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A B S T R A C T

We describe a novel mathematical model for blood flow, delivery of nanoparticles, and heat transport in
vascularised tumour tissue. The model, which is derived via the asymptotic homogenisation technique, provides
a link between the macroscale behaviour of the system and its underlying, tortuous micro-structure, as
parametrised in Penta and Ambrosi (2015). It consists of a double Darcy’s law, coupled with a double
advection–diffusion–reaction system describing heat transport, and an advection–diffusion–reaction equation
for transport and adhesion of particles. Particles are assumed sufficiently large and do not extravasate to the
tumour interstitial space but blood and heat can be exchanged between the two compartments. Numerical
simulations of the model are performed using a finite element method to investigate cancer hyperthermia
induced by the application of magnetic field applied to injected iron oxide nanoparticles. Since tumour
microvasculature is more tortuous than that of healthy tissue and thus suboptimal in terms of fluid and
drug transport, we study the influence of the vessels’ geometry on tumour temperature. Effective and safe
hyperthermia treatment requires tumour temperature within certain target range, generally estimated between
42 ◦C and 46 ◦C, for a certain target duration, typically 0.5h to 2h. As temperature is difficult to measure in
situ, we use our model to determine the ranges of tortuosity of the microvessels, magnetic intensity, injection
time, wall shear stress rate, and concentration of nanoparticles required to achieve given target conditions.
1. Introduction

Hyperthermia therapy (HT) is an emerging anti-cancer treatment
in which a tumour is exposed to abnormally high temperature causing
damage or necrosis of cancer tissue. Hyperthermia induced cell necrosis
is mostly a result of conformational changes leading to destabilisation
of macromolecule structures and disruptions in cell metabolism, in-
hibition of DNA repair, and initiation of cellular apoptotic pathways
(Oei et al., 2015). In addition to its direct anti-tumour effects, HT
enhances the anti-cancer effects of radiotherapy and chemotherapy. A
hyperthermia treatment can be applied locally or over the whole body
depending on the type of tumour, its size and location (Kok et al., 2020;
Cherukuri et al., 2010; Chicheł et al., 2007). Magnetic nanoparticles
are increasingly being used for this purpose as they can produce a heat
source localised in the tumour region without significantly affecting the
surrounding healthy tissue, e.g. Colombo et al. (2012) and Das et al.
(2019). Nanoparticles are typically introduced to the tumour either
directly or via the blood stream. The patient is then exposed to an

∗ Corresponding author.
E-mail address: raimondo.penta@glasgow.ac.uk (R. Penta).

alternating magnetic field leading to heat generation due to magnetic
hysteresis effects. In addition to heating tissues, nanoparticles can be
used also for localised drug delivery (Laurent et al., 2011).

The main clinical determinants of the efficacy of hyperthermia in
destroying cancer cells are (a) the temperature achieved within the
tissue above normal body temperature and (b) the duration of time for
which this abnormal temperature is maintained. In the article we refer
to these as ‘‘hyperthermic temperature’’ and ‘‘hyperthermic duration’’
and they are also commonly known as hyperthermia ‘‘thermometric
parameters’’. For the treatment to be effective but safe both the hy-
perthermic temperature and the hyperthermic duration must be kept
withing certain target ranges (Kok et al., 2020; Ademaj et al., 2022).
The hyperthermic temperature and duration depend on the properties
of the nanoparticles employed, (e.g. shape, density, magnetisation),
the properties of the externally applied magnetic field (frequency and
intensity) and the properties of the tumour tissue as these affect blood
perfusion (vascularisation, tortuosity) as discussed by Shubitidze et al.
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(2015) and Golneshan and Lahonian (2011). Direct in situ measure-
ments of hyperthermic temperature and duration are usually impossible
and it is the main goal of this work to estimate the values of these
important clinical measures using a newly-developed mathematical
model of a vascularised tumour.

There is large uncertainty and variability in the estimates of safe
and effective thermometric parameter values and ranges reported in
the literature. One clinical study reports that hyperthermic temperature
must be greater that 41 ◦C and must be maintained for a hyperthermic
uration of over 60 min (Ademaj et al., 2022). Another study finds that
pproximately 90% of the cells can be eradicated with hyperthermic
emperature greater than 43 ◦C (Bhuyan et al., 1977). However, an
yperthermic temperature which is larger than 43.5 ◦C or 44 ◦C,

is found to increase the general levels of cytotoxicity in the body
(Overgaard et al., 1991). Furthermore, a temperature increase can
induce thermotolerance in cancer cells, meaning that an increase in
the hyperthermic duration for cells who have already undergone a
hyperthermia treatment may be required to achieve the same results in
terms of necrosis (Law, 1979). In general, the thermometric parameters
cannot be expected to have single fixed values, rather the effects of a
hyperthermia treatment likely vary on a spectrum (Bing et al., 2019).

Even when target values of the hyperthermic temperature and du-
ration are known with sufficient accuracy, it remains a non-trivial task
to fine-tune the parameters of a hyperthermia treatment procedure so
that these thermometric targets are achieved. It is usually very difficult
to measure temperature in situ within a tumour tissue non-invasively
and even more so while treatment is underway and as a consequence
a variety of experimental and theoretical investigations have been re-
ported in the literature. Muela et al. (2016) suggest optimal parameters
for hyperthermia treatment by estimating the specific absorption rate
(SAR) of biomineralized magnetite nanoparticles by simulation of the
dynamic hysteresis loops from the Landau–Liftshitz–Gilbert equation
which are then compared to experimental measurements in water and
agarose gel. Roohi et al. (2021, 2020) estimate the optimal location,
dosage, duration time of injecting magnetic nanoparticles employing
a dual phase lag bioheat equation in conjunction with a mass transfer
model for magnetic particles and proceed by optimising the protocol us-
ing a simulated annealing algorithm. Tang (2018) use machine learning
procedures and heuristic algorithms to predict magnetic nanoparticle
infusion in tumour tissue and then estimate the temperature field. Fur-
ther attempts in this direction are reported by Lang et al. (1999), Saeedi
et al. (2017) and Cervadoro et al. (2013) to mention few ones.

The main advantage of our work lies in the development and use
of a cutting-edge multiscale mathematical model of a vascularised tu-
mour. Both the hyperthermic temperature and duration are influenced
by the properties of the injected nanoparticles (e.g. the diameter of
the particles and their shape), injection conditions, and, especially for
vascularised tumours, by the structural and functional characteristics
of the microvessels, such as their geometrical arrangement and wall
shear rate. In particular, the geometrical properties of the tumour
vascularisation are well-known to significantly affect blood and drug
transport in cancer (Jain and Baxter, 1988; Jain et al., 2007). The
role of the microvessels’ geometry has been further elucidated and
quantified by means of suitable homogenisation approaches, which
are capable of providing a link between the micro-scale, where the
distance between individual vessels can be clearly identified, and the
macro-scale of the tissues, where experimental measurements are usu-
ally performed. Penta and Ambrosi (2015) and Mascheroni and Penta
(2017) quantified the role of microvascular tortuosity on fluid and
macromolecules transport in cancerous tissues, respectively, based on
the theoretical results derived via asymptotic homogenisation in Ship-
ley and Chapman (2010) and Penta et al. (2015). They showed that
geometrical complexity can dramatically impair blood and drug perfu-
sion within the tumour mass and may limit the efficacy of transport-
based anti-cancer therapies in that drug cannot adequately reach the
2

innermost tumorous regions. In Al Sariri and Penta (2022), the authors
generalised the mathematical model illustrated in Penta et al. (2015)
to address heat transport driven by small nanoparticles in both the
interstitial tumour space and the microvessels in the context of cancer
hyperthermia. They obtained a new system of macroscale PDEs of
double Darcy’s, double advection–diffusion–reaction type which takes
into account fluid, nanoparticles, and heat transport in the tumour.
Blood, heat and also nanoparticles exchange is also taken into account,
as the nanoparticles are assumed sufficiently small in order for their
extravasation through the vessels’ walls to occur. The authors show that
microvessels’ tortuosity impaires heat transport in vascular tumours,
and that regularisation of the microvessels’ network can result in a
significant increase in temperature (1–2 ◦C).

In this work, we extend the analysis carried out by Al Sariri and
Penta (2022), which concerns individual nanoparticles characterised
by a very small diameter which can extravasate from the vessels to
the tumour to large nanoparticles, which can be manufactured in the
form of vascular magnetic nanoconstructs, as illustrated for example
by Gizzatov et al. (2014) and Nabil and Zunino (2016) (see Fig. 1).
We start from a new homogenised model which is derived by taking
into account that in this latter case nanoparticles cannot extravasate
from the vessels into the tumour interstitium. As such, the nanoparticle
dynamics is present in the vessels only and we explicitly take into
account the role of particles adhesion.

The specific absorption rate that determines heat generation under
applied magnetic field is computed using a Brownian and Neels relax-
ation formula. The model allows to estimate the spatiotemporal distri-
bution of temperature within the tumour tissue and we use this to make
accurate estimates of the hyperthermic temperature and duration as
functions of the parameters that describe nanoparticle properties (mag-
netic material, size), microvasculature properties (tortuosity, hydraulic
conductivity, thermal conductivity, adhesion rate) and the properties of
applied magnetic field (intensity and frequency). The work is organised
as follows. In Section 2, we describe the new homogenised model
which describes the interplay between fluid, nanoparticles, and heat
transport in a vascularised tumour subjected to the action of an applied
magnetic field. The role of nanoparticles adhesion and a comparison
between this work and Al Sariri and Penta (2022) is highlighted. In
Section 3, we discuss the results. In 3.1 we focus on both tempo-
ral and spatial temperature and nanoparticles’ concentration maps at
varying tortuosity and for different nanoparticles’ material in Section.
In Section 3.2 we discuss the optimal heat transport parameters to
achieve physiologically safe hyperthermic temperature and duration.
Finally, we discuss limitations of the model and further perspectives in
Section 4.

2. Mathematical modelling

The velocity of nanoparticles in the vessels is in general hetero-
geneous. The particles which are closer to the walls of the vessels
are slower than the others. This is due to the friction force between
the particles and the vessel membrane in a process which is known
as adhesion. The typical extravasation transport mechanism consists of
nanoparticles being transported into the tumour interstitium through
the pores of the vessels (these are for example of the order of 40–200
nm diameter for brain and peripheral tumour according to the analysis
performed by Sarin et al. (2009) by means of electronic microscopy
techniques). However, transport of nanoparticles depends on the ratio
between particle size and vessel wall pore size (Stylianopoulos et al.,
2018). Nanoparticles with diameter less than 10 nm can be easily fil-
tered by the renal system and they can be captured by spleen and liver
if their size is greater than 200 nm. The optimal nanoparticle diameter
is therefore usually estimated to range from 20 to 200 nm, as discussed
by Thomas et al. (2013). Here we study transport of large (80 nm
in diameter) spherical magnetic nanoparticles in three-dimensional
vascularised tumours. As such, we assume that nanoparticles adhere

to vessel walls and extravasation is ruled out. The tumour, which is
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Fig. 1. A schematic diagram of hyperthermia cancer treatment using large size of magnetic nanoparticles (MNP).
identified with a three-dimensional domain 𝛺, is assumed to comprise
of two regions, namely, tumour vessels 𝛺𝑣 and tumour interstitium 𝛺𝑡.
Therefore, vessel walls play the role of the interface between these two
compartments, which is here denoted by 𝛤 = 𝜕𝛺𝑣 ∩ 𝜕𝛺𝑡. The system is
intrinsically multiscale due to the sharp difference between the average
intercapillary distance 𝑑 and the size of the whole tumour tissue 𝐿,
therefore motivating the development of a multiscale modelling ap-
proach. In particular, we define a small parameter 𝜖 which expresses
these two characteristics lengths as

𝜖 = 𝑑
𝐿
. (1)

Next we illustrate the mathematical modelling assumptions which we
embrace as a starting point to describe transport of fluid, nanoparticles’
delivery and convection–diffusion of heat in the context of cancer
hyperthermia (see Fig. 1).

2.1. Fluid flow

We consider the blood as an incompressible viscous fluid modelled
by the following Stokes’ problem

𝜇∇2𝐮𝑣 = ∇𝑝𝑣 in 𝛺𝑣, (2a)

∇ ⋅ 𝐮𝑣 = 0 in 𝛺𝑣, (2b)

where 𝐮𝑣 and 𝑝𝑣 are the blood velocity and pressure in the capillaries,
while 𝜇 is the blood viscosity.

We assume that the tumour interstitium is an isotropic porous
medium, so that interstitial fluid flow can be described by Darcy’s law

𝐮𝑡 = −𝜅∇𝑝𝑡 in 𝛺𝑡, (3a)

∇ ⋅ 𝐮𝑡 = 0 in 𝛺𝑡. (3b)

Here, 𝐮𝑡 and 𝑝𝑡 are the fluid velocity and pressure in the tumour
interstitium, and 𝜅 is the tissue conductivity.

The fluid is supplied continuously through the vessels’ membrane
and the flow relies on the pressure differences between the two regions,
so that the flux continuity condition across the interface 𝛤 reads

𝐮𝑡 ⋅ 𝐧 = 𝐮𝑣 ⋅ 𝐧 = 𝐿𝑝(𝑝𝑣 − 𝑝𝑡) on 𝛤 . (4)

The above relationship is also known as Starling’s law in the biophysical
literature, and in general states that the fluid flux is proportional to
the difference between the interstitial and vascular pressure, as well as
the difference between the oncotic pressures in those compartments.
However, following Penta et al. (2015), we are here neglecting the
oncotic pressure contribution by considering that this pressure jump is
often negligible for most tumour types, as reported for example in Jain
et al. (2007). We specify the tangential components of the fluid flowing
3

in the vessels by means of a Beavers and Joseph condition which
accounts for the slip over a porous surface as discussed for example
by (Shipley and Chapman, 2010; Penta et al., 2015)

𝐮𝑣 ⋅ 𝜏𝑣 = −

√

𝜅
𝜑

[(𝐧 ⋅ ∇)𝐮𝑣] ⋅ 𝜏𝑣 on 𝛤 , (5)

where 𝐿𝑝 is the permeability of membrane, 𝜏𝑣 collectively denotes both
of the unit vector tangent to the vessels’ wall, 𝜑 is a non-dimensional
parameter encoding structural properties of the membrane, and 𝐧 is the
unit outward vector normal to the vessels’ wall.

2.2. Advection, diffusion, and adhesion of nanoparticles

The concentration of magnetic nanoparticles 𝑐𝑣 which is deliv-
ered intravascularly is governed by the following advection–diffusion
equation
𝜕𝑐𝑣
𝜕𝑡

+ ∇ ⋅ (𝑐𝑣𝐮𝑣 −𝐷𝑣∇𝑐𝑣) = 0 in 𝛺𝑣, (6)

where the parameter 𝐷𝑣 is the diffusivity of the particles. Mass trans-
port in the vessels is affected by particles’ size and shape (Hossain et al.,
2013).

The adhesion between nanoparticles with different sizes and shapes
and the vessels wall was discussed by Decuzzi and Ferrari (2006). The
adhesion probability depends directly on the receptors and ligands den-
sities, and the interaction area between the particle and the substrate.
The Authors of the latter work found that oblate nanoparticles adhere
to the vessels wall more than the spherical particles. Furthermore, the
optimal size and shape for nanoparticles are influenced by the ratio
between the density of the receptors and vessels’ shear stress.

Here, we focus on spherical nanoparticles for the sake of simplicity
and we assume that their size is greater than the vessels’ pore size, so
that we explicitly take into account the adhesion between the particles
and vessels’ wall. We model the latter mechanism by means of the
following interface condition

(𝑐𝑣𝐮𝑣 −𝐷𝑣∇𝑐𝑣) ⋅ 𝐧 = 𝛱𝑐𝑣 on 𝛤 . (7)

Following the analysis carried out by Nabil and Zunino (2016), we
assume that

𝛱 = 𝑧|𝜉|
𝑝𝑑
2
, (8)

where 𝑧 is the adhesion probability, |𝜉| is the wall shear rate, and 𝑝𝑑 is
the diameter of the particle. The density of nanoparticles 𝛹 adhering
to the vessels’ wall is computed by
𝑑𝛹 = 𝛱𝑐 in 𝛺 . (9)

𝑑𝑡 𝑣 𝑣
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2.3. Heat convection and diffusion

The heat generated within the tumour vessels and in the tumour
interstitium is due to the magnetic field which is applied after inject-
ing the nanoparticles. The field causes rotation and vibrations of the
particles around themselves and around the field.

We use the Brownian and Neels relaxation formula to identify the
absorption rate which is directly related to the heat distribution in the
tumour tissue.

Heat transport in both the vessels and the tumour interstitial space
is then described by a coupled system of heat convection–diffusion
equations. We assume that there exists a volume heat source in the
vessels which is proportional to both the concentration of nanoparticles
𝑐𝑣 and the density of those adhering to the walls 𝜓 , with proportionality
constant given by the absorption rate 𝛼. In addition, we account for the
heat exchanged between the vessels and the interstitial compartment.
Finally, we also consider the influence of a given volume source in
the interstitial space in order to fully capture the influence of the
heat generated by the magnetic nanoparticles under the influence of
an applied magnetic field. In this case, as the heat and (vascular)
drug transport problems are decoupled, we assume that such a source
is proportional to the absorption rate 𝛼 and to a given function 

hich is in turn intended to be related to the average concentration
f nanoparticles that are generating the heat which then plays a role in
he whole tissue. The resulting governing equations can be written as

𝑡𝜌𝑡

[

𝜕𝑇𝑡
𝜕𝑡

+ ∇ ⋅ (𝑇𝑡𝐮𝑡 −
𝐾𝑡
𝛾𝑡𝜌𝑡

∇𝑇𝑡)
]

= 𝛼 in𝛺𝑡, (10a)

𝛾𝑣𝜌𝑣

[

𝜕𝑇𝑣
𝜕𝑡

+ ∇ ⋅ (𝑇𝑣𝐮𝑣 −
𝐾𝑣
𝛾𝑣𝜌𝑣

∇𝑇𝑣)
]

= 𝛼
(

𝜓 + 𝑐𝑣
)

in𝛺𝑣, (10b)

here 𝐾𝑣, 𝐾𝑡, 𝛾𝑣, 𝛾𝑡, and 𝜌𝑣, 𝜌𝑡 are the vessels and interstitial heat
conductivities, specific heat capacities, and compartment densities, re-
spectively. The parameter 𝜓 = 𝛹

𝐿 has the dimensions of a concentration
nd represents an effective concentration of particles due to adhesion.
he model can be derived for a generic given function , so that we
hall specify its functional form when introducing the solution of the
odel.

We assume that heat can be exchanged between the tumour and the
essels, such that the heat flux across the membrane is proportional to
he difference between the temperatures in the two compartments, as
ollows
(

𝑇𝑣𝐮𝑣 −
𝐾𝑣
𝛾𝑣𝜌𝑣

∇𝑇𝑣

)

⋅ 𝐧 =
𝛽
𝛾𝑣𝜌𝑣

(

𝑇𝑣 − 𝑇𝑡
)

on 𝛤 , (11a)
(

𝑇𝑡𝐮𝑡 −
𝐾𝑡
𝛾𝑡𝜌𝑡

∇𝑇𝑡

)

⋅ 𝐧 =
𝛽
𝛾𝑡𝜌𝑡

(

𝑇𝑡 − 𝑇𝑣
)

on 𝛤 , (11b)

where 𝛽 is the heat transfer coefficient.
The heat generated by magnetic nanoparticles strongly depend on

the absorption rate 𝛼, which depends on particles’ size, shape, mate-
rial, as well as magnetic field properties, i.e. intensity and frequency.
According to Avolio et al. (2021), the parameter 𝛼 is defined as

𝛼 =
𝜇20𝜋𝑓𝐻

2
0𝑀

2
𝑑𝑉

3𝜌𝑛𝐾𝐵𝑇
2𝜋𝑓𝜏eff

1 + (2𝜋𝑓𝜏eff)2
, (12)

where 𝜇0 is the magnetic permeability, 𝑀𝑑 is the magnetisation of
anoparticles, 𝐾𝐵 is Boltzmann’s constant, 𝑇 is the temperature, 𝑓
s the field frequency, 𝐻0 is the field intensity, V is the volume of
anoparticles, 𝜌𝑛 is the density of nanoparticle, and 𝜏eff is the overall
elaxation time which can be defined as
1
𝜏eff

= 1
𝜏N

+ 1
𝜏B
, (13)

ith

N = 𝜏0𝑒
𝑘𝑖𝑉
𝐾B𝑇 , 𝜏B =

3𝜂𝑉H . (14)
4

𝐾B𝑇
ere, 𝜏0 is Larmor’s time constant, 𝑘𝑖 is the magnetic anisotropy con-
stant, 𝜂 is nanoparticles’ carrier liquid viscosity, and 𝑉𝐻 is the hydro-
dynamic volume which is computed by Torres et al. (2019) using

𝑉𝐻 = 𝜋
(𝑝𝑑 + 𝛿)3

6
, (15)

where 𝛿 = 2 nm.

Remark (Current model vs. Al Sariri and Penta, 2022). Al Sariri and
Penta (2022) discussed the hyperthermia cancer treatment using mag-
netic nanoparticles which can extravasate across the vessels’ walls.
Therein, the concentration of nanoparticles was then studied in both
regions of the tumour tissue by means of advection–diffusion equations.
The authors assumed that the particles could be uptaken by tumour
interstitium after having been delivered intravascularly, such that
𝜕𝑐𝑣
𝜕𝑡

+ ∇ ⋅ (𝑐𝑣𝐮𝑣 −𝐷𝑣∇𝑐𝑣) = 0 in 𝛺𝑣, (16a)
𝜕𝑐𝑡
𝜕𝑡

+ ∇ ⋅ (𝑐𝑡𝐮𝑡 −𝐷𝑡∇𝑐𝑡) = −𝛬𝑐𝑡 in 𝛺𝑡, (16b)

here the parameter 𝛬 denoted the uptake rate in the tumour in-
erstitium. In addition, they accounted for transvascular transport of
anoparticles via the following interface conditions

𝑐𝑣𝐮𝑣 −𝐷𝑣∇𝑐𝑣) ⋅ 𝐧 = (𝑐𝑡𝐮𝑡 −𝐷𝑡∇𝑐𝑡) ⋅ 𝐧

= 𝐿𝑐 (𝑐𝑣 − 𝑐𝑡) on 𝛤 , (17)

here 𝐿𝑐 represents the diffusive permeability of the vessels’ mem-
ranes. The differential equations governing heat transport in Al Sariri
nd Penta (2022) is analogous to that describe by the system (10a)–
10b) with interface conditions (11a)–(11b), however the absorption
ate 𝛼 was considered as a single, constant parameter, and its value was
aken from Cervadoro et al. (2013). Also, the heat source of the system
10a)–(10b) did not depend on the density of adhering particles 𝛹 , as Al
ariri and Penta (2022) considered transport of small nanoparticles and
herefore ignored nanoparticles’ adhesion.

Next we perform a non-dimensional analysis of the model, which
ill then be upscaled by means of the asymptotic homogenisation

echnique.

.4. Model non-dimensionalisation

We rewrite the system of Eqs. (2a)–(7), (9), and (10a)–(11b) in
on-dimensional form by using the change of variables

𝑣 = 𝐶𝑟𝑐
′
𝑣,  = 𝐶𝑟′, 𝐮𝑣 =

𝐶𝑑2

𝜇
𝐮′𝑣, 𝑡 =

𝐿𝜇
𝐶𝑑2

𝑡′, ∇ = 1
𝐿
∇′,

= 𝐶𝐿𝑝′, 𝑇 = 𝑋𝑇 ′, 𝛹 = 𝐿𝐶𝑟𝛹
′, (18)

where 𝐶𝑟 is the reference of concentration, 𝐶 is pressure gradient, 𝑋 is
he reference temperature, 𝑑 is the distance between capillaries, and 𝐿

is the average size of the tumour. The corresponding non-dimensional
system of PDEs, after having neglected the primes for the sake of
simplicity of notation, can be written as

𝐮𝑡 = −�̄�∇𝑝𝑡 in 𝛺𝑡, (19a)

∇ ⋅ 𝐮𝑡 = 0 in 𝛺𝑡, (19b)

𝜖2∇2𝐮𝑣 = ∇𝑝𝑣 in 𝛺𝑣, (19c)

∇ ⋅ 𝐮𝑣 = 0 in 𝛺𝑣, (19d)
𝜕𝑐𝑣
𝜕𝑡

+ ∇ ⋅ (𝑐𝑣𝐮𝑣 − �̄�𝑣∇𝑐𝑣) = 0 in 𝛺𝑣, (19e)
𝑑𝛹
𝑑𝑡

= �̄�1𝑐𝑣 in 𝛺𝑣, (19f)
[

𝜕𝑇𝑡
𝜕𝑡

+ ∇ ⋅ (𝑇𝑡𝐮𝑡 − �̄�𝑡∇𝑇𝑡)
]

= �̄�𝑡 in 𝛺𝑡, (19g)
[

𝜕𝑇𝑣 + ∇ ⋅ (𝑇𝑣𝐮𝑣 − �̄�𝑣∇𝑇𝑣)
]

= �̄�𝑣(𝜓 + 𝑐𝑣) in 𝛺𝑣, (19h)

𝜕𝑡
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with boundary conditions

𝐮𝑡 ⋅ 𝐧 = 𝐮𝑣 ⋅ 𝐧 = �̄�𝑝(𝑝𝑣 − 𝑝𝑡) on 𝛤 , (20a)

𝑡 ⋅ 𝜏 = −𝜖�̄�[(𝐧 ⋅ ∇)𝐮𝑡] ⋅ 𝜏 on 𝛤 , (20b)

𝑐𝑣𝐮𝑣 − �̄�𝑣∇𝑐𝑣) ⋅ 𝐧 = 𝜖�̄�𝑐𝑣 on 𝛤 , (20c)
(

𝑇𝑣𝐮𝑣 − �̄�𝑣∇𝑇𝑣
)

⋅ 𝐧 = 𝜖𝛽𝑣
(

𝑇𝑣 − 𝑇𝑡
)

on 𝛤 , (20d)
(

𝑇𝑡𝐮𝑡 − �̄�𝑡∇𝑇𝑡
)

⋅ 𝐧𝑡 = 𝜖𝛽𝑡
(

𝑇𝑡 − 𝑇𝑣
)

on 𝛤 . (20e)

The non-dimensional numbers are defined as follows

�̄� =
𝜅𝜇
𝑑2
, �̄� = 𝛱𝐿

𝑈𝑑
, �̄�1 =

𝛱𝜇
𝐶𝑑2

, �̄�𝑝 =
𝐿𝑝𝐿𝜇

𝑑2
, �̄� =

√

𝜅
𝜑𝑑

, (21a)

𝛽𝑣 =
𝛽𝐿𝜇

𝐶𝑑3𝛾𝑣𝜌𝑣
, 𝛽𝑡 =

𝛽𝐿𝜇
𝐶𝑑3𝛾𝑡𝜌𝑡

, (21b)

̄ 𝑡 =
𝛼𝐶𝑟𝐿𝜇
𝑋𝐶𝑑2𝛾𝑡𝜌𝑡

, �̄�𝑣 =
𝛼𝐶𝑟𝐿𝜇

𝑋𝐶𝑑2𝛾𝑣𝜌𝑣
, (21c)

hile the non-dimensional diffusivities and heat conductivities for the
essels and tumour interstitium are given by

̄ =
𝐷𝜇
𝐿𝐶𝑑2

, �̄� =
𝐾𝜇

𝜌𝛾𝐿𝐶𝑑2
. (22)

.5. The homogenised model

The homogenised model can be derived by applying the classical
symptotic (periodic) homogenisation technique, as discussed for ex-
mple by Bakhvalov and Panasenko (1989), Papanicolau et al. (1978)
nd Hornung (1996), and many others, to our system. We first decouple
patial variations by introducing a microscale 𝐲, which is related to the
acroscale 𝐱 by

= 𝐱
𝜖
, (23)

here 𝜖 now plays the role of an asymptotic parameter. We further
ssume that any variable 𝑞 in the system is 𝐲-periodic and can be
ritten in power series of 𝜖 as follows

(𝐱, 𝑡) = 𝑞(𝐱, 𝐲, 𝑡) =
∞
∑

𝑙=0
𝑞(𝑙)(𝐱, 𝐲, 𝑡)𝜖𝑙 =

𝑞(0)(𝐱, 𝐲, 𝑡) + 𝜖𝑞(1)(𝐱, 𝐲, 𝑡) + 𝜖2𝑞(2)(𝐱, 𝐲, 𝑡) + ... (24)

he differential operators transform according to the chain rule as

⟶ ∇𝑥 +
1
𝜖
∇𝑦, ∇2 ⟶ ∇2

𝑥 +
2
𝜖
∇𝑥∇𝑦 +

1
𝜖2

∇2
𝑦. (25)

Using (24), we apply the asymptotic homogenisation technique by
expressing all the fields in terms of power series of 𝜖 and accounting for
he chain rule (25). This leads to a multiscale system of PDEs, where
e can then equate the same powers of 𝜖 in order to obtain a number
f differential conditions which can be used to close a system of PDEs
or the leading (zero-th) order fields, or their cell average, defined by

𝑞⟩𝑗 =
1

|𝛺𝑗 | ∫𝛺𝑗
𝑞(𝐱, 𝐲, 𝑡)𝑑𝑦. (26)

ere, 𝑗 represents either 𝑣 or 𝑡 and |𝛺𝑗 | denotes the vessels (interstitial)
ell volume portion. The derivation of the model is carried out as
n Al Sariri and Penta (2022) by taking into account the differences
ighlighted in the Remark discussed in Section 2.3.

The macroscale differential equations describing velocities and pres-
ures are analogous to those reported by Al Sariri and Penta (2022) and
ead
⟨

𝐮(0)𝑣
⟩

𝑣 = −𝖸𝑣∇𝑥𝑝(0)𝑣 , (27a)
⟨

𝐮(0)𝑡
⟩

𝑡
= −�̄�𝖸𝑡∇𝑥𝑝

(0)
𝑡 , (27b)

𝑥 ⋅
(

𝖸𝑣∇𝑥𝑝(0)
)

=
�̄�
(

𝑝(0)𝑣 − 𝑝(0)𝑡
)

𝑆, (27c)
5

𝑣
|𝛺𝑣|

v

∇𝑥 ⋅
(

�̄�𝖸𝑡∇𝑥𝑝
(0)
𝑡

)

=
�̄�
(

𝑝(0)𝑡 − 𝑝(0)𝑣
)

|𝛺𝑡|
𝑆, (27d)

where 𝑆 is the surface of the microvessels. These differential equations
show that the velocities in both compartments obey Darcy’s law and
the fluid flow depends on the pressure difference between them. The
effective coefficients in the above equations are to be computed by
solving microscale cell problems. As the microscale problems are those
discussed by Al Sariri and Penta (2022), we refer to this work for
further details on this matter. However, for the sake of self-consistency
and clarity, we have also reported the cell problems related to the
auxiliary fields 𝖶, 𝐦, 𝐫, 𝐚, 𝐛, 𝐠, and 𝐞 in Appendix. The hydraulic
conductivity tensors 𝖸𝑡 and 𝖸𝑣 are defined as

𝖸𝑣 =
1

|𝛺𝑣| ∫𝛺𝑣
𝖶𝑑𝑦, 𝖸𝑡 = 𝐼 −

⟨

(

∇𝑦𝐫
)𝑇

⟩

𝑣
. (28)

The macroscale differential equation for the concentration of nanopar-
ticles 𝑐(0)𝑣 can be written as advection–diffusion–reaction equation

𝜕𝑐(0)𝑣
𝜕𝑡

+ ∇𝑥 ⋅
(

𝑐(0)𝑣
⟨

𝐮(0)𝑣
⟩

𝑣 − 𝖥𝑣∇𝑥𝑐(0)𝑣
)

+ 𝑆
|𝛺𝑣|

�̄�𝑐(0)𝑣 = 0, (29a)

𝑑𝛹 (0)

𝑑𝑡
= �̄�1𝑐

(0)
𝑣 , (29b)

with diffusivity tensor 𝖥𝑣 is described as

𝖥𝑣 = �̄�𝑣

(

𝐼 −
⟨

(

∇𝑦𝐚
)𝑇

⟩

𝑣

)

. (30)

Finally, the temperatures 𝑇 (0)
𝑡 and 𝑇 (0)

𝑣 of both compartments at the
macroscale are represented by advection–diffusion–reaction equations

𝜕𝑇 (0)
𝑣
𝜕𝑡

+ ∇𝑥 ⋅
(

𝑇 (0)
𝑣

⟨

𝐮(0)𝑣
⟩

𝑣 − 𝖭𝑣∇𝑥𝑇 (0)
𝑣

)

+ 𝑆
|𝛺𝑣|

𝛽𝑣
(

𝑇 (0)
𝑣 − 𝑇 (0)

𝑡

)

= �̄�𝑣
(

𝜓 (0) + 𝑐(0)𝑣
)

, (31a)

𝜕𝑇 (0)
𝑡
𝜕𝑡

+ ∇𝑥 ⋅
(

𝑇 (0)
𝑡

⟨

𝐮(0)𝑡
⟩

𝑡
− 𝖭𝑡∇𝑥𝑇

(0)
𝑡

)

+ 𝑆
|𝛺𝑡|

𝛽𝑡
(

𝑇 (0)
𝑡 − 𝑇 (0)

𝑣

)

= �̄�𝑡(0). (31b)

he effective thermal conductivities 𝖭𝑣 and 𝖭𝑡 are expressed as:

𝑣 = �̄�𝑣
(

𝐼 −
⟨

(

∇𝑦𝐠
)𝑇

⟩

𝑣

)

, 𝖭𝑡 = �̄�𝑣
(

𝐼 −
⟨

(

∇𝑦𝐞
)𝑇

⟩

𝑡

)

. (32)

The auxiliary tensor 𝖶, and the auxiliary variables 𝐫, 𝐚, 𝐠, and 𝐞 solve
the microscale cell problems which are described in details in Al Sariri
and Penta (2022). The numerical solutions of these problems are illus-
trated in Penta and Ambrosi (2015) and Mascheroni and Penta (2017).

The difference between the work carried out by Al Sariri and Penta
(2022) and the present work resides in the different heat sources
which appear in Eqs. (31a) and (31b). These latter also depend on
adhesion, which is in turn dictated by Eqs. (29a)–(29b). Here, the
nanoparticle dynamics depends on adhesion, as shown by the reaction
term in Eq. (29a) and by the macroscale evolution Eq. (29b). This is
not the case in the works by Mascheroni and Penta (2017) and Al
Sariri and Penta (2022), where nanoparticle transport is governed by
a double system of advection–diffusion–reaction equations driven by
transvascular exchange of particles which arises as a direct consequence
of extravasation, which is herein neglected. In the remainder of this
work, we assume that the leading order heat source (0) is related to
the heat generated by the interaction between the nanoparticles and the
magnetic field in the vessels. We can capture the volumetric character
of the heat generated by the vessels as a heat source in the tumour
tissue by assuming a simple constitutive law for (0) of the form

(0) = 𝑐(0)𝑣 + 𝜓 (0), (33)

which is analogous to that present in the vessels and represents an
admissible choice as 𝑐(0)𝑣 and 𝜓 (0) do not depend on the microscale

ariable 𝐲 and are defined in the whole macroscale domain.
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2.6. The homogenised model in radial symmetry

The vascularised tumour is represented by a sphere of radius 𝑅.
We assume that the tumour is isolated and all external forces are
neglected. The radial component of fluid velocities and pressures are
those obtained by Penta and Ambrosi (2015). The system of equations
in spherical coordinates, by considering the leading order term for all
variables (and neglecting the superscript (0) for the sake of simplicity
of notation) reads
𝜕𝑐𝑣
𝜕𝑡

+ 1
𝑟2

𝜕
𝜕𝑟

(

𝑟2
(

𝑐𝑣 ⟨𝐮𝑣⟩𝑣 − 𝖥𝑣
𝜕𝑐𝑣
𝜕𝑟

))

+ 𝑆
|𝛺𝑣|

�̄�𝑐𝑣 = 0 in 𝛺𝑣, (34a)

𝑑𝛹
𝑑𝑡

= �̄�1𝑐𝑣 in 𝛺𝑣, (34b)

𝜕𝑇𝑣
𝜕𝑡

+ 1
𝑟2

𝜕
𝜕𝑟

(

𝑟2
(

𝑇𝑣⟨𝐮𝑣⟩𝑣 − 𝖭𝑣
𝜕𝑇𝑣
𝜕𝑟

))

+ 𝑆
|𝛺𝑣|

𝛽𝑣
(

𝑇𝑡 − 𝑇𝑣
)

= �̄�𝑣
(

𝑐𝑣 + 𝜓
)

in 𝛺𝑣, (34c)

𝜕𝑇𝑡
𝜕𝑡

+ 1
𝑟2

𝜕
𝜕𝑟

(

𝑟2
(

𝑇𝑡 ⟨𝐮𝑡⟩𝑡 − 𝖭𝑡
𝜕𝑇𝑡
𝜕𝑟

))

+ 𝑆
|𝛺𝑡|

𝛽𝑡
(

𝑇𝑣 − 𝑇𝑡
)

= �̄�𝑡
(

𝑐𝑣 + 𝜓
)

in 𝛺𝑡. (34d)

All variables depend on 𝑟 and 𝑡, where 0 ≤ 𝑟 ≤ 𝑅 and 0 ≤ 𝑡 ≤  .
To close the problem, we need to prescribe the initial and boundary

conditions. We assumed zero concentration and due to the spherical
symmetry, we consider zero flux of nanoparticles’ concentration at
the centre of the tumour. We assume that the particles are delivered
intravascularly for a time 𝜎 which means that the concentration is 𝑐𝑛
during this time and zero after that,

𝑐𝑣|𝑡=0 = 0, (35a)
(

𝐮𝑣𝑐𝑣 − �̄�𝑣𝜕𝑟𝑐𝑣
)

|

|

|𝑟=0
= 0, (35b)

𝑐𝑣|𝑟=𝑅 =

{

𝑐𝑛 𝑡 < 𝜎,
0 𝑡 > 𝜎.

(35c)

Concerning heat transport, we set initial (𝑡 = 0) temperatures in
both compartments to the standard blood temperature. In terms of
boundary conditions, we consider zero heat flux at 𝑟 = 0. On the
tumour boundary, We prescribe the homogenised temperature in the
vessels to coincide with the standard blood temperature, while we
consider a Robin condition for the tumour temperature 𝑟 = 𝑅, to
account for the heat transport between the tumour interstitial and
vessels compartments mediated by intermediate layer of external tissue,
as in Nabil and Zunino (2016) and Al Sariri and Penta (2022). Initial
and boundary conditions for the heat transport system of equations are
given below.

𝑇𝑣|𝑡=0 = 𝑇𝑡|𝑡=0 = 1, (36a)
(

𝐮𝑣𝑇𝑣 − �̄�𝑣
𝜕𝑇𝑣
𝜕𝑡

)

|

|

|𝑟=0
=
(

𝐮𝑡𝑇𝑡 − �̄�𝑡
𝜕𝑇𝑡
𝜕𝑡

)

|

|

|𝑟=0
= 0, (36b)

𝑇𝑣|𝑟=𝑅 = 1,
(

𝐮𝑡𝑇𝑡 − �̄�𝑡
𝜕𝑇𝑡
𝜕𝑡

)

|

|

|𝑟=𝑅
= 𝛽𝑡(𝑇𝑣 − 𝑇𝑡). (36c)

In this manuscript, we are consistent with the boundary conditions
utilised in Nabil and Zunino (2016) and Al Sariri and Penta (2022).
Our set of conditions represents a situation where the nanoparticles
are first injected for a period of time, cf. (35c), and then the magnetic
field is subsequently applied, so that the temperatures distributions are
then driven by heat sources which depend on the absorption rate and
concentration of nanoparticles, cf. (31a)–(31b), and the heat transport
problem is then closed by initial conditions (36a) and boundary condi-
tions (36b)–(36c). The present problem at hand is very rich, and that
future investigations on the subject could also focus on different initial
6

and/or boundary conditions. 1
The hydraulic conductivity, diffusivity, and thermal conductivity
coefficients are computed as discussed in Al Sariri and Penta (2022),
based on the microscale simulations performed in Penta and Ambrosi
(2015) and Mascheroni and Penta (2017). The resulting values are then
injected in our macroscale system of PDEs, and we use the values of the
parameters in Table 1 to solve the model and present the results.

3. Results and discussion

Penta and Ambrosi (2015) discussed the solution of the fluid flow
system (27a)–(27d) and they determined the radial components of
the velocities and pressures which were used to find the particles’
concentration and heat convection as investigated by Mascheroni and
Penta (2017), and Al Sariri and Penta (2022). The authors of the
mentioned works studied the influence of the geometry of the micro-
vessels on the distribution of the particles and they concluded that
vessels’ tortuosity impairs the transport of fluid (Penta and Ambrosi,
2015), particles (Mascheroni and Penta, 2017), and heat (Al Sariri
and Penta, 2022). Here, the differential Eqs. (34a)–(34d), equipped
with initial and boundary conditions (35a)–(35c), and (36a)–(36c),
are solved via the finite element software COMSOL Multiphysics as
in Al Sariri and Penta (2022). The plots illustrating spatio-temporal
temperatures and concentration profiles in Section 3.1 are generated
using COMSOL Multiphysics, while Python is used to generate the plots
related to the parametric analysis discussed in Section 3.2.

Remark (Presentation of the Results). While we solve the model in non-
dimensional form, results in terms of temperatures and concentrations
are presented by referring to their corresponding dimensional values
in the plots in order to foster the Reader’s understanding. In particular,
temperatures are expressed in degree Kelvin (K), and concentrations in
mg∕ml (or, equivalently kg/m3).1 The non-dimensional time unit in this
work can be computed by means of relationship (18) and corresponds
to 50 s. This applies when we discuss conditions related to time intervals
in dimensional form in the following sections. For example, it means
that an injection time of 50 min corresponds to 60 non-dimensional time
units. The radius and the time are expressed in non-dimensional form
in the following sections. Therefore, the non-dimensional radius ranges
from 0 to 1, while the chosen time interval is from 0 to 1000, which
corresponds to a time interval of 5 ⋅ 104 s (≈13.88 h).

3.1. The role of vessels’ tortuosity

We commence by investigating the role of the microvascular tor-
tuosity on the concentration of nanoparticles in Section 3.1.1 and
on the resulting temperature maps in Section 3.1.2. The results are
shown in terms of vessels’ concentration 𝑐𝑣, density 𝜓 , and tumour
temperature 𝑇𝑡 vs relative radius of the homogenised tumour or time.
We have conducted the analysis by labelling the microstructures at
varying tortuosities with the index 𝜆. The latter actually corresponds to
a specific couple of spatial frequency 𝜔 and amplitude 𝐴, as specified in
Table 2, and are those used in Penta and Ambrosi (2015), Mascheroni
and Penta (2017) and Al Sariri and Penta (2022) to parametrise the
tumour microvessels. Each of these couple of parameters determine
a different microstructure, with their associated vessels surface and
corresponding cell volume portion. Given that we are focussing on the
microvasculature considered by Penta and Ambrosi (2015), invariance
with respect to mutual orthogonal axis applies. As such, the effective
hydraulic conductivities, as well as drug and thermal diffusivities, are
isotropic and their values at varying tortuosities are listed in Table 2.
These are denoted by 𝐻𝑣 = ⟨𝖶11⟩ = ⟨𝖶22⟩ = ⟨𝖶33⟩ for the hydraulic

1 In this latter case no rescaling is needed as the reference concentration is
mg∕ml.
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Table 1
Values of model parameters.

Symbol Parameter Value Unit Reference

𝜏0 Larmor time constant 10−9 s De la Presa et al. (2012)
𝑘𝑖 Magnetic anisotropy constant 1.1 × 104 J/m3 Ferguson et al. (2013)
𝐾𝐵 Boltzmann constant 1.38 × 10−23 J/K Ferguson et al. (2013)
𝜂 Nanoparticles’ carrier liquid viscosity 2.94 × 10−4 kg/m s Torres et al. (2019)
𝑧 Adhesion probability 1.5 × 10−4 Non Nabil and Zunino (2016)
𝜇 Blood viscosity 4 × 10−3 Pa s Nabil and Zunino (2016)
𝐿𝑝 Vessel hydraulic permeability 1.78 × 10−11 m/Pa s Jain et al. (2007)
𝑘 Tumour hydraulic conductivity 2.1 × 10−13 m2/Pa s Boucher et al. (1998)
𝐷𝑣 The diffusivity of nanoparticles in the capillaries 3.3 × 10−10 m2/s Shipley and Chapman (2010)
𝐷𝑡 The diffusivity of nanoparticles in the tissue 1.0 × 10−11 m2/s Shipley and Chapman (2010)
𝐾𝑡 Thermal conductivity at tissue 0.52 W/m K Tang et al. (2018)
𝐾𝑣 Thermal conductivity at vessel 0.51 W/m K Tang et al. (2018)
𝛽 Heat transfer coefficient 20 W/m2 K Nabil and Zunino (2016)
𝐿𝑐 Membrane permeability related to the drug 1.7 × 10−7 m/s Modok et al. (2006)
𝑑 Reference microscale 4.0 × 10−5 m Less et al. (1997)
𝐿 Reference macroscale 1.0 × 10−2 m Jain et al. (2007)
C Reference pressure gradient 5 × 102 Pa/m Shipley and Chapman (2010)
𝛾𝑡 Tissue-specific heat 3470 J/kg K Nabil and Zunino (2016)
𝜌𝑡 Tissue density 1060 kg/m3 Nabil and Zunino (2016)
𝛾𝑣 Vessels-specific heat 3617 J/kg K Miaskowski and Sawicki (2013)
𝜌𝑣 Vessels density 1050 kg/m3 Miaskowski and Sawicki (2013)
𝐶𝑟 Concentration reference 1 mg/ml De la Presa et al. (2012)
Fig. 2. The concentration of nanoparticles 𝑐𝑣 as a function of tumour radius 𝑟 for various values of vessels’ tortuosity as specified in the legends and for time moment (a) 𝑡 = 20
min (b) 𝑡 = 50 min (c) 𝑡 = 2 h and (d) 𝑡 = 5 h. All other parameter values are as specified in Table 1 except for the parameters 𝜎 = 50 min, and 𝑐𝑛 = 50 mg/ml.
conductivity, whereas the homogenised thermal and drug diffusivi-
ties are to be computed by simply multiplying their corresponding
non-dimensional values by the correction factor herein denoted by
1 −

⟨

𝜕𝑎,𝑔
⟩

, which was computed for the considered microstructures
7

𝜕𝑦1 𝑣
by Mascheroni and Penta (2017). We also assume that, given the low
vascular density, the interstitial hydraulic conductivity and thermal
diffusivities are unaffected by the homogenisation process, as justified
in Penta and Ambrosi (2015).
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Table 2
Particle diffusivity and thermal conductivity values for various vessel geometry.

𝜆 𝜔 A |𝛺𝑣| |𝛺𝑡| 𝑆 𝐻𝑣 1 −
⟨

𝜕𝑎, 𝑔
𝜕𝑦1

⟩

𝑣

0 0 0 8.1 ⋅ 10−2 6.149 2.30 2.20 ⋅ 10−4 3.6 ⋅ 10−1

0.5 1 0.5𝑟𝑐 7.9 ⋅10−2 6.151 2.30 2.06 ⋅10−4 3.53 ⋅10−1

1 1 𝑟𝑐 7.6 ⋅ 10−2 6.154 2.32 1.69 ⋅ 10−4 3.19 ⋅ 10−1

1.5 2 0.5 𝑟𝑐 7.6 ⋅10−2 6.154 2.33 1.63⋅10−4 3.18 ⋅10−1

2 2 𝑟𝑐 6.9 ⋅ 10−2 6.161 2.57 6.24 ⋅ 10−5 2.13 ⋅ 10−1

2.5 3 0.5 𝑟𝑐 7.2 ⋅ 10−2 6.158 2.53 7.71⋅10−5 2.47⋅10−1
3 3 𝑟𝑐 6.5 ⋅ 10−2 6.165 3.25 4.89 ⋅ 10−6 0.9 ⋅ 10−1

3.1.1. Concentration of nanoparticles
The result of the differential equations (34a)–(34b) with initial and

boundary conditions (35a)–(35c), is the homogenised concentration
of particles in the vessels, which reflects the effective behaviour of
the nanoparticles delivered intravascularly in a macroscale spherical
tumour.

A concentration of 50 mg/ml of magnetic nanoparticles is injected
or a time 𝜎 = 50 min. Fig. 2 shows the concentration of nanoparticles
t different times both during and after injection. It is clear that during
he injection phase, the concentration on the boundary of the tumour
s very high but cannot influence regions far from the boundary. When
e stop injecting the nanoparticles at 𝑡 > 50 min, the particles start to

diffuse more towards the tumour centre. Also, in all cases highlighted in
Fig. 2 it is clear that tortuosity has a negative impact of nanoparticles
transport, although intermediate values of the tortuosity may lead to
optimal concentration peaks post injection, as in case of Fig. 2c, where
the highest concentration peak is reached at 𝜆 = 2 and after injection
at 𝑡 = 2 h. The vessels with tortuosity 𝜆 = 0 and 𝜆 = 1 correspond to
approximately similar concentration of nanoparticles profiles, and the
maximum is reached approximately after 6 h, see Fig. 3. In contrast,
the concentration is very low for the most tortuous vessels at 𝜆 = 3.
This is because the nanoparticles are advected by the fluid and for
very high tortuosity the fluid flow is dramatically impaired and no
longer characterised by a parabolic profile. This ultimately causes a
sharp decline in the hydraulic conductivity of the vessels, as explained
by Penta and Ambrosi (2015). These obtained profiles are in qualitative
agreement with those obtained by Mascheroni and Penta (2017) and Al
Sariri and Penta (2022). However, there are discrepancies between our
results and previous results in terms of the amount of concentration
and the time that it takes for the nanoparticles to reach the centre due
to the difference in boundary conditions and the presence of adhesion
which is neglected in Al Sariri and Penta (2022).

Mascheroni and Penta (2017) and Al Sariri and Penta (2022) dealt
with drug delivered by a bolus injection accounting for an exponential
decline in the concentration of nanoparticles due to plasma clearance,
therefore, they observed a slower drug dynamics. In our case, the
injected concentration of nanoparticles on the boundary of the tu-
mour drops to zero directly after 50 min, and so the drug can reach
the tumour centre regions by diffusive transport after a few hours
post-injection.

We chose an injection time of 50 min to be consistent with the
experiment performed by Famiani et al. (2018), and we also test
different injection times in the course of the parametric analysis in
Section 3.2.

We conclude this section by discussing the role of the density of
nanoparticles 𝛹 adhering to the vessels’ walls. Its maximum is reached
close to the domain boundary, and it depends on the tortuosity of the
vessels, see Fig. 3. Moreover, if we compare the profile of 𝑐𝑣 and 𝛹
with different vessels’ tortuosity, we can see that the peak in the case
of 𝛹 , as well as 𝑐𝑣 2 h post-injection, is reached at 𝜆 = 2. This is because,
while tortuosity impairs fluid convection, the adhesion of nanoparticles
is supposed to increase at increasing tortuosity due to the friction
between the particles and the vessels. Therefore, we suggest that, while
tortuosity is in general negatively affecting nanoparticles’ transport
8

Table 3
Properties of magnetic nanoparticles.

Material 𝑀𝑑 (kA/m) 𝜌𝑛 (kg/m3) Reference

Fe3 O4 446 5180 Kappiyoor et al. (2010)
fcc Fe Pt 1140 15 200 Kappiyoor et al. (2010)
Ba Fe2 O4 380 5280 Kappiyoor et al. (2010)
Ni Fe 301 5380 Ng et al. (2017)

as in Mascheroni and Penta (2017) and Al Sariri and Penta (2022),
whenever adhesion is taken into account, less regularisation of the
vessels’ may be required to achieve optimal nanoparticles’ transport.
However, at 𝜆 = 3, transport still drops dramatically, as in this case the
increase in nanoparticle adhesion is not sufficient the counterbalance
the drop in fluid, and hence nanoparticles advection.

Finally, we also wish to remark that the concentration is prescribed
as a time-dependent boundary (rather than initial) condition and in-
jected over a period of time, such that there exists a transient period
before the drug is cleared off when localised regions in space can
develop where the concentration exceeds the boundary value. This can
be seen by observing the concentration profile in Fig. 2(b) at 𝜆 = 2.
This phenomenon typically happens when the time is still comparable
to the injection time 𝜎. For a shorter period of time the concentration
delivered to the system is typically not sufficient for this to occur. For a
time much longer than the injection time the concentration is already
significantly lower than the boundary value being prescribed during the
injection time.

3.1.2. Temperature maps
The differential equations (34c)–(34d) with boundary and initial

conditions (36a)–(36c) are used to find the heat maps for a vascularised
tumour. As mentioned in Section 2, the hyperthermia effectiveness
depends on the absorption rate 𝛼, which is in turn affected by both
the properties of the magnetic field, such as intensity and frequency,
as well as the properties of the magnetic nanoparticles. Abenojar et al.
(2016) found that theoretically and experimentally the absorption rate
of cubic nanoparticles is higher than the spherical nanoparticles and
nano-rods are better than cubic and spherical nanoparticles (Das et al.,
2016). However, for the sake of simplicity, in this work we focus
on spherical particles and we show that cancer hyperthermia can be
improved by changing nanoparticles’ material, size, concentration, and
also the injection duration time. Varying the material of nanoparticles
requires to change their magnetisation 𝑀𝑑 and their density 𝜌𝑛, see
Table 3. The parameter 𝑀𝑑 is more relevant than others in the way it
affects the absorption rate 𝛼 as the latter is proportional to the square
of 𝑀𝑑 and inversely proportional to 𝜌𝑛. Fig. 4(b) shows that (FePt)
responds with higher temperature changes when compared with other
materials typically considered in this context. Usually the magnetisa-
tion of metallic nanoparticles like Iron–Platinum (FePt), Iron–Cobalt
(FeCo), Cobalt–platinum (CoPt) is higher than the oxidation nanoparti-
cles like Iron-Oxide (FeO), Maghemite (Fe2O3), and Magnetite (Fe3O4),
but the former are not stable (Gubin, 2009). As such, in the present
work we concentrate more on magnetite nanoparticles, as appropriate
for application of cancer hyperhermia to human tissues (Hergt et al.,
2006). Fig. 4(a) shows the temperature profile arising from injection of
magnetite nanoparticles with different vessels’ tortuosity. The concen-
tration of particles drives heat transport from the boundary towards the
tumour centre. Convection–diffusion of heat then causes the tempera-
ture to raise from the standard blood temperature, which is prescribed
at the tumour boundary, to higher values. Microvascular tortuosity is
associated with a reduce increase in temperature, in agreement with
previous findings reported for heat transport driven by small nanoparti-
cles discussed by Al Sariri and Penta (2022) Moreover, the temperature
increases and approaches its maximum after approximately 2.5 h, then
it starts to decrease as the overall concentration declines.
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Fig. 3. The concentration of nanoparticles vs time, and the density of nanoparticles that adheres to the vessels’ wall vs the radius of tumour. (a) Instantaneous concentration
of nanoparticles 𝑐𝑣 at the center of tumour 𝑟 = 0 as a function of time for various values of vessel tortuosity as specified in the figure legends. (b) Instantaneous density of
nanoparticles 𝛹 that adheres to the wall of the vessels as a function of tumour radius for different tortuosity of the vessels. In both panels the time point is 𝑡 = 6 h. All other
parameters are as specified in Tables 1 and 2 except 𝜎 = 50 min, and 𝑐𝑛 = 50 mg/ml.
Fig. 4. (a) Instantaneous tumour temperature 𝑇𝑡 at time 𝑡 = 2 h as a function of tumour radius 𝑟 for Fe3O4 nanoparticles and various values of vessel tortuosity as specified in the
figure legend. (b) Local tumour temperature 𝑇𝑡 at the centre of the tumour 𝑟 = 0 as a function of time for various types of nanoparticles materials as specified in the figure legends
and for vessels with tortuosity 𝜆 = 1. All other parameter values are as specified in Table 1 except for the parameters 𝐻0 = 10 kA, 𝑓 = 300 kHz, 𝜎 = 50 min, and 𝑐𝑛 = 100 mg/ml.
The remainder of this section is devoted to a parametric analysis
which is performed to determine the optimal set of parameters (in-
cluding injection conditions, magnetic field properties, nanoparticles’
diameter, microvessels’ tortuosity, wall shear rate) which is required
to reach a physiologically safe target hyperthermic temperature and
duration.

3.2. A parametric study of hyperthermic temperature and duration

The ranges in which the hyperthermic temperature and duration
take safe and effective values depend strongly on the pathophysiology
of the tumour tissue under treatment. For this reason, the published
literature gives various estimates of these quantities — see the Intro-
duction for further discussion. Table 4 summarises values of the target
hyperthermic temperature and duration suggested in several clinical
and experimental investigations. Based on the data in Table 4, we
assume that the safe and effective values for the hyperthermic tempera-
ture are in the range [42◦, 46◦]C and the safe and effective hyperthermic
duration has values in the range [0.5, 2] h. Below these intervals hyper-
thermia treatment does not induce sufficiently strong sensitisation to
radiotherapy and chemotherapy or lead to significant direct thermal
ablation of cancer cells. Above these intervals undesirable damage to
healthy tissue occurs.
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Fig. 5 demonstrates how the value of the hyperthermic duration is
computed from the numerical results of our model. A typical example
of the temperature profile as a function of time in the centre of
the tumour, 𝑟 = 0. is shown in the Figure for fixed values of the
model parameters. Initially, the temperature increases monotonically
and eventually reaches the hyperthermic temperature, 𝑇𝑡 = 42 ◦C,
after an initial transient time as shown by the horizontal green line
in Fig. 5. The temperature continues to increase further until it reaches
a single global maximum 𝑇max and decreases monotonically after that
until it eventually drops below the hyperthermic temperature. The
hyperthermic duration is defined and computed as the difference be-
tween the moment in time when the temperature decreases below the
hyperthermic temperature of 42 ◦C and the moment in time when the
temperature first exceeds this value. These moments are indicated in
Fig. 5 by vertical red lines. The hyperthermic duration is denoted by 𝜏
for the remainder of this section.

Fig. 6(a) shows a 3D plot of the hyperthermic duration 𝜏 as a
function of the intensity of the applied magnetic field 𝐻0 and the
nanoparticle injection duration 𝜎 for all other model parameters fixed
at constant values. For small values of 𝐻0 and 𝜎 the hyperthermic
duration is zero as the 𝑇max has not yet exceeded the hyperthermic
temperature of 42 ◦C. As the values of 𝐻0 and 𝜎 are increased, either
separately or simultaneously, the hyperthermic temperature of 42 ◦C
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Table 4
Estimates for the hyperthermic temperature and duration available from the published
literature.

Temperature (◦C) Duration (min) Reference

44 30 Kawai et al. (2008)
42.5 60 Perez and Sapareto (1984)
41.5 120 Sakaguchi et al. (1995)
42 30 Pankhurst et al. (2003)
41 60 Dudar and Jain (1984)
47 30 Hilger (2013)

Fig. 5. Temperature 𝑇𝑡 at the middle of the tumour (𝑟 = 0) as a function of time in the
ase of vessels with tortuosity 𝜆 = 1 and all other parameter values are as in Table 1
xcept 𝐻0 = 10 kA, 𝑓 = 300 kHz, 𝜎 = 50 min, 𝑐𝑛 = 100 mg/ml, 𝜉 = 15, and 𝑝𝑑 = 80 nm.

The two vertical red lines indicate the hyperthermic duration 𝜏 - the time interval for
which the tumour temperature profile exceeds the hyperthermic temperature 𝑇𝑡 = 42 ◦C
shown with a horizontal green line.

is eventually exceeded and a non-vanishing value of the hyperthermic
duration 𝜏 is recorded and continue to increase monotonically with
increase of both 𝐻0 and 𝜎. The range of safe and effective hyperthermic
duration values are then the values on the surface 𝜏(𝐻0, 𝜎) that are
located between the iso-contour lines 𝜏 = 0.5 h and 𝜏 = 2 h. These
isolines are shown by a red solid curve and a red dashed curve in the
plot of Fig. 6(a). Fig. 6(b) shows a similar surface plot of the maximal
(in time) temperature at the centre of the tumour 𝑟 = 0 as a function of
𝐻0 and 𝜎 for all other model parameters fixed at constant values again.
The surface is monotonically increasing, and the safe and effective
range of temperature values is the one located between the iso-contours
𝑇max = 42 ◦C and 𝑇max = 46 ◦C. These iso-contours are shown by green
dash-dotted and green dotted lines in the Figure. Fig. 6(c) shows the
projections of the safe and effective iso-contour lines 𝜏 = 0.5 h and
𝜏 = 2 h determined from Fig. 6(a) and the safe and effective iso-contour
lines 𝑇max = 42 ◦C and 𝑇max = 46 ◦C determined from Fig. 6(b) onto the
coordinate plane (𝐻0, 𝜎) that they all have in common. For successful
hyperthermia treatment both the hyperthermic temperature and the
hyperthermic duration must be within their safe and effective ranges.
Hence, we conclude that for fixed other parameter values, the values
of the intensity of the applied magnetic field 𝐻0 and the nanoparticle
injection duration 𝜎 must be chosen within the intersection of the two
regions thus determined. The resulting estimate of safe and effective
values (𝐻0, 𝜎) are shown as a shaded region in Fig. 6(c).

The procedure described in relation to Fig. 6 can be applied simi-
larly to other pairs of model parameters. Fig. 7 shows the regions of safe
and effective hyperthermia treatment in the parameter planes (𝐻0, 𝑐𝑛),
(𝐻0, 𝑝𝑑), (𝜉,𝐻0), and (𝜆,𝐻0), where 𝜆 is tortuosity of the vessels, pd is
the diameter of nanoparticles, 𝜉 is the wall shear rate, 𝑐𝑛 is the injected
concentration of particles at the boundary and 𝐻0 is the magnetic field
intensity . The latter is used as a common axis in order to make easier
to cross-reference further parameter pairs. Figs. 6(c) and 7 constitute a
10
major result of our analysis. They may be used to design and optimise
hyperthermia procedures. Further discussion of these results is included
in the next section.

4. Conclusion

We have solved a new system of homogenised PDEs which models
cancer hyperthermia in solid tumours driven by magnetic heating of
large nanoparticles. The model is obtained by applying the asymptotic
homogenisation technique, as done in the recent work proposed by Al
Sariri and Penta (2022), where the role of microvascular tortuosity on
heat transport driven by small nanoparticles is investigated.

The resulting governing equations in this work describe fluid trans-
port and its exchange between the interstitial tumour space and the
micro-vessels, as well as nanoparticles transport. The latter is assumed
to occur solely in the vessels to which particles can adhere, as opposed
to the work by Al Sariri and Penta (2022), where extravasation of small
nanoparticles was taken into account, and adhesion ignored. We have
performed a parametric analysis to study the role of nanoparticles and
applied magnetic field properties, as well as micro-vessels tortuosity,
on the temperature reached as a consequence of cancer hyperthermia
(hyperthermic temperature), as well as the duration for which this latter
is maintained (hyperthermic duration).

This way, we have identified the optimal cancer hyperthermia pa-
rameters for safe and effective hyperthermic temperature and duration
conditions (herein identified in 42−46 ◦C for 30 min to 2 h). The main
results of our analysis are shown in Figs. 6 and 7 in terms of particles’
diameter, magnetic field intensity, vessels’ shear rate, injection condi-
tions (injected concentration and duration), as well as microvascular
tortuosity.

According to our results, both the injected concentration of nanopar-
ticles, and the time during which they are administrated, play a
prominent role in reaching the desired hyperthermic conditions. The
safe magnetic field intensity to be applied increases monotonically with
decreasing injection time and duration, as expected.

The role of particles’ diameter in the investigated range only weakly
affects the safe range of magnetic intensity. On the other hand, we find
that the properties of the microvessels play a crucial role in determining
the hyperthermic conditions of the system.

Increasing the wall shear rate requires a corresponding increase in
magnetic field intensity, although such an increase exhibits a sublinear
profile. This may be due to the fact that, on the one hand, the wall
shear rate determines an increase in the particles’ density adhering to
the vessels’ walls and hence an increase in the heat source directly
related to adhesion. On the other hand, an increase of the adhesion
also translates in particle absorption at the macroscopic scale, so that,
in turn, part of the nanoparticles flowing in the vessels are uptaken thus
causing a net decrease in the heat source, as the latter also depend on
the actual concentration of nanoparticles. In the scenario at hand, the
latter phenomenon overtakes the former, as the concentration affects
the heat source more than the density of nanoparticles adhering to the
vessels, thus justifying the obtained profile.

The role of microvessels’ tortuosity is in agreement with the findings
reported in Al Sariri and Penta (2022), in that in general, regularisation
of the tumour microstructure leads to an overall improvement in fluid,
drug, and ultimately heat transport. However, high concentration peaks
can be reached for intermediate values of the tortuosity, due to the
fact that increasing the geometrical complexity of the vessels’ leads to
consequences which can potentially lead to opposite effects on the drug
and heat dynamics.

In fact, an increased tortuosity leads to larger vessel surface, which
leads to an increase in adhesion, and, at the same time, to impaired
(reduce) fluid, drug, and heat convection. However, the importance of
geometric regularisation in enhancing anti-cancer therapies based on
drug transport for vascularised tumours is evident also in this current
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Fig. 6. Surfaces of the hyperthermic duration 𝜏(𝐻0 , 𝜎) in (a) and the maximal temperature at the centre of the tumour 𝑇𝑚𝑎𝑥(𝐻0 , 𝜎) in (b) both shown as functions of magnetic
field intensity and nanoparticle injection duration. The two red lines in (a) show the range of durations for safe and effective treatment between 𝜏 = 0.5 h and 𝜏 = 2 h. Similarly
the two green lines indicate the range of safe and effective hyperthermic temperature range 42−46 ◦C. Panel (c) shows the projections of these safe and effective isocontours onto
the (𝐻0 , 𝜎) plane and the shaded region being the intersection where both the hyperthermic temperature and duration are within the target ranges. All other parameter values are
kept fixed at values specified in Table 1 except 𝑓 = 300 kHz, 𝜎 = 50 min, 𝑐𝑛 = 100 mg/ml, 𝜉 = 15, 𝑝𝑑 = 80 nm.
Fig. 7. Regions of safe and effective hyperthermia treatment in the parameter space of the model. The regions are constructed as described in the caption of Fig. 6 and are as
follows (a) (𝐻0 , 𝑐𝑛), (b) (𝐻0 , 𝑝𝑑), (c) (𝜉,𝐻0), and (d) (𝜆,𝐻0). In each panel, all parameters except the ones on the axes are kept fixed at values specified in Table 1 and 𝑓 = 300
kHz, 𝜎 = 50 min, 𝑐𝑛 = 100 mg/ml, 𝜉 = 15, 𝑝𝑑 = 80 nm. The particles’ diameter on the ordinate in figure (b) is in nm.
ork and in agreement with the works developed by Mascheroni and
enta (2017) and Al Sariri and Penta (2022).

The present work is open for improvements. We have assumed that
he tumour does not deform, while of course tissue deformations and
rowth take place (see also Penta et al., 2014; Penta and Merodio,
017 where homogenised models for avascular appositional growth an
luid transport in deformable vascular tumours are investigated) and
an determine significant consequences on drug transport. In addition,
n this work we have assumed a constant wall shear rate for the
ake of simplicity, while this is indeed depending on the micro-scale
11
fluid transport in the vessels. Incorporating the latter could lead to a
more realistic description of the influence of adhesion on nanoparticles
transport and on its consequences on heat transport. This way, more
realistic predictions could be made concerning the necessary geometric
regularisation that should be carried out to achieve safe hyperthermic
conditions.

We have also ignored the explicit interaction between the tumour
and the surrounding healthy tissue and solely focussed on the cancerous
region in this particular manuscript. At present, we have adopted the
simplified approached proposed in Nabil and Zunino (2016) and also
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adopted in Al Sariri and Penta (2022), so that we assume that heat
exchange between the vessels and the tumour is mediated by the role
of intermediate layers of tissue, and represents this feature by means
of the Robin boundary condition (36c). However, in order to formulate
more accurate predictions concerning safe hyperthermic conditions,
future development of this work should take this interplay explicitly
into account, for example by considering the healthy tissue as an
individual compartment, as done by Penta et al. (2021) in the context
of active porous media.

Furthermore, the potential for vascular collapse (see, e.g., the work
by Horsman (2006)) due to tissue overheating should also be taken into
account when determining safe hyperthermic conditions.

The current modelling approach can be applied to specific kind of
tumours, experimental setups, and physiological symptoms in order to
formulate predictions concerning the optimal hyperthermic conditions
in the context of cancer hyperthermia. In particular, we have performed
a parametric analysis in terms of injection conditions (concentration
and duration), particle diameter, magnetic field intensity, wall shear
rate, and tortuosity of the microvessels. While some of the parameters,
such as injection conditions, magnetic field intensity (and frequency),
as well as magnetic particles geometrical properties (including the
diameter) can certainly be tuned to optimise hyperthermic conditions,
as described for example in the works by Salloum et al. (2008), Kim
et al. (2008) and Sawtarie et al. (2017), respectively (alongside many
others), others depend on the hydrodynamic conditions at hand and on
the specific tumour type. This is the case for parameters such as fluid
velocity and wall shear rate, as per the analysis reported by Hossain
et al. (2013) and for geometrical properties of the microstructure,
see, e.g., Sweeney et al. (2019). As such, we suggest that the optimal
way to utilise the modelling approach presented here is to obtain the
microvessels’ tortuosity based on numerical simulations performed on
microstructures parametrised on the basis of real medical images. This
way, the other parameters can be tuned to achieve desired hyperther-
mic conditions that ensure patient safety and effective treatment. Our
model and findings contribute to the design of patient-specific diag-
nostic tools and may help improve the efficacy of current anti-cancer
therapies.
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Appendix. The macroscale coefficients

The hydraulic conductivity tensors, diffusion tensors, and ther-
mal conductivity tensors, can be computed by solving appropriate
microscale cell problems, see also the work by Al Sariri and Penta
(2022).

The hydraulic conductivities 𝖸𝑣 and the second rank tensor 𝖸𝑡 are
efined as

𝑣 = ⟨𝖶⟩𝑣 =
1

|𝛺𝑣| ∫𝛺𝑣
𝑊 𝑑𝑦, (A.1)

𝖸𝑡 = 𝐼 − 1
|𝛺𝑡| ∫𝛺𝑡

(∇𝑦𝐫)𝑇 𝑑𝑦. (A.2)

he tensor 𝖶 and vector 𝐫 are the solution of the following problems
2
𝑦𝖶

𝑇 = ∇𝑦𝐦 − 𝐼 in 𝛺𝑣, (A.3)

∇𝑦 ⋅𝖶𝑇 = 0 in 𝛺𝑣, (A.4)

𝖶𝑇 ⋅ 𝐧 = 0 on 𝛤 , (A.5)

𝖶𝑇 𝜏 = −�̄�[(∇𝑦𝖶𝑇 )𝐧]𝜏 on 𝛤 , (A.6)

and

∇2
𝑦𝐫 = 0 in 𝛺𝑡, (A.7)

(∇𝑦𝐫) ⋅ 𝐧𝑡 = 𝐧𝑡 on 𝛤 , (A.8)

respectively, where

⟨𝐦⟩𝑣 = 0 in 𝛺𝑣, ⟨𝐫⟩𝑡 = 0 in 𝛺𝑡. (A.9)

The drug diffusivities 𝖥𝑣 and 𝖥𝑡 are given by

𝖥𝑣 = �̄�𝑣(𝐼 − ⟨(∇𝑦𝐚)𝑇 ⟩𝑣), (A.10)

and

𝖥𝑡 = �̄�𝑡(𝐼 − ⟨(∇𝑦𝐛)𝑇 ⟩𝑡), (A.11)

while the auxiliary fields 𝐚 and 𝐛 are the solution of the following
microscale problems

∇2
𝑦𝐚 = 0 in 𝛺𝑣, (A.12)

(∇𝑦𝐚)𝐧 = 𝐧 on 𝛤 , (A.13)

∇2
𝑦𝐛 = 0 in 𝛺𝑡, (A.14)

(∇𝑦𝐛)𝐧 = 𝐧 on 𝛤 . (A.15)

The thermal conductivities 𝖭𝑣, and 𝖭𝑡 are given by

𝖭𝑣 = �̄�𝑣(𝐼 − ⟨(∇𝑦𝐠)𝑇 ⟩𝑣), (A.16)

𝑡 = �̄�𝑡(𝐼 − ⟨(∇𝑦𝐞)𝑇 ⟩𝑡), (A.17)

here
2
𝑦𝐠 = 0 in 𝛺𝑣, (A.18)

∇𝑦𝐠)𝐧 = 𝐧 on 𝛤 , (A.19)
2
𝑦𝐞 = 0 in 𝛺𝑡, (A.20)

∇𝑦𝐞)𝐧 = 𝐧 on 𝛤 . (A.21)

In order for the solution of the cell problems related to the intersti-
ial fluid flow, drug transport, and heat transport to be unique, a further
ondition is to be specified (for example by assuming the null cell
verage of the auxiliary variables in the cell), as shown by Cioranescu
nd Donato (1999) and Penta et al. (2015).
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