e. when o = id4).

Theorem 3.10. Let {{—, —}}; and {{—, —}}, be double brackets associated with the inner and outer bimodule
structures, respectively. Assume that they are equivalent under the swap automorphism: {—, —}}; =
{{—, —))3. If one of them is Poisson, then the operations {—, —}jm = mo {{—, —Bpj =12 are Loday
brackets (right for j = 1, left for j = 2) related through

{a,b}im = —{b.alym. (3.13)
In particular, they induce the same Lie bracket on A/[A, A].
Proof. By Proposition 2.24, if one double bracket is Poisson, then both double brackets are. Therefore,

by Propositions 3.5 (in the outer case) and 3.9 (in the inner case), we get that the maps {—, —}; n are
Loday brackets which descend to Lie brackets. So we are left to prove (3.13). This follows from

{a,blym =mo {{a,b}}; = —mo {b,a}}] = —mo {{b,al}, = —{b,alom,
using the equivalence of the two double brackets and the cyclic antisymmetry of {{—, —}};. O
Remark 3.11. Itis well-known [20] that if [—, —] is a left (resp. right) Loday bracket, then [x, yls = [y, %]
defines a right (resp. left) Loday bracket. Thus, Theorem 3.10 can be interpreted as lifting this principle

to double brackets when [—, —] = {—, —}m is induced by a double Poisson bracket associated with the
outer (resp. inner) bimodule structure.

3.3. ...from the right bimodule structure

We endow A®? with the («, B)-twisted right bimodule structure (obtained by twisting (2.2)). A double
bracket on A associated with this bimodule structure satisfies the right Leibniz rule

{la,bc) = fa, ¢} @ a(b) {la,c}” + {a, b} @ {a, b} B(o), (3.14)
while we have the left Leibniz rule
{lac, b} = a(a) {c, b} ® {c, b} + {{a, b} B(0) ® {a,b})", (3.15)

meaning that the left Leibniz rule is a derivation for the («, 8)-twisted left bimodule structure. Let us
remind the reader that the case @ = 8 = id should be seen as a formalization of the operation {— © —}
(see the introduction) which is well-known in the integrable systems community. In particular, many
results presented below are expected.



1688 M. FAIRON AND C. MCCULLOCH

A short computation yields that the double Jacobiator (2.12) satisfies for any a, b, c1,¢c2 € A

fla.b,acl = 1Q1®alc)) fa {b, bl + fa {ball A ®1® B(c))
+(1®1®a*(c1) Ta23) (b ez, allls + (z(a2s) b, e alll) 1 © 1 ® B (c2))
+ (1 ®1®alc) Tas) fle. fla, bR + (ta32) e {a YY) 1 @ 1 ® B(c2))
+ flez, al)” @ (b, a(c)} ® {{b ()} B{{c2, al})
+ e, a}” ® (b, B(c) ) ® a(fcr,al)) (b, )} .

Contrary to the study of double brackets associated with the outer/inner bimodule, in the casex = 8 =
id4 the double Jacobiator fails to be a derivation in all its arguments in general as we have

{{a) b, CICZ}} = (1 1R Cl) {{a’ b) CZ}} + {{a) b) Cl}} (1 ®1® C2)
+ ez, a}” @ (b, 1} @ b, 1} flca, all + {{er, all” ® (b, 2l ® f{er, al) (b c2))” .

We can nevertheless state the following result in the case &« = 8 = id4.

(3.16)

Lemma 3.12. For o = (12), the o -weak double Jacobiator (2.14) of a double bracket {—, —}} associated
with the right bimodule structure is a derivation in each of its entries. In that case the third entry acts as
the following derivation A — A®3: owk{{a, b, a1l = 1®1Q ) owk{{a, b, +owk{{a, b,¢c1} 1®
1 ® ¢2), foralla,b,c1,c2 € A.

Proof. Combining the definition (2.14) with (3.16), we have for o = (12) that

owk{{a, b,cic2}} = {{a, b, crc2} — T2 {(br 2, c1c0 )
=(1Q®1Qc) owk{{a,b,c;}} + owk{{a,b,c1}} 1 Q1R ¢,)
+ ez, al)” ® fib, a1} ® (b e} flea, al)’ + e, al” ® {{b, 2} @ {ler, al)’ {b, 2}
—{la, a1} ® {lcz, b} @ fa, c1}} flea, b} — {{a, 2 ® fler, b} © fler, bY fa. 2}
Due to the cyclic antisymmetry (2.10a), the third and sixth (resp. fourth and fifth) terms in the second

equality cancel out. This gives the claimed derivation property for the o -weak double Jacobiator in the
third argument, hence we have a derivation in each entry by Lemma 2.15. O

As a consequence of Lemma 3.12, double (12)-weak Poisson brackets are more interesting than
double Poisson brackets in the case associated with the right bimodule structure. This is illustrated in
the next example.

Example 3.13. Let A = k(x, y). By Lemma 2.9, for any A € k*, we have a double bracket satisfying
foxp=0, {{ryf}=0 {xy}}j=2101.

Combining Lemmas 2.16 and 3.12, this double bracket is (12)-weak Poisson. However, it is not Poisson:
although the double Jacobiator vanishes on generators, we have {{x,x,*}} = —2A?1® 1 ® 1.

Another difference with the outer/inner cases is that double brackets associated with the (twisted)
right bimodule structure do not enjoy nice properties after multiplication of the two components as in
(3.5). In the present situation, there is no need to multiply factors of the double bracket if we quotient
out by commutators.

Lemma 3.14. If {{—, —}} is associated with the a-twisted right bimodule structure (when B = ), the
double bracket descends to maps

= - A/AAl X A — AJ[AAIQA, {— —Je:AXA/AA]l - ARA/AA]l.  (3.17)
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These operations satisfy the following a-twisted derivations:

o{{a) bC}} =b (Z .{{61, C}} + .{{a) b}} ‘g c,
{lbc,alle = b - {{c,al} + {bal} - ¢,
where - (resp. -') is the bimodule structure on A/[A,A] ® A (resp. A ® A/[A, A]) induced by the a-

twisted right (resp. left) bimodule structure on A®2. Furthermore, both maps descend to the same operation
ofl— —Ne : A/[A, Al X A/[A, Al — A/[A, Al @ A/[A, Al

Proof. To see that {{—, —}}, is well-defined, it suffices to note that by (3.14)
{{a, bc — cb}} = {{a, b)) ® [{{a, b}, a(0)] + {a, ¢} @ [a(b), {a,c}"], (3.18)

so that {{a, —}} sends [A,A]to A®[A, A] forany a € A. Next, {{—, —}}, inherits from the left Leibniz rule
(3.15) the stated «-twisted left derivation in its first argument. The case of ¢ {{—, —}} is similar. Gathering
both constructions, we can prove that we have a well-defined map {—, —J},. O

Proposition 3.15. Let {{—, —}} be a double (12)-weak Poisson bracket associated with the right bimodule
structure. Then the operation ¢f{—, —}}, from Lemma 3.14 uniquely extends to a Poisson bracket on
Sym(A/[A, A]).

Proof. To ease notations, we also denote by a € A the image of such an element in A/[A, A]. We write
the commutative product on the symmetric tensor algebra Sym(A/[A, A]) by e. For any n > 1, , :
A®" — Sym(A/[A, A]) is the morphism defined by 7,(a; ® ... ® a,) = ay e ...  a,. It will be useful
to note that for any o € Sy, 7, 0 75 = 7.

We claim that the desired Poisson bracket is the unique operation satisfying

{= —lsym : Sym(A/[A, A]) x Sym(A/[A, A]) — Sym(A/[A, A]),{a, blsym = 72 {{a, b} .

(Itis unique by extension through the usual Leibniz rules of a Poisson bracket.) This operation is given on
elements of A/[A, A, seen as generators, by extending the operation  { —, —}}, through (A/[A, A])*? —
Sym(A/[A, A]) by symmetric multiplication of the two components. Antisymmetry follows from the
cyclic antisymmetry (2.10a):

{a,b}sym = 72 {{a, b} = —m2 {{b,a}}° = —m2 {{b,a}} = —{b,a}sym .
Jacobi identity follows from the vanishing of the (12)-weak double Jacobiator. Indeed, we have that
{a, {b, c}sym)sym = {a {{b, c}} Jsym ® {{b, cl}” + {{b, c}} @ {a, {b, c}}"}sym
= m3({{a, {{b, B W + Ha (b, W) -

We can then write

{a, {b, C}Sym}Sym +1{b.{c, a}Sym}Sym +{c {a, b}Sym}Sym
= m3({{a, {b, PP + T123) {0: e a} B + Ta32) e fa, YY)
+ m3({{a, {0, cBBr + T123) e {a. DRBR + T(132) {b: e aBBr) -

Using (2.19), this equals w3 ({{a, b, c}} — {{b, a,c}}) = w3({{a, b, ¢}} — ta12) {6, a, c}}). By definition, this is
the image under 73 of the (12)-weak double Jacobiator cwk{{a, b, c}} with o = (12). O

Instead of working on A/[A, A] and Sym(A/[A, A]) as in the previous two results, we can consider
the abelianization of A, given by A = A /Ja where J4 is the (two-sided) ideal generated by elements of
[A, A]

Lemma 3.16. If {—, —}} is associated with the a-twisted right bimodule structure, then the double bracket
descends to A,
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Proof. We get that for any a,b,c € Aandj € [A, A],

la, bjc}} = {a. b} ® {{a, b} a(Pa() +a®) {{a.i }} & {{a )} @(o) + a®a() {a, ) @ {a,c})” .
Since «(j) € [A, A], the first and third terms belong to A ® J4 and J4 ® A. We get from Lemma 3.14 that
the second term is in A ® J4, hence {{A,Ja}} C A ® Ja + J4 ® A. This is also the case for {{J4, A}} by
cyclic antisymmetry (2.10a), hence we get a well-defined map {—, —}} : A®® x A% — A® @ A2 [

Note that the double bracket induced from A to A% preserves the property of being (weak) Poisson.

Let us now recast a well-known result within this formalism. Given a € A, we introduce the notation
a1 = a ® 1 ® 1, and we write in the same way a, a3 (where the subscript refer to the position of 4 in
A®3), For an element r € A®2, let us introduce the following embeddings into A®:

m=rerel, m=reler, m=10rar".

We also let rjj = (r°);; when i > j. We say that r is a solution to the Classical Yang-Baxter Equation, or
CYBE for short, if (we do not require r = —r°)

[r12, 1131 + [r12, r23] + [132, 71131 = 0. (3.19)

Here, we use the commutator on A®3. For the next statement, we consider B to be an algebra containing
a complete set of orthogonal idempotents (e;);cr: eiej = djj¢jand ) ,; e; = 1. We assume that A is freely
generated over B by elements (v;j);jer (some v;; could be taken to be zero) satisfying vj; = e;v;jej. We set

v= Zi,je[ Vij-

Proposition 3.17. Assume that r € B®* C A®? is a solution to the CYBE. Then there is a unique double
(12)-weak Poisson bracket (associated with the right bimodule structure on A®?) which is B-linear and
which satisfies

{{V) V}} = [T, Vl] - [rO’ VZ] . (320)

Proof. Using (3.20) and B-linearity, we have that {{ Vijs Vkl}} = (e;®ex) {{v, v}} (¢j®e)). Thus the operation
{{—, =1} is defined on all generators and it is only nonzero on the free generators (v;j), so it extends
uniquely by the Leibniz rules (3.14)-(3.15) (with « = B = ids). We still have to check the cyclic
antisymmetry {{v, v}} = — {{v, v}}°, which easily follows from (3.20).

To have a double (12)-weak Poisson bracket, it suffices to check the vanishing of the double (12)-weak
Jacobiator on generators in view of Lemma 3.12. Since the double bracket is zero when one argument is
in B, it is in fact sufficient to check

{tv,v, v} — T {vs v vl} = 0. (3.21)
We first need to compute {v, v, v}} = (1 + t(123) + T(132)) {{v, {v, v} }}1. We have that
oy = {[nrv— vl @ = ) @ I vl 1@
=[r2, {v,v}} ® 1] = [r23, [r12, V1] — [r21, 211
This gives for the double (12)-weak Jacobiator
{vv, vl — a2 v, v, v
=1+ ta3) + T(132))<[723, [r12, vil] — [r12, [113, vil] + [113, [112, vi1] — [732, [713, Vl]]) .

Let us check that all the commutators involving v; cancel out. We note that [, v1] = 0 whenever both
i,j # 1. Since the commutator satisfies Jacobi identity, we can write

S :=[r23, [r12, vill = ([r12, [r13, vil] + [r13, [vi, r12]1) = [732, [113, v1 1]
= — ([r12, v, r23l] + [v1, [r23, 112]1) + [vis [r12, 11311+ ([r3, [vis r3211 + [vis [132, 113])
=[v1, [r12, 1131 + [r12, 23] + [r32, 71311 -
Using the CYBE (3.19), S = 0 as desired. O
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Remark 3.18. Proposition 3.17 formalizes a classical result related to r-matrices [4]; it recently appeared
in some particular noncommutative case in the work of Arthamonov, Ovenhouse and Shapiro [3, §4.1].
To get examples, we can take B to be the matrix algebra B = &; ,jelkeij, I ={1,...,N}, with generators
subject to ejiex; = dkjei and where we set e; := e¢;; for the orthogonal idempotents. We can then pick
standard solutions of the CYBE and workon A = k[v] ® B,e.g.r = ij eij ® eji + % > i€ ®ej (which
is skewsymmetric after correction by half the Casimir element Zi,je 1€ij ® eji).

3.4. ... from the left bimodule structure

A double bracket {{—, —}} on A which is associated with the (c, 8)-twisted left bimodule structure (2.6)
satisfies the Leibniz rules

fla. bl = a(b) fa, e ® {la, ¢} + {{a, b} B(o) ® {{a, b}, (3.22)
flac, b} = {(c, b} ® a(a) {c, b} + {{a, b} ® {{a, b} (o). (3.23)

Each Leibniz rule can be recovered from the other one thanks to the cyclic antisymmetry (2.10a). By
Lemma 2.22, the swap automorphism ° induces an equivalence with a double bracket associated with
the (o, B)-twisted right bimodule structure. Hence the results covered in §3.3 in the right case admit an
analogous derivation.

Recall from Lemma 3.12 that for double brackets associated with the right bimodule structure
(¢ = B = ida), the (12)-weak double Jacobiator is a derivation in each argument. In particular,
the important objects in that case are double (12)-weak Poisson brackets. We get the next result from
Proposition 2.25.(i).

Theorem 3.19. A double bracket {{—, —}} on A associated with the left bimodule structure is [(12), (13)]-
weak Poisson if and only if the equivalent double bracket {{—, —}}° associated with the right bimodule
structure is (12)-weak Poisson.

Lemma 3.20. Foro = (12) and o’ = (13), the [0, 0']-weak double Jacobiator (2.15) of a double bracket
{{—, =)} associated with the left bimodule structure is a derivation in each of its entries. In that case the
third entry acts as the following derivation A — A®3: for all a, b, c1,c; € A,

[0, Twki{{a,b,c16)) = (1 ® 1 ® 1) [0,0 Twk{{a, b,c2}} + [0, 0" Twk{{a, b, c1}} (2 @ 1R 1).

Proof. This basically follows from Lemma 3.12 and item (i) in Proposition 2.25. Let us nevertheless
make the calculation to see why we need the [(12), (13)]-weak double Jacobiator. A short computation
yields that the double Jacobiator (2.12) satisfies for any a, b, c1,¢; € A

{{a) b) CICZ}} = (Cl ®R1Q 1) {{a) b’ CZ}} + {{a: b> Cl}} (CZ ®1Q 1)
+ fla, a1l (b, 2} @ fla, 1} @ b, 2} + (b, a1l {{a. 2l ® @, 2" ® (b)) .
We can then see that {{—, —, —}} — 723 {—, — —}} T12) is a derivation in its third entry. Therefore,

we have established the statement for the [(23), (12)]-weak double Jacobiator which, due to the cyclic
symmetry (2.13), is the same as the [(12), (13)]-weak double Jacobiator. O

Lemma 3.21. If{{—, —} is associated with the a-twisted left bimodule structure (when 8 = a), the double
bracket descends to maps

These operations satisfy o -twisted derivation rules, which are obtained by inducing on AJ/[A, A] ® A (resp.
AR A/[A, A]) the a-twisted right (resp. left) bimodule structure on A®2, Furthermore, both maps descend
to the same operation {{—, —J}o : A/[A,A]l X A/[A,A] — A/[A,A]l @ A/[A, Al



1692 M. FAIRON AND C. MCCULLOCH

Proposition 3.22. Let {{—, —}} be a double [(12), (13)]-weak Poisson bracket associated with the left
bimodule structure. Then the operation {{—, —}}, from Lemma 3.21 uniquely extends to a Poisson bracket
on Sym(A/[A, A]).

Proof. Using the notations from the proof of Proposition 3.15, we define the Poisson bracket on
Sym(A/[A, A]) as the unique bilinear operation satisfying {a, b}sym = 72 {{a, b} for a,b € A/[A, A]
(after taking lifts a, b € A). Similarly to that proof, to check Jacobi identity we compute

{a, {b, cYsym}sym + {b,{c, alsym}sym + {c, {a, b}Sym}Sym =m3({{a, b, ch — {{b,a,cl)). (3.25)
By cyclic symmetry (2.13), this equals 73({{a, b, cl} — ta32) {{c, b,a}}). Since 73 o 7, = m3 for any

o € S3, we can write (3.25) as w3({{a, b, ¢} — t12) {{c, b,al}) = 73 (lo,0'Iwk{{a, b, c}}), which is zero
by assumption. O

Theorem 3.23. Let {{—, —}}; and {—, —}}, be double brackets associated with the left and right bimodule
structures, respectively. Assume that they are equivalent under the swap automorphism, that is {{—, —}; =
{{—, —}3. If either {—, —}}1 is [(12), (13)]-weak Poisson or if {{—, —}}, is (12)-weak Poisson, then the two
double brackets induce the same Poisson bracket on Sym(A/[A, A]).

Proof. By Proposition 2.25.(i), { —, —}}; is [(12), (13)]-weak Poisson if and only if {{ —, —}}, is (12)-weak
Poisson. Therefore, by Propositions 3.15 (in the right case) and 3.22 (in the left case), we get that the
maps {—, —}jsym on Sym(A/[A, A]), which are uniquely defined to satisfy {a, b} sym := 72 {{a, b}}j, are
Poisson brackets. So we are left to prove {a, b}1,sym = {a, b}2,sym. This follows from

{a, b}isym = m2 {{a, b}y = m2 fa, b} = 72 0 T(12) {{a, by = 72 fla, by = {a, blosym

using the equivalence of the two double brackets and the fact that 75 o 7, = m; forany o € S,. O

Lemma 3.24. If {{—, —}} is associated with the a-twisted left bimodule structure, then the double
bracket descends to A*®. Furthermore, this double bracket induced on A® is equivalent under the swap
automorphism to the double bracket (associated with the o-twisted right bimodule) induced by {—, —}}°
through Lemma 3.16.

Proof. This is direct by comparison with Lemma 3.16. O
In the next result, we use the notations introduced before Proposition 3.17.

Proposition 3.25. Assume that r € B®* C A®? is a solution to the CYBE. Then there is a unique double
[(12), (13)]-weak Poisson bracket (associated with the left bimodule structure on A%?) which is B-linear
and which satisfies {{v, v}} = [r,v1] — [r°, v2].

Proof. Setting {{—, —}, = {{—, —}}°, f{v, v}}, takes the form (3.20) (with —r as the solution to the CYBE)
so the result follows from Proposition 3.17 and Theorem 3.19. O

3.5. ...related to morphisms

The (non-twisted) left, right, outer and inner bimodule structures (2.1)-(2.4) are well-defined on A®?
for any algebra A. In particular, it makes sense to speak about a morphism of double brackets ¢ :
(A, {— —3}1) — (A2, {—, —}},) when both double brackets are associated with the left (resp. right,
outer or inner) bimodule structure, even though A; and A, could be different.

Example 3.26. Let {—, —}} be a double bracket on A associated with the left bimodule structure. Denote
by {{—, —}}*® the double bracket on A% induced by Lemma 3.24. Then the projection 7% : A — A® =
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A/]a,where ] is the (two-sided) ideal generated by A/[A, A], is a morphism of double brackets. Indeed,
we have that for any a, b € A,

b
(=@t ol =@ oxiem,
by definition of the induced double bracket on A,

Let us now investigate how morphisms interact with the different constructions given in the pre-
vious subsections. We only study the cases of double brackets associated with the right or outer
bimodules, since they are equivalent to double brackets associated with the left or inner bimodules
respectively.

Lemma 3.27. Let ¢ : (A1, {{—, —}1) — (A2, {—, —}}2) be a morphism of double brackets associated with
the outer bimodule structure.

1. {¢p(a), ¢ (b)}om = ¢({a, b}1,m) forany a,b € A and {—, —}jm = mo {{—, =Pt Aj x Aj > A;
Moreover, this identity holds for the linear map ¢ A1/[A1,A1] = As/[Ar, A;] induced by ¢ and the
induced antisymmetric maps {—, —}jm : Aj/[Aj, Aj] X Aj/[Aj, Aj] — Aj/[A}, Ajl.

2. If ¢ is a morphism of double Poisson algebras, then ¢ : (A1, {— —}im) — Az {— —}om) isa
morphism of left Loday algebras, while ¢ : (A1/[ALALIL{— —}im) = (A2/[A2, A2l {— —}om) is
a morphism of Lie algebras.

Proof. By Proposition 3.5, we have in the Poisson case that (A;, {—, —};m) is a left Loday algebra while
(Aj/[Aj, Ajl, {—, —}jm) is a Lie algebra, so item 2. is a consequence of item 1.
For the first part of item 1, we simply need to remark that

(@@, ¢ B))om = (D@, BN (@), p BNy = m o ¢ {{a, b} = p({a, b}1,m) -

We get the statement for ¢ because ¢ ([A1,A1]) C [A;, A;] and the induced operation on Aj/lAj, Ajl is
obtained by projecting {—, —};m from A; to A;/[A;, Aj] with j = 1,2, see Lemma 3.4. O

Lemma 3.28. Let ¢ : (A1, {{—, —}}1) = (A2, {—, —}}») be a morphism of double brackets associated with
the right bimodule structure.

1. Define the maps o{{—, -} and {—, —JBie Sfrom {—, —};j as in (3.17), and consider the linear map
¢ = Al/[AL Al — As/[Az As] induced by ¢. Then [¢(a),¢(D)}2 = (& ® ¢)({{a b)) and
{#(0),p(@}2e = (¢ @ P)({b,aly,) foranya € A/[A,A], b € A

2. Define the maps off —, —}je as in Lemma 3.14. Then .{5(&),(}_5(1_))}2,. = $®2 (.{{{/_‘l,l_)}}l).) for any
a,b € AJ[A, Al

3. If ¢ is a morphism of double (12)-weak Poisson algebras, and we let {—, —};sym be the unique Poisson

bracket extending o{{—, —}je on Sym(4;/[4;, AjD), then ¢ uniquely extends to a morphism of Poisson
algebras ¢sym : Sym(A1/[A1, A1]) — Sym(Az/[Az, Az)).

Proof. For item 1., we have by definition that

{8(@), 00}z =({{d (), p (D} + [A2, A2]) ® {p (), d (D)}
=(¢({{a, b})) + [A2,A2]) ® ¢ ({a, bY}]) = (¢ ® P)(of{a, b}})) .

The second identity is proved similarly. Item 2. is also obtained in that way. Finally, introduce the map

$sym : Sym(A1/[A, Ar]) — Sym(Ay/[Az, A;)) through dsym(ar @ ... e an) = ¢(ar) e ... & P(ay)
with the notations of the proof of Proposition 3.15. Then, item 3. is a consequence of the uniqueness of
{—, —}jsym by extension through Leibniz rules of its definition on elements of A;/[A}, A;j]. O
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4. Operations induced on representation spaces

In this section, we fix a positive integer n € N*. We denote by Mat, (B) the ring of n x n matrices with
coeflicients in a k-algebra B.

Given a k-algebra A, we introduce the n-th representation space Rep(A,n) as the set which
parametrizes representations p of A on k”, i.e. for any a € A we have p(a) € Mat,(k). We also let
X(a), for a € A, denote the matrix-valued function on Rep(A4, n) defined through X(a)(p) = p(a).
For 1 < i,j < n, we simply denote by a;; := X(a);; the function returning the (i,j) entry of p(a) at
P € Rep(A, n). In that way, we get a ring of functions on Rep(A, n) generated by symbols a;; witha € A
and 1 < i,j < n subject to the following conditions of (matrix) addition and multiplication:

Aaji + /Lb,‘j = (Aa+ Mb),’j, Lij = &ijs (ab)tj = Z a,-kbkj ,
1<k<n
where a,b € A, AL, u € k, 1 < i,j < n. We denote this commutative ring k[Rep(A, n)] and, to ease
notations, we also write Rep(A, n) for the corresponding affine scheme. It is well-known that Rep(A, n)
does not depend on the presentation of A because it represents the functor which sends a finitely
generated k-algebra B to the set of (k-algebra) homomorphisms Hom(A, Mat,(B)). Let us also note
that any homomorphism ¢ : A} — A, induces a homomorphism ¢, : k[Rep(A1,7n)] — k[Rep(Az, n)]
obtained by setting ¢, (a;) := ¢(a); for any a € A;. In matrix form, we set ¢,(X(a)) = X(¢(a)).
Finally, we introduce some notation: given d € A®2, e € A®? and indices i,j, k, L u,v € {1,...,n}, we
set
diji = dl’-j dy)s Cijkluy = e;»j € e

which are elements of k[Rep(4, n)].

Remark 4.1. The different constructions given below can be adapted to double brackets that are B-linear,
see §2.6. In that situation, one has to consider the space Repy(A, n) of representations relative to B. For
the important case B = @jcke;, the explicit construction can be found in [27, §7.1].

4.1. Case of the outer bimodule structure

We consider double brackets on A associated with the «-twisted outer bimodule structure on A®?, see
§3.1 with 8 = «. Recall that for any n > 1, o, denotes the automorphism of k[Rep(4, n)] induced by «.
The following result is a straightforward generalization of Van den Bergh’s work [27, §7.5].

Proposition 4.2. If {{—, —}} is a double bracket associated with the a-twisted outer bimodule structure,
there is a unique antisymmetric bilinear operation {—, —} on k[Rep (A, n)] which is a a,-twisted bideriva-
tion, i.e. for any f,g, h € k[Rep(4, n)]

{f.gh} = an@{f, B} + {f. glan(h),  {fh.g} = an(H{h. g} + {f. glan(h),
and which satisfies for any a,b € A,
{aij bia} = {a, biia = {la, bl {la, b} - (4.1)

Proof. Uniqueness is clear, if the bilinear operation is well-defined. To check the latter, note that since
{{—, —}} is associated with the «-twisted outer bimodule we have from (4.1)

{ai (b0} =(a(b) fla, e @ {la, ) + {a, bY ® {{a, bY ()i
= Y (b fia i + @ bl 2 (©)u)

1<u<n

= Y (atnbr){as, cu) + (@ brudotn(cu) ) -

1<u<n
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This is precisely {a;j, ) _,, bxucu1} thanks to the a,-twisted biderivation rules. The antisymmetry of {—, —}
follows from the cyclic antisymmetry of {—, —}} as noted in [27, Prop. 7.5.1]. O

Remark 4.3. When o = id4, we can encode the operation {—, —} satisfying (4.1) in terms of an
operation on matrices X(a) = (a;j), a € A, defined through

(%@, X0 oy = Y {ay bu} By ® Ea,
1<ijj,kl<n
for any a,b € A. This gives precisely the operation (1.2) from the introduction, which satisfies the
antisymmetry and Leibniz rules (1.3).

In contrast to the case of Proposition 4.2, an arbitrary double bracket may not yield a well-defined
map on representation spaces. It can thus be thought of as a purely noncommutative operation, as the
next example shows.

Example 4.4. Let A = k(x, y), and consider the one dimensional representation k[Rep(A, 1)] > k[X, J]
with X = x11, ¥ = y11. Wetake ¢ = ida, B : x — »,¥ > x, and we also denote by «, B the induced
maps on k[, y]. Consider the unique double bracket associated with the (&, B)-twisted outer bimodule
such that {x,x}} = 0 = {{ ¥, y}} and {{x, y}} # 0. Assume that there is a well-defined operation {—, —}
such that (4.1) holds. As XJ corresponds to (xy)11, we calculate from the Leibniz rules of {—, —}} that

(%9, )} = a(){p, y} + {%,7}B(Q) = x{x, )},
(30,7} = x. 3} = a{x 3} + 1B = y{x. )},
from which (x — y){%, 7} = 0.If {{x,y}}lL11 # 0onRep(4,1) (e.g. {{x.y}} = 1®1), we have under the

above identification that {%, 7} = {{x.y}},, |,
is not a relation in k[%, 3], so {—, —} does not exist.

is nonzero. So our observations yield that x — = 0. This

Recall from Example 2.23 that a double bracket {{—, —}} associated with the -twisted outer bimodule
is equivalent to the double bracket (o ~!)®2 o {{—, —}} associated with the (non-twisted) outer bimodule.
On representation spaces, this means that the operation {—, —} from Proposition 4.2 can be equivalently
understood from a; ! o {—, —}, which is an antisymmetric biderivation. Since interesting examples of
double Poisson brackets only appear for @ = id4, we restrict to that case where we recall the following
result.

Theorem 4.5 ([27]). If {{—, —}} is a double Poisson bracket associated with the outer bimodule structure,
then the antisymmetric biderivation {—, —} on k[Rep(A, n)] given in Proposition 4.2 is a Poisson bracket.
Furthermore, the Poisson bracket descends to the coordinate ring of trace functions k[Rep(A, n) " generated
by {trX(a) | a € A}.

Proof. The first partis Proposition 7.5.2 in [27]. For comparison with other cases, we note that this result
follows from the identity

{aij) {bkl’ Cuv}} + {bkl’ {cuvs alj}} + {cuvs {alj> bkl}} = {{ax b, C}}uj,il,kv - {{a) [ b}}kj,iv,ul > (42)

for any a,b,c € A and i,j,k,l,u,v € {1,...,n}. The second part* is Proposition 7.7.2 in [27], which is
obtained from the first part and the fact that (4.1) yields {tr X(a), tr X(b)} = tr X({@, b}m), where {—, =},
is given by (3.5). 0

“Let us point out that this follows because we have an Hg-Poisson structure in the sense of Crawley-Boevey [9], or a
Hamiltonian operator in the sense of Mikhailov-Sokolov [21] if A is a free algebra.
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Remark 4.6. When k is algebraically closed in addition to char(k) = 0, k[Rep(A, n)]" is the coordinate
ring of the GIT quotient Rep(4, n) // GL, (k) with GL, (k) acting by conjugation on each X(a), a € A.
(This follows from the celebrated Le Bruyn-Procesi theorem [17] and it also holds in the relative
semisimple case, see [9].) In that case, Theorem 4.5 is therefore turning Rep(A, n)// GL,(k) into a
Poisson variety. This comment also applies for the analogous theorems given below.

4.2. Case of the inner bimodule structure

We now work with double brackets on A associated with the «-twisted inner bimodule structure on A®Z,
see §3.2 with 8 = «.

Proposition 4.7. If {{—, —}} is a double bracket associated with the a-twisted inner bimodule structure,
there is a unique antisymmetric bilinear operation {—, —} on k[Rep (A, n)] which is a a,,-twisted bideriva-
tion satisfying for any a, b € A,

{ay, b} = @, by = la, by (@ bY; - 43)

Note that this result is a reformulation of Proposition 4.2 using the equivalence induced by the swap
automorphism ° between double brackets associated with the a-twisted inner/outer bimodule. Since
this equivalence extends to the Poisson case (see Theorem 3.6), we can expect the following analogue of
Theorem 4.5.

Theorem 4.8. If {{—, —}} is a double Poisson bracket associated with the inner bimodule structure, then
the antisymmetric biderivation {—, —} on k[Rep(A, n)] given in Proposition 4.7 is a Poisson bracket.
Furthermore, the Poisson bracket descends to the ring of trace functions k[Rep(A, n)]".

Proof. This basically follows from Theorem 4.5. Without relying on that result, we compute
(@ (b cun)) ={a (b, D) = {10, WY g U, + {0 NN, W0,
— (@ {0 DY iyt — (s e OV ity »
thanks to (4.3) and the cyclic antisymmetry (2.10a). This can be used directly to write
(b Leun @i} = (za23) b He @) g0 — (a3 00, 00 DL
{cuvs {aij> bua}} = (T3 {e fa, b}}}}L)iv,kj,ul — (ra23) fle, (b, a}}}}L),'l)uj,kv .

Hence we obtain for any g, b, ¢ € A and indicesin {1,...,n},
{aij) {bkl) Cuv}} + {bkl’ {cuvs al]}} + {cu {aij> bkl}} = {{a, b, C}}iv,kj,ul —{la,c b}}il,uj,kv > (4.4)
which concludes the first part. The second part is then obtained by taking the trace in (4.3). O

4.3. Case of the right bimodule structure
In this subsection, we consider double brackets on A associated with the a-twisted right bimodule

structure on A%®?, see §3.3 with 8 = «.

Proposition4.9. If {—, —}} is a double bracket associated with the «-twisted right bimodule structure, there
is a unique antisymmetric bilinear operation {—, —} on k[Rep(A, n)] which is a a,-twisted biderivation
satisfying for any a, b € A,

{aij> b} = {{a, b}y = {la. bY; fa. bR - (4.5)

Proof. Similar to the proof of Proposition 4.2. O
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Remark 4.10. When o = idy4, we can encode the operation {—, —} satisfying (4.5) in terms of an
operation on matrices X(a) = (a;j), a € A, defined through

X@ @ X)) =Y {aybu} Ej ® Eu = X({{a, b)) @ X({la, b)),
1<i,jk,I<n

for any a,b € A. This gives precisely the operation (1.4) from the introduction, which satisfies the
antisymmetry {X(a) € X(b)} = —112){X(b) € X(a)} and Leibniz rules (1.5a)-(1.5b).

As in the case of the outer bimodule structure, it is possible to induce a Poisson bracket on
representation spaces when @ = idy4. In this situation, we have to consider double (12)-weak Poisson
brackets instead of double Poisson brackets. The motivation stems from the fact that for double brackets
associated with the right bimodule (cf. §3.3), the double Jacobiator does not behave as a derivation in
each argument but the (12)-weak double Jacobiator does, see Lemma 3.12.

Theorem 4.11. If {—, —}} is a double (12)-weak Poisson bracket associated with the right bimodule
structure, then the antisymmetric biderivation {—, —} onk[Rep(A, n)] given in Proposition 4.9 is a Poisson
bracket. Furthermore, the Poisson bracket descends to the ring of trace functions k[Rep(A, n)]".

Proof. We can directly calculate
(@i 1bias ) =l (0, g = Ha (10N Wy 100N, + Ha 00", 0B My
= (a4, DY) o + (s 10 DRz »
thanks to (4.5) and the map {—, —}}g (2.17¢). This can be used easily to write
i Leun @1} = (a2 10, 66 aMML) s + (2032) U0 e AN NR) g »

{cuvs {aij> bul} = (T(132) {lc.{(a, b}}}}L)ij,kl,uv + (T(123) {lc.{a b}}}}R)kl,ij,uv .

Making use of the definition of the double Jacobiator (2.12) as well as (2.19), we obtain for any a, b,c € A
and indices in {1,...,n},

{aija {bkl’ Cuv}} + {bkl> {CuV’ al]}} + {Cuv: {aijr bkl}}
= {{a, b, iy — b8 Hijan = (A2wk{(a, byl )y,

which concludes the first part. The second part is a consequence of {tr X(a), tr X(b)} € k[Rep(A, n)]¥,
which follows by taking the trace in (4.5). O

(4.6)

The operation induced on k[Rep(A, n)]" by Theorem 4.11 is essentially the geometric counterpart of
Proposition 3.15. Indeed, recall that the latter defines a Poisson bracket on Sym(A/[A, A]) by extending
the operation f{—, —J}}, from Lemma 3.14. Meanwhile, we can compute that

{trX(a), tr X(b)} = tr X({a, b}}) trx({{a, b}, a,beA. (4.7)
In that expression, the right-hand side can be equivalently obtained by taking trace of the matrices

X(o{{a, b}},) and X(4{{a, b}})) which represent lifts of the two components of {{a, b}},. Since we take
the trace of such matrices, there is no dependence on the choice of lift from A/[A, A] to A.

Remark 4.12. Let us note that Theorem 4.11 defines a quadratic Poisson bracket on k[Rep(A, n)]" in
view of (4.7). This contrasts with the linear Poisson bracket defined through Theorem 4.5 in the presence
of a double bracket associated with the outer bimodule structure.

4.4. Case of the left bimodule structure

We now work with double brackets on A associated with the «-twisted left bimodule structure on A®2,
see §3.4 with 8 = «.
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Proposition4.13. If{{—, —}} is a double bracket associated with the a-twisted left bimodule structure, there
is a unique antisymmetric bilinear operation {—, —} on k[Rep(A, n)] which is a a,-twisted biderivation
satisfying for any a, b € A,

{aij, bu} = {{a, bl 5 = {a. bl o, bY - (4.8)

This result is equivalent to Proposition 4.2 using that the swap automorphism ° induces an equiv-
alence between double brackets associated with the a-twisted left/right bimodule. As the equivalence
extends to the weak Poisson case (see Theorem 3.19), we have the following analogue of Theorem 4.11.

Theorem 4.14. If {—, —1} is a double [(12), (13)]-weak Poisson bracket associated with the left bimodule
structure, then the antisymmetric biderivation {—, —} on k[Rep(A, n)] given in Proposition 4.13 is a
Poisson bracket. Furthermore, the Poisson bracket descends to the ring of trace functions k[Rep(A, n)]".

Proof. In a way similar to the proof of Theorem 4.11, we compute

{aija {bu, cw}} = ({{a, {{b, C}}}}L)uv,ij,kl + ({la, {b, C}}}}R)m;,kl,ij

thanks to (4.8) and the map {—, —}}g (2.17¢). This yields for any a, b, c € A and indices in {1, ..., n},
{aij’ {bkb Cuv}} + {bkl) {Cuw alj}} + {CLW) {aij) bkl}}

= {{a, b, C}}uv,ij,kl —{{b,a, C}}uv,kl,ij = ( [(23), (12)Iwk{a, b, c}} )uv,ij,kl >

which vanishes if the [(23), (12)]-weak double Jacobiator is zero. As remarked at the end of §2.3, this
is equivalent to the vanishing of the [(12), (13)]-weak double Jacobiator, which is our assumption. The
second part easily follows. O

(4.9)

4.5. Morphisms on representation spaces

In the situations presented in the previous subsections, a morphism of double brackets can be extended
to representation spaces. As in §3.5, we only consider the cases of (non-twisted) outer and right bimodule
structures; the discussion for the inner and left bimodule structures is a straightforward adaptation of
these cases.

Proposition 4.15. Let ¢ : (A1, {—, —}}1) — (A2, {—, —}}») be a morphism of double brackets associated
with the outer bimodule structure. Denote by {—, —}; the bilinear antisymmetric biderivation induced
on k[Rep(Aj,n)] by Proposition 4.2, for j = 1,2. Then the induced algebra homomorphism ¢y
k[Rep(A1,n)] = k[Rep(A,, n)] intertwines both operations, i.e.

{6n(F), dn(@)2 = dn({f,g}1),  f.g € kIRep(A1,n)].
Furthermore, if both double brackets are Poisson, then ¢, is a morphism of Poisson algebras.
Proof. Since the operations {—, —}; are antisymmetric biderivations and ¢, is a morphism, it suffices to

show the claim on generators. Forany a, b € Aj and 1 < i,j,k,I < n, we have by (4.1) and the definition
of morphism of double brackets that

(Dnai), Su(bi) o = (19 @, SOk = (62K, b)) iy = b (10 bush) -
The second part follows because the operations {—, —}; are Poisson brackets by Theorem 4.5. O
In the Poisson case, we can go a step further and use Theorem 4.5 to obtain a morphism of Poisson

algebras k[Rep(A1,n)]" — k[Rep(A,, n)]" by restricting ¢, to trace functions. An alternative proof of
this result, based on Hy-Poisson structures, can be found in [11, §5.1].
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Proposition 4.16. Let ¢ : (A1, {—, —}}1) — (A2, {—, —}}») be a morphism of double brackets associated
with the right bimodule structure. Denote by {—,—}; the bilinear antisymmetric biderivation induced
on k[Rep(Aj,n)] by Proposition 4.9, for j = 1,2. Then the induced algebra homomorphism ¢,
k[Rep(A1, n)] — k[Rep(Aa, n)] intertwines both operations, i.e.

{‘pn(f)’ ¢n(g)}2 = ¢n({f>g}l) > f>g € k[ReP(Al) f’l)] .

Furthermore, if both double brackets are (12)-weak Poisson, then ¢, is a morphism of Poisson algebras.

Proof. The proofis similar to Proposition 4.15; we simply need to use Proposition 4.9 and Theorem 4.11
in the right bimodule case. O

5. Comparison between the main double brackets

It seems important to outline the differences and similarities between the four main sources of examples
of double brackets which are associated with the outer, inner, right and left bimodule structures. In
fact, we have already seen in Section 3 that the case of the inner bimodule (resp. the left bimodule) is
equivalent to the case of the outer bimodule (resp. the right bimodule). Therefore, it only seems necessary
to compare the double brackets associated with the outer bimodule structure, and those associated with
the right bimodule structure. We gather their main differences in the following list, where we omit the
obvious difference between the Leibniz rules (3.1)-(3.2) (for the outer case where « = B = id4) and
(3.14)-(3.15) (for the right case where ¢ = 8 = ida).

1. (Double Jacobi identity.) With the outer bimodule, the double Jacobiator (2.12) is a derivation in each
argument by Lemma (3.1). With the right bimodule, the o -weak double Jacobiator (2.14) with o =
(12) is a derivation in each argument by Lemma 3.12. Such derivation rules are not satisfied in general
by the double Jacobiator in the right bimodule case, or by the (12)-weak double Jacobiator in the outer
bimodule case.

2. (Induced maps.) With the outer bimodule, we get a well-defined map {—, —}m : A X A — A by
multiplication of the two factors. This map descends to an antisymmetric operation on A/[A, A],
where it becomes a Lie bracket if the double bracket is Poisson, see Lemma 3.4 and Proposition 3.5.
With the right bimodule, we get a well-defined map o{{—, —}}, : (A/[A, A])*? — (A/[A, A])®? which
can be extended to a Poisson bracket on Sym(A/[A, A]) if the double bracket is (12)-weak Poisson,
see Lemma 3.14 and Proposition 3.15. For nontrivial double brackets, we can not define the operation
{—, —}m in the right bimodule case, or the operation o{{—, —}}, in the outer bimodule case.

3. (Abelianization.) With the right bimodule, any double bracket on an algebra A descends to its
abelianization A% by Lemma 3.16. This does not hold for the outer bimodule except in trivial cases.

4. (Example of application of 1&3.) Fixr > 2 and let P, = k[x1, . . ., x,] be the commutative polynomial
ring in r variables. With the outer bimodule, it was shown by Powell [25] that the only double Poisson
bracket on P, is the zero double bracket. With the right bimodule, any double (12)-weak Poisson
bracketonk(xi, . .., x,) descends to a double (12)-weak Poisson bracket on P,. As a non-trivial family
of examples, any choice of constants (1;})1<ij<r with 4;; = —A4;; defines a double (12)-weak Poisson
bracket by setting {{x;, x}} = 4j1 ® 1 thanks to Lemma 2.16.

5. (Geometric differences.) In both the outer and right bimodule cases, we can obtain an antisymmetric
bilinear operation on representation spaces thanks to Propositions 4.2 and 4.9. However, these
operations on representation spaces are defined differently as can be seen from (4.1) and (4.5).

6. (Geometric differences (bis).) At the level of representation spaces, we can define on matrix-valued
functions of the form X(a) the operation {—, —}},, from Remark 4.3 with the outer bimodule, or the
operation {— © —} from Remark 4.10 with the right bimodule. As noticed in the Introduction, we can
go back and forth between one notation or the other. However, both operations will not necessarily
be induced by a corresponding double bracket.
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7. (Example of application of 4&6.) There is a double (12)-weak Poisson bracket on P, associated with
the right bimodule structure which is determined by {{x,x}} = 0 = {{y,y}} and {{x.y}} = 1@ L. It
gives rise to a unique Poisson bracket on Rep(P», n), n > 1, by Theorem 4.11. Using the notation of
Remark 4.10, the Poisson structure on Rep(P, n) is such that

X@®) X} =0, X PXM}=0, {X(x)¥x(»)=1d,®Id, .
Alternatively, it can be encoded into the operation {—, —}},,) (1.2) satisfying the rules (1.3):
1<ijj<n

There is no nonzero double Poisson bracket on 7P, so the operation {—, —}},, satisfying (5.1) is not
induced by a double Poisson bracket (after combining Proposition 4.2 and Remark 4.3).

A. Case study: gradient double Poisson algebras

Consider the commutative polynomial algebra in 3 variables P3 = ]k[xl,xz,x3],‘and forl <j <3
denote by 9; the standard derivation on P; satisfying d;(xx) = Jjx. Denote by (e i]k)lfi,j,kg the totally

antisymmetric 3-tensor satisfying €!2> = 1. Fix an element ¢ € Ps. It is well-known (see e.g. [16,$9.2])
that we have a Poisson bracket {—, —}, on P; which is given on generators through
xixly = Y i), 1<ij<3. (A1)
1<k<3

Furthermore, ¢ is a Casimir of the Poisson bracket, that is {¢, —}, acts as the zero derivation on P;.
Such a Poisson bracket is called gradient, since the components of the corresponding bivector in the
basis {92 A 93,33 A 91,01 A 02} are given by {9; (¢), 02(¢), 93(@)}.

In the rest of this appendix, we start a classification of double Poisson brackets associated with the
outer bimodule structure (as originally introduced by Van den Bergh [27], see §3.1) which generalize
gradient Poisson brackets. This illustrates the differences between (commutative) Poisson brackets and
(associative) double Poisson brackets for readers who have a limited knowledge of the latter.

A.1. Conventions and main results

We set A = k(x1, x2, x3). We equip A with a grading | — | by setting |xj| = 1 for 1 < j < 3 and |k| = 0.
Hence, a homogeneous element f € A of degree d is of the form

f=> vixy...xip viek I=(....i) e {1,237 (A.2)
I

In that case, we say that (the homogeneous element of degree d) f € A is fully non-commutative if it is
Sg-invariant: given the decomposition (A.2), we can also write for any o € S that

f= Z VI Xigqy « + + Xiggg) - (A.3)
I

More generally, we can decompose any nonzero f € A asf = Zizo fwwhered > 0 and |f,,] = w. We
then say that f € A is fully non-commutative if each homogeneous part f,,, 0 < w < d, is fully non-
commutative. We note that the grading extends inductively from A to A®", n > 2, by setting |f ® g| =
Ifl + |gliff € Aand g € A®"~D are homogeneous.

We endow A®? with the outer - := -, and inner % := -j, bimodule structures given in (2.3)-(2.4).
The additive group of double derivations on A is defined as

Der(A) = {8 € Homy (A, A®?) | §(ab) = a - 8(b) + 8(a) - b}.
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Forany 1 < j < 3, we consider the double derivation 5j € Der(A) uniquely defined by
B =8x1®1,  1<k<3. (A4)

We have that éj has degree —1 if we endow A and A®? with the grading introduced above. Hereafter,
by a double bracket we mean a double bracket associated with the outer bimodule structure on A®2. In
other words, a double bracket {{—, —}} : A*2 — A®? is as in Definition 2.2 with - and * being the outer
and inner bimodule structures on A%®? respectively, as specified above.

Problem A.1. Classify all the double Poisson brackets on A which satisfy
{{xl‘,Xj}}f = Z Gljkék(f) > 1 S 1)] S 3> (AS)
1<k=<3

for some f € A. Such pairs (4, {{—, —Jly) are called gradient double Poisson algebras.

Thanks to the choice of bimodule structures taken above, we can evaluate any double bracket
satisfying (A.5) on monomials: given a = x;, ...x;, € Aand b = xj, ...x;j, € A, we have

m n
ik A
{la, bl}; = Z Z Z €MVE Xy Ky R Xy Xy Ok() Xy e Xy K X e Xy

n=1v=I11<k<3

m n
injvk A ’ A ”
:ZZ Z ey le...xju_lak(f)xi/m...xim®xil...xilt_18k(f) Kjpyr + -+ Xjpy -

u=1lv=11<k<3

(We follow the convention that an empty product equals to +1, e.g. x;; ... x;,_, =1 € Awhenpu = 1.)
We directly obtain the double bracket of any two elements of A by k-bilinearity.

Our progress on tackling Problem A.1 is presented as part of the following results, which are proven
in SA.2. As an application, we gather several (counter-)examples in SA.3.

Proposition A.2. An element f € A is such that (A.5) defines a double bracket if and only if it is fully
non-commutative.

Lemma A.3. Decompose f € A\ {0} with respect to the grading on A as f = Zizo fw where |fy| = w
andd > 0. If {—, —Yrisa double Poisson bracket, then so is {{—, =B

Theorem A.4. We have that {{—, —Yrisa double Poisson bracket if f € A is such that

(i) f= xfforsomej €{1,2,3}andd > 0;
(i) f = (1 +x2 + X3)df07’ somed > 0.
Furthermore, we can take linear combinations in each case, that is we also have a double Poisson bracket

iff = Zizo ywx]?" orif f = Zizo yw(x1 + x2 + x3)" with y,...,vq4 € k. In particular, we have
{{r. —}}f = 0 in all these cases.

A.2. Working on the classification

A.2.1. Proof of Proposition A.2
We first note that the cyclic antisymmetry of the double bracket is equivalent to showing that for any
j-k = 1,2,3 distinct, we have {{xj, x}}, = — {{xk. %] }}; (Recall that the Leibniz rules guarantee that

cyclic antisymmetry holds if it does on generators.) Due to (A.5), these identities are equivalent to

W(H =u()°, 1<i<3. (A.6)
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Thus, we have to check that (A.6) holds if and only if f is fully non-commutative. Furthermore, since each
9; is a double derivation of degree —1, we can assume without loss of generality that f is homogeneous
of degree d. There is clearly nothing to check if d = 0, i.e. f € k.

Let us first assume that {{—, —Jrisa double bracket, i.e. (A.6) holds. Fix an arbitrary term y x;, ... x;,
in f, where y € k*. Applying 9;, for some 1 < w < d to that term, we see that there is a term
Y Xip oo Xiy_y ® Xiyy .- Xy i 5iw(f). Due to (A.6), the term y x;,, ... Xi; ® Xj; ...X;,_, must occur
in 9, (f), hence there is a term y Xipy - - - XigXi, Xip - .. Xj,_; in f. In particular, the case w = 1 (or
w = d) amounts to a cyclic permutation of the factors. The case w = 2 followed by the cyclic
permutation amounts to swapping the first two factors. Therefore, by combining these two generators of
the symmetric group, we can see that for any o € Sy the term y x;, ) . .. xi,,, appears in f. In particular,
f is fully non-commutative.

Conversely, assume that f is fully non-commutative. If a term y x;, ... x;,_, @ X, ... Xip» ¥ € k™,

appears in éj(f) we must have a term y x;, ... Xi,_,X; ...xj; in f. Being fully non-commutative,

xiw+1
Y Xiyyy - - - XigXjXiy - - . Xi,,_; is also a term in f. Thus y x;,,, ... xi; ® x;; ... x;,_, appears in 9;(f), hence

the term that we picked earlier is a term in 3]- (f)e.

A.2.2. Proofof LemmaA.3

Using the grading of A to decompose f = Zi:o fw in homogeneous components, |f,| = w, we can
split the double bracket {{—, —}}f as Zi:o {—, _}}fw' By assumption, {—, —}}f is a double bracket, so
by Proposition A.2 f is fully non-commutative. Therefore each f,, is fully non-commutative as well, and
each {{—, —Jy, isa double bracket again by Proposition A.2.

Recall that A®2 and A®? are naturally endowed with gradings such that lxjl = 1 and k| = 0, so
that éj : A — A®? has degree —1 for each 1 < j < 3. Therefore, we have from (A.5) that each double
bracket {—, —}, is an operation of degree w — 3 because | {{x]-, X }} £ | = w — 1. When computing the
double Jacobiator {{x,-, Xjs X }} I with 1 < 4,7,k < 3, we see that the highest possible term in A®3 is the
one coming from {{x;, xj, i} ‘ in degree 2d — 3. Since {—, —, —J}; = 0 by assumption, the operation
of highest degree {{—, —, —J}, must vanish. Hence {{—, —JBp, isa double Poisson bracket, as desired.

A.2.3. Proof of Theorem A.4

We prove the different statements in the case (ii), and we leave the easier case (i) to the reader. We set
fi:= (x1 + x2 + x3)° for any d > 0 so that f; = f. Note that f; is fully non-commutative, so it defines
a double bracket {{—, —J};, by Proposition A.2. Our next step consists in checking that {—, —}};, is a
double Poisson bracket. We start with the following useful results.

Lemma A.5. Fixd > 0. Foranya € A, {{f1, a}}fd = 0. In particular, {{f,, a}}fd =0 foranyp > 0.

Proof. The first part is trivial if d = 0 since the double bracket is the zero one. The second part is trivial
if p = 0 by linearity. We omit those instances and assume d, p > 1 below.
We compute that for any 1 < k < 3, since dx € Der(4A),

d—1 d—1
)= fs k() fas1=)_fs @fas-1 (A7)
5=0 5=0

which is independent of k. Thus, for any 1 < j < 3 we get from (A.5) that
{{fbxj}}fd = Z €0 (f) = d1(f)) — -1 (f) = 0.
1<i,k<3
(The indices j & 1 are taken modulo 3.) By the right Leibniz rule (2.10b), {{f1, a}}fd = 0foranya € A.
We then get {{f,,a}} o= 0 using the left Leibniz rule (2.10c) and f, = ff’ . O
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Lemma A.6. Forany1 <i,j,k <3 andd,p > 0, we have {{x,-, {{xj’xk}}fd ”f =
p>

Proof. Using (2.11), (A.5), and (A.7), we write that

d—1
= bgsilg]], = 3 @ {lmbeol] = 30 &3 fsosily @fi-ar
1<€<3 6=0

1<¢<3

This is zero because {{xi,fg }}fp vanishes for all 1 < § < d by Lemma A.5. O

We now check the vanishing of the double Jacobiator of {—, —J} r, on generators. By (2.12), we have
for 1 <i,j,k < 3 that

flo sl = D0 thosy o =t -y, B © Tz Ceis x5 %)
s=0,1,2

and each term vanishes due to Lemma A.6.

Let us now assume that f = Zizo Yw(x1 + x + x3)" = Zﬁ,zo Ywfw with yo,...,v4-1 € kand
y4 € k*. The double bracket {—, —}} ¢ is Poisson as a consequence of Lemma A.6. Indeed, the double
Jacobiator vanishes on generators due to the decomposition

f—— Y= Z r(5123) o {{—, {— —}}f}}f’L ° 1—(BS)

§=0,12
d
= Z Ywrw Z T(123) © {{_’{{_’_}}fw}}fw,,Lo Ta23)
w,w'=0 5=0,1,2

which holds by bilinearity of a double bracket. In particular, we can also get that {{f, —}} ;= 0 by
bilinearity using Lemma A.5.

A.3. Applications and examples

Example A.7. The element f = x;x; is not fully non-commutative. The operation {—, =B : A2
A®? satisfying (A.5) and the left/right Leibniz rules is not a double bracket by Proposition A.2. This is
readily checked: (A.5) yields {{x2, x3}} = 1Qx; and {x3,x2}} r = —1Q®x2,50 that the cyclic antisymmetry
(2.104a) fails.

Example A.8. Set f = x for some d > 1. The operation {{—, —}} obtained through (A.5) is a double
Poisson bracket by case (i) of Theorem A 4. Its explicit form on generators is {{x1 ) Xj }} ;= 0, {{xj, X;j }} =

0 for 1 < j < 3, together with {{x3, x3 B = g éx‘f ® x1 —=1 Using Theorem A.4 again, any linear

combination of these double Poisson brackets is again a double Poisson bracket.

Example A.9. Setf = (x; + x2 + x3)% for some d > 1. The operation {{—, —} satisfying (A.5) is a
double Poisson bracket by case (ii) of Theorem A.4. It is such that {{x;, x;}} =0 for1 < j < 3, while
for 1 <j < 3 (withj 4 1 taken modulo 3)
d—1
{{x5 %541 }}f = Z(xl +x+x3)° ® (x1 +x2 4+ x3) 4707
8=0

Any linear combination of these double Poisson brackets also yields a double Poisson bracket.

The previous two cases coming from Theorem A.4 do not exhaust the full list of solutions to
Problem A.1: we can also consider linear polynomials, as we show in Example A.10. While the
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classification could still be incomplete, we expect that a generic fully non-commutative polynomial will
fail to define a double Poisson bracket. In particular, we believe that fully non-commutative polynomials
in two variables (of highest degree d > 1) will fail to yield double Poisson brackets, and some instances
are gathered in Examples A.11 and A.12.

Example A.10. Fix § € kfor0 < k < 3.Letf = » ;43 &k + o, which is fully non-commutative.
Then the operation {{—, —}}f obtained through (A.5) is a double bracket by Proposition A.2, which is

Poisson. Indeed, on generators we can write {{xj,xj }} ;= Oforl <j<3and

xoly=06101, {nul=0101 {fuxll=01®1.

This is a constant double bracket, so it is Poisson by Lemma 2.12 (the assumptions are satisfied because
the double Jacobiator is a derivation in each argument thanks to Lemma 3.1).

Example A.11. The element f = x1x3 + x2x is fully non-commutative. Hence, it defines a double
bracket through (A.5) by Proposition A.2, which is such that {{xj,xj }} = 0for1 <j<3and

xuxllf =0, foul=10xn+x®1 {uxllj=108x+x®l.
The double bracket is not Poisson, i.e. the double Jacobiator (2.12) does not vanish identically. Indeed,
iz, x2, 23}y = {{xs, {{xz,xs}}f}}f)L + ta32) {{%3, {{xs,xz}}f}}f,L

={lxs, 28y ® 1 — 7132 {23, 02}, ® 1
—1®1®n—-10xn®1£0.

Example A.12. Fix a degree d > 2 and some 1 < e < d — 1. The fully non-commutative polynomial
f € k{x1,x2) C A of degree d with e factors x; is given by

=D Xy Kiggy s = =he=1, ey = =ig=2.
oeSy
(The case d = 2 is given in Example A.11.) We claim that any fully non-commutative g € A with term
of highest degree equal to f does not define a double Poisson bracket through (A.5); by Lemma A.3, it
suffices to show that the double bracket {—, =W associated with f is not Poisson.
Our aim is to show that {{x2, x3,x3}}y # 0. Since {{x3, x3}}y = 0 and {2, x5}y = él(f), we can see
from (2.12) that this boils down to proving

(1 — 7123)) ”x3, él(f)”f’L #0. (A.8)

In other words, we seek a nonzero term in A% from this expression. Our precise aim consists in finding,
among all terms of highest degree in A ® k ® k, a unique nonzero term of the form x‘f‘xzﬂ ¥ R1Iel
with 8 > 0, @ > y > 0, which has highest order «.

Introduce the symmetrizing map C" : k{x1,x2)w — k(x1,%2)w, where k(x1, x2) C k(x1,x2) is the

sub-vector space of degree w elements, acting as C* (xj, - . - Xj,,) = > 55, Ko@) - - - Koy FOL f1s -+ > jw €

{1,2}. Note in particular that f = C? (xfx;l °). Furthermore, we note that the terms of 3, (f) of highest

degreein A @k C A®? are ct- Y™ ! d Y® 1. In {{x3, ER (F)Bf,L, these terms yield® after restriction to
AQk®k

Cd Z(xe 2 d E)Cd l(xfixg e— 1)®1®1
Cd Z(xe 1 d e— I)Cd l(xe 1 d 6)®1®1

5The first term in this expression occurs only if e > 2. We write it also for e = 1 since it does not provide the maximal term in
the following discussion. The second term occurs if d — e > 1, which is in our assumptions.
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Since d — e > 1, there is a unique term of the desired form which is —x¢~'x29" 2" 1x" 1 @ 1 @ 1 if
d—e—1> 1,0r—x%e 2 d fR1Q1lifd—e=1.
Meanwhile, terms in A ® k ® k coming from —t(123){{x3, 51 (NN are terms ink ® k ® A of

—{{x3, 51(_f)}}f)L. By an argument similar to the one above, the terms of —{{x3, él(f)}}f,L with highest
order with respect to the third tensor factor are

— s ® TG — (e © PG
= —h(H ®Cc Z(xe 27 + () @ ! d 1y

Since f has degree d > 1, 91(f), (f) are not contained in k ® k so there is no term in A ® k ® k
coming from those. If we consider terms of —{{x3, ER () }}y.L with a lower order with respect to the third
tensor factor, they must contain at least a factor x; or x; in one of the first two tensor factors. Therefore,
—7(123){{x3, ER (f)Bf.L does not contain terms of A ® k ® k. Hence, the unique term found above does

not vanish in (1 — 7(123)) {{x3, ER (f)Bf.L> as desired.
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