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Characterization of coal micro-structure and the associated rock mechanical properties are
of key importance for coal seam exploration, coal bed methane development, enhanced coal
bed methane production and CO2 storage in deep coal seams. Considerable knowledge
exists about coal chemical properties, but less is known about the nanoscale to the micro-
scale structure of coals and how they change with coal strength across coal ranks. Thus, in
this study, 3D X-ray micro-computed tomography (with a voxel size of 3.43 lm) and nano-
indentation tests were conducted on coal samples of different ranks from peat to anthracite.
The micro-structure of peats showed a well-developed pore system with meso- and micro-
pores. The meso-pores essentially disappear with increasing rank, whereas the micro-pores
persist and then increase past the bituminous rank. The micro-fracture system develops past
the peat stage and by sub-bituminous ranks and changes into larger and mature fracture
systems at higher ranks. The nano-indentation modulus showed the increasing trend from
low- to high-rank coal with a perfect linear relationship with vitrinite reflectance and is
highly correlated with carbon content as expected.
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INTRODUCTION

Coal is naturally heterogeneous, composing of
different components (or coal macerals) which are
originally derived from various plant organs. The

physical and chemical properties (or coal rank) will
change with increasing burial pressure and temper-
ature (Van Krevelen et al. 1993). Considerable
knowledge exists about the chemical changes that
occur with increasing coal rank, but how the pore
morphology of individual macerals, lithotypes, mi-
cro-fractures alter with different coal ranks, and the
effects of mineral matter on the porosity and frac-
tures are even less well understood. The micro-
structure of coals has been studied in detail for
certain coal ranks, for example the medium-rank
coal (Zhang et al. 2018). However, a wider range of
coal ranks will be encountered during the explo-
ration of coal bed methane and carbon geo-seques-
tration. Therefore, it is necessary to study the
petrophysical properties of all ranked coal samples
(Zhao et al. 2016; Mathews et al. 2017; Mostaghimi
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et al. 2017; Zhou et al. 2017). The meso- and micro-
porosity, micro-fractures and elastic properties (such
as Young�s modulus and Poisson�s ratio) control the
bulk and field-scale estimates of porosity, pore
connectivity, permeability, sorption capacity, gas
migration, wettability and the seismic analysis of
fracture/cleat networks (Al-Yaseri et al. 2017; Ku-
mari et al. 2018; Li et al. 2019).

In the past, coal porosity, pore size distribution
or pore throat size distribution has been investigated
by traditional invasion techniques such as helium
pycnometer, low pressure gas adsorption or mercury
injection capillary pressure (MICP) method (Liu
et al. 2016). However, these methods are limited,
which require the assumptions about pore shape, the
encounter problems at low ranks with moisture, and
could cause particle breakdown at high pressure
invasion (Mahajan and Walker 1978). Nuclear
magnetic resonance (NMR) is a non-destructive
method which can be used to obtain the pore size
distribution (Sun et al. 2016; Yao et al. 2014; Li et al.
2016; Sun et al. 2018). However, it is interpretative
and indirect. Scanning electron microscopy (SEM) is
adequate for directly imaging the coal micro-struc-
ture and in situ analysis with nanoscale resolution,
but it is essentially restricted to 2D (Predeanu et al.
2016).

Micro-CT that has been developed recently al-
lows direct imaging of the coal structure in 3D with
high resolution (Mathews et al. 2017; Zhang et al.
2016a; Jing et al. 2017a; Iglauer and Lebedev 2018;
Lebedev et al. 2017a, b). The voxel size is typically
1–10 lm; thus, percolation thresholds can be esti-
mated more precisely than with 2D SEM measure-
ments (Stauffer 1979). Some studies have been
performed on coal using micro-CT imaging: Yao
et al. (2009) measured the distributions of the coal
matrix constituents; Mathews et al. (2011) analysed
the extent of thermal drying-induced deformations
in coal; Ramandi et al. (2016) mapped the 3D dis-
tribution of minerals in coal from the Bowen Basin,
Australia, and compared the results with XRD,
SEM, and QEMSCAN data; Zhang et al. (2016a)
quantified the coal fracture system as a function of
effective stress and the impact on coal permeability
and porosity; or Zhang et al. (2016b, c) showed that
the micro-cleat system closes by coal matrix swelling
with CO2 or water adsorption. However, previous
coal studies focused on a single sample or a narrow
coal maturity range only, thus a lack of systematic
studies in terms of how coal morphology changes
with coal rank.

The heterogeneous morphology of coal macer-
als means that the mechanical properties are also
heterogeneous at the micro-, or nanoscale. In addi-
tion, coal cleats affect elastic property measure-
ments by both, normal dynamical (e.g. sonic wave)
and static methods (e.g. unconfined compressive
strength or tri-axial testing). Such effects need to be
excluded in coal matrix voxel modelling where
effective stress affects the aperture of cleats and are
hence important in CBM/ECBM. Hence, modelling
input for coal matrix elastic properties needs to be
obtained at a smaller scale to obtain coal matrix
properties. Such small-scale rock mechanical prop-
erties are extremely important for the multiscale
fracturing mechanisms, reliable modelling and pre-
diction of the mechanical performance based on
rock�s structure and composition (e.g. Bobko et al.
2011; Constantinides et al. 2006; Fischer-Cripps
2006; Lebedev et al. 2014; Vialle and Lebedev 2015;
Manjunath and Jha 2019). In the past, various
hardness measurements such as Vickers indentation
tests have been performed on macerals under the
microscope over several microns (Van Krevelen
1993). Recently, nanoscale mechanical properties
can be obtained by nano-indentation methods which
have been applied successfully to natural rocks, such
as sandstone (Zhu et al. 2009), limestone (Lebedev
et al. 2014; Zhang et al. 2016d), coal (Manjunath and
Nair 2015; Manjunath and Jha 2019; Zhang et al.
2017; Yu et al. 2018) and shale (Kumar et al. 2012; Li
and Sakhaee-Pour 2016; Liu and Ostadhassan 2017;
Zeszotarski et al. 2004). However, there remains a
lack of data nanoscale mechanical property mea-
surement correlation with coal rank and with their
related anisotropy.

Thus, in this paper, micro-CT imaging at high
resolution (3.43 lm voxel size) has been performed
for coals of different ranks (peat, lignite, sub-bitu-
minous, bituminous, anthracite) and nano-indenta-
tion tests were performed to measure how the nano-
mechanical properties varied with coal micro-mor-
phology and rank.

METHODOLOGY

Samples and Sample Preparation

The rank in �coal rank� refers to the steps in a
natural and slow process called �coalification� during
the plant matter changes into the material which are
denser, harder and more carbon-rich, including an-
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thracite, bituminous, sub-bituminous, lignite and
peat (Keshavarz et al. 2017; Pan et al. 2015; Shi et al.
2018). Samples of different coal ranks were selected
in this study as follows: a Quaternary peat from
Glastonbury, England, to assess the physical char-
acteristics prior to coalification; Paleocene low-rank
lignite from North Dakota, USA; Triassic sub-bitu-
minous coal from Pingdingshan, Henan, China;
Carboniferous medium-rank bituminous coal from
Morgantown, West Virginia, USA; and a Carbonif-
erous high-rank anthracite from Hazelton, Pennsyl-
vania, USA. Proximate analyses results and densities
of the studied coal samples (anthracite, bituminous,
sub-bituminous and lignite) are summarized in Ta-
ble 1. The surface character of the coal samples, as
seen under the SEM (Phenom XL), is illustrated at
high magnification in Figure 1. The SEM images for
these samples show the typical progression of the
physical structure with increasing coal rank. The
peat (air-dried) (Fig. 1e) retains large open tissue
macro-pores (black) within a huminite matrix. The
lignite is mainly huminite composed of a densinite
groundmass (generally the lighter coloured matter)
and telovitrinite or gelovitrinite bands (darker
bands, some with resinous cell contents). The sub-
bituminous sample photograph shows a vitrinite
groundmass (grey) and mineral (white, calcite)
invasion (Zhang et al. 2016a). The bituminous
sample clearly shows that the open macro-pore
structure has gone with thin bands of telovitrinite in
a groundmass of detrovitrinite, with dispersed min-
eral matter (white). The anthracite is the most
homogeneous sample with no obvious macro-pores,
but an anisotropic structure, and very small dis-
persed mineral grains (white).

The mineral matter in the coals was analysed by
XRD using a Bruker-AXS D9 Advance Diffrac-
tometer, and the results for each sample are shown
in Table 2, where the samples had different miner-
als. The samples for micro-CT were prepared as
small cylindrical coal plugs (5 mm in diameter and

10 mm in length) drilled parallel to the bedding
plane. The samples for the nano-indentation test
were cut and carefully polished as cuboid coal blocks
(l 9 w 9 h = 8 mm 9 5 mm 9 2 mm).

High-Resolution Micro-CT Scanning

The micro-CT scanning was obtained on small
cylindrical coal plugs (5 mm diameter, 10 mm
length) by an Xradia Versa XRM instrument. The
basic elements for micro-CT scanning include an X-
ray source, detector and sample stage, where the
sample stage is located between the X-ray source
and detector and all the parts can move to alter the
distance to adjust the magnification during the
scanning (e.g. Zhang et al. 2016c; Kong et al. 2018;
Jing et al. 2017b; Roshan et al. 2018; Yang et al.
2016; Yang 2018). The output data are displayed as
grey scale images where different materials show
different effective X-ray attenuation coefficients
represented the different ranges of CT numbers. The
coal micro-structures can thus be extracted based on
the contracts of CT numbers and then quantified
with a reconstruction process (Iglauer and Lebedev
2018). The scans were acquired at ambient labora-
tory conditions (atmospheric pressure and 296 K)
and high resolution (3.43 lm voxel size) using
2000 9 2000 pixel detector for the radiograph
acquisition, and an X-ray accelerating voltage of
60 kV was set. Each scanning took around 4–6 h.
The obtained micro-CT images were then filtered
with a 3D non-local mean filter method for noise
removal (Buades et al. 2005) and segmented with a
watershed algorithm for phase segmentation (Man-
gan and Whitaker 1999) using Avizo 9.2 software
(Zhang et al. 2016c; Sadeq et al. 2018; Yu et al.
2019). The detail of the image processing is pre-
sented in Figure 2 (Zhang et al. 2019).

Table 1. Summary of proximate analyses and densities of the studied coal samples

Sample Location Moisture (%) VM (%) Ash (%) Cf (%) Ro (%) Density (g/cm3)

Anthracite Pennsylvania, USA 2.6 2.9 9.7 84.9 3.9 1.3

Bituminous West Virginia, USA 2.0 32.4 6.4 59.2 0.8 1.3

Sub-bituminous Henan, China 6.9 36.0 4.2 54.0 0.5 1.4

Lignite North Dakota, USA 16.3 34.8 7.8 41.1 0.3 1.4

Moisture (%), moisture content as received; VM (%), volatile matter yield dry basis; ash (%), ash content; Cf (%), fixed carbon content; Ro

(%), vitrinite reflectance; density (g/cm3), bulk density q
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Nano-indentation Test

An IBIS Nano-indentation System from Fis-
cher-Cripps Laboratories equipped with a Berko-
vich nano-indenter was used for the nano-
indentation measurements (Fig. 3a). The coal sam-
ples for this analysis were polished with a diamond
abrasive paste (3 lm) and then mounted on the

sample stage of the system. The indenter (Fig. 3b)
penetrates into the sample as the loading stress in-
creases from 0 to 4 mN, producing plastic or elastic
deformation to the sample surface. The indenter is
then retracted, releasing the loading stress. By
recording the �loading–unloading� force (P) and
corresponding penetration depth (h), a penetration
curve is recorded, as shown in Figure 3c.

Fig. 1. SEM images for the coal samples from low to high rank: (a) peat, (b) lignite, (c) sub-bituminous, (d) bituminous and (e)

anthracite.

Table 2. XRD data for the inorganic mineral matter fraction in the coal samples (displayed in wt% of the mineral matter fraction)

Minerals Anthracite Bituminous Sub-bituminous Lignite

Illite 34 17 _ _

Kaolinite 24 30 3 24

Calcite _ _ 96 _

Quartz 21 41 1 76

Anatase 21 _ _ _

Montmorillonite _ 6 _ _

Illite–montmorillonite _ 6 _ _
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Fig. 2. Flowchart for the image processing (Zhang et al. 2019).

Fig. 3. (a) Photograph of the IBIS nano-indentation system. (b) Tip of the Berkovich nano-indenter. (c) A
typical P (indentation force)–ht (indentation depth) curve for a calibration sample (quartz), with Young�s
modulus 72.5 GPa, Poisson�s ratio 0.17 and a measured indentation modulus of 74.5 GPa.
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The method proposed by Oliver and Pharr
(2011) based on the Sneddon solutions was used for
analysing the resulting data, where the indentation
modulus EM (also called reduced modulus) is de-
fined as:

1

EM
¼ 1� v2

E
þ 1� v2i

Ei
ð1Þ

where E is the Young�s modulus, v is the Poisson
ratio, Ei is the Young�s modulus of the indenter and
vi is Poisson�s ratio of the indenter. The indentation
modulus EM is obtained from the measured P–h
curve (Fischer-Cripps 2011):

EM ¼ dP

dh

1

2b

ffiffiffi

p
p
ffiffiffiffi

A
p ð2Þ

where A is the contact area, dP/dh is the slope of the
unloading curve when the maximum force Pmax is
applied and the maximum penetration depth hmax is
achieved (see c in Fig. 3), b is equal to 1.034 for the
Berkovich indenter (King 1987).

RESULTS AND DISCUSSION

Variation in Pore-Scale Morphology with Coal
Rank

The original grey scale raw micro-CT images
(voxel size: 3.43 lm) were obtained on the different
ranks of coals with the 2D raw micro-CT slices
presented in Figure 4, and the 3D raw images are
shown in Figure 5. The coals can be recognized as
three main phases according to their CT contrast (X-
ray relative radiodensity): pores/fractures (dark
grey/black), coal matrix (mid grey) and minerals
(white/light grey). Clearly, different ranks of coal
appear to have different micro-morphologies. While
peat is moderately bedded, it also contains uncom-
pacted plant tissue vitrinite precursor, comprising
intact plant tissue (telovitrinite) and fragmented
plant tissue (detrovitrinite) (Fig. 4a). In peat, there
is a high proportion of large and medium pores/
fractures, which could reach to 0.5 mm in diameter,
forming a well-connected pore system. A minor
detrital or crystalline mineral phase occurs (proba-
bly clay or silt sized quartz) that is dispersed through
the plant material or trapped in the cell lumens.
(Note that because there is no agreement for the
porous media size classification in the micro-CT

scale, in order for the analysis to be convenient, we
set the diameter less than 50 lm as small pores/
fractures, 50–200 lm as medium pores/fractures,
larger than 200 lm as large pores/fractures.)

The lignite sample has undergone burial com-
paction and gelification losing all large porosity and
most of the medium porosity. The micro-structure is
now laminated parallel to bedding and perpendicu-
lar to the overburden pressure with only minor
medium pores left subparallel to bedding (not to be
confused with the large desiccation cracks that may
have formed from air-drying that also preferentially
open parallel to bedding). Some incipient micro-
cleats have developed perpendicular to the bedding
almost exclusively in the telovitrinite bands
(Fig. 4b), which is expected with gelification by this
coal rank (Smith 1981; Widera 2014). The organic
macerals can be seen faintly, indicating that they
have slightly different average densities. The min-
erals comprise quartz grains with minor kaolin

Fig. 4. 2D cross-sectional micro-CT images (3.43 lm voxel

size) of the various coal samples: (a) peat; (b) lignite; (c) sub-

bituminous; (d) bituminous; (e) anthracite.
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Fig. 5. 3D visualizations of the raw micro-CT images of the various coals studied. The nominal image

resolution is 3.43 lm. The high-density part shows the volume elements which have a high relative

radiodensity (white).
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mainly occurring between the laminae and appear to
have grown in situ.

The micro-CT plug sub-sampled from the sub-
bituminous coal sample is mostly massive telovit-
rinite with no visible remaining medium pores and
moisture reduced to 7%. The plug was taken in a
section with a high amount of carbonate mineral
matter (compared to coal sample which had much
lower ash %, such heterogeneous character is ex-
pected in coal) occurring as calcite veins infilling the
original cleat in the telovitrinite with finer-grained
calcite grown along or oblique to the bedding planes.
This is a complicated strain pattern (Fig. 4), showing
that the early formed cleats have been modified by
growth during extension and cross-cut by later sig-
moidal and branching calcite veins, suggesting
extension from right-lateral shear stress. These mi-
cro-structures are best seen using the 3D micro-CT
volumes (Fig. 5) that indicate cleat presence as a 3D
network of small-scale face and micro-butt cleats
(Su et al. 2001; Karacan and Okandan, 2000; Solano-
Acosta 2007; Zhang et al. 2016a).

The bituminous coal micro-CT plug shows
highly compacted thin vitrinite laminae alternating
with laminae dominated by mineral matter dispersed
in an organic matrix, giving the coal a finely lami-
nated texture. The mineral matter (ash 6.4%) com-
prises quartz and clays, including illite as well as

kaolinite and montmorillonite (Table 2), suggesting
the conversion of some clays to illite induced by the
higher burial temperatures. No obvious medium
pores remain, and porosity may be original, from
plant tissue cell lumens or detrovitrinite bands.

The anthracite shows no relict medium pores
and weak bedding features. The mineral matter is
dispersed more uniformly through the coal matrix
though still within certain vitrinite bands. The sam-
ple contains mineralized (white) fracture as shown in
Figure 5, and the oblique fine black fracture in
Figure 4 may be an artefact of handling and prepa-
ration or original.

The 2D and 3D segmented images are shown in
Figures 6 and 7, respectively. The volume fractions
of three phases (pore/fractures, matrix and minerals)
are given in Table 3. The results clearly show how
the fracture porosity rapidly decreases with coal
rank, from 17% in peat to 6% in lignite to< 0.3% in
the sub-bituminous and higher rank coal. Interest-
ingly, these results were able to confirm a minimum
coal matrix pore volume within the bituminous coal
increasing slightly again in the anthracite, which has
the same trend in coal cleat spacing (Laubach et al.
1998). We thus suggested the scale cannot affect the
fracture porosity change trend along with coal rank.

Coal porosity and fracture systems are particu-
larly important for coal bed methane (CBM) pro-

Fig. 6. Segmented 2D slices: coal (red), minerals (green), pores/fractures (blue).

1794 Y. Zhang et al.



duction, enhanced coal bed methane production
(ECBM) and carbon dioxide storage in coal seams
because they directly influence the permeability and
production efficiency (Mostaghimi et al. 2017;
Zhang et al. 2016a; Li et al. 2017). The pore size
distributions (PSD,which also includes the micro-
fractures or cleats) of the different coal rank samples

from micro-CT scanning are shown in Figure 8. The
peat contained both the highest number of pores and
also the largest pores (which was approximately
1000 lm3), while lignite has a large number of pores,
an order of magnitude smaller, with a mode of
110 lm3 and most pore volumes ranging between 10
and 100 lm3. In the sub-bituminous coal, the pore
sizes had reduced across the range, but especially in
the 10–1000 lm3 range. The bituminous coal has a
small number of pores remaining in the 10–1000 lm3

range but very few above that size, and the anthra-
cite has very few pores across the range. Similarly,
the medium-rank coal (sub-bituminous and bitumi-
nous) contained the highest amount of crystallized
minerals (see Fig. 7). Such mineral was secondary
sedimentation and filled the macro-cleats after the
coal seam formed (Zhang et al. 2016a; Solano-
Acosta et al. 2007), thus reducing the void volume.

Nano-mechanical Properties of the Various Coal
Ranks

We measured 1000 indentation results points on
each rank coal sample, where typically up to 50 test
points underwent invalid measuring (e.g. when the
indenter went inside the pores/fractures). The results
for the peat have not been included as a frequency
distribution, because only 31 of the measurements
were acceptable due to the high number of large
pores existed, and the insufficient degree of com-
paction and resulting peat strength which was not
sufficient to stop the loading indenter from pushing
through the solid into the underlying large pores.
The distributions of the indentation moduli EM

(GPa) for the lignite, sub-bituminous, bituminous
and anthracite samples are illustrated in Figure 9a,
and the average indentation moduli for each coal
sample are presented in Figure 9b.

Fig. 7. 3D morphologies of the pore space and mineral matter

for each coal rank (nominal resolution is 3.43 lm).

Table 3. Phase volumes for the different coal ranks measured on

the 3D micro-CT images

Sample Pores/fractures

(%)

Coal matrix

(%)

Mineral

(%)

Anthracite 0.33 97.01 2.66

Bituminous 0.06 81.44 18.50

Sub-bitumi-

nous

0.30 69.62 30.08

Lignite 6.16 93.23 0.61

Peat 16.86 82.64 0.50
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The lignite EM distribution has a mode below
5 GPa but broadened towards higher values, indi-
cating that it contains a spread of maceral sub-types,
which display various compaction densities, and
possible some mineral matter. The sub-bituminous
coal EM distribution is narrower with a mode of
5 GPa but also multi-modal with higher humps
around 10 GPa or higher due to the calcite and
other mineral matter, which have higher elastic
moduli than the coal macerals (Zhang et al. 2016d;
Zhang et al. 2018; Lebedev et al. 2014). Similarly,
the bituminous coal EM distribution is narrow with a
mode around 7 GPa, while it does not show higher
hump values (compared with sub-bituminous coal);
this may be due to it having a lower crystallized
mineral content as evidenced from the microstruc-
tural morphology results (Fig. 5). The EM distribu-

tion for the anthracite is much broader and moving
to higher value overall with a mode around 10 GPa.
Figure 9b shows that the average indentation elastic
moduli decrease with decreasing coal rank. The
elastic moduli value of anthracite is two times higher
than that of lignite and ten times higher than the
peat.

The samples are not meant to be a compre-
hensive set covering the full range of coal ranks and
coal types. However, the average nano-indentation
results for each coal type (calculated from � 1000
results for each sample) are plotted against fixed
carbon content and vitrinite reflectance in Figure 10
to display potential relationships. The results con-
firmed that increasing elastic moduli EM occurred
with decreasing moisture content and volatile matter
yield and increasing mineral matter and carbon

Fig. 8. Pore size distributions for different rank coal samples: (a) by counts (-); (b) by frequency (%).
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content. The indentation elastic moduli EM had an
excellent linear relationship (Fig. 10d) with the fixed
carbon content Cf (R

2 = 0.99), expressed as:

EM ¼ 0:55þ 0:11Cf ð3Þ

This is plausible as the organic carbon structure
and crystallinity are expected to be the main control
on the coal strength characteristics, especially when

the influence of mineral matter is removed. And the
indentation elastic moduli EM also had a linear
relationship (Fig. 10e) with coal rank (by vitrinite
reflectance Ro (%) where R2 = 0.93), expressed as:

EM ¼ 5:70þ 1:19RO ð4Þ
We thus suggested these experiments matched

equations could have a more general application
that should be investigated in the future on more
different samples.

CONCLUSIONS

Coal micro-structure and coal rock mechanical
properties are extremely important for coal utiliza-
tion, for instance in mining, coke production, deep
drilling, CBM/ECBM and CO2 geo-sequestration
(Karacan and Okandan 2001; Busch et al. 2019; Li
et al. 2017). However, coal is a highly complex
heterogeneous material composed of both, organic
and inorganic matter, and it can change significantly
from low to high rank. The chemical composition of
coal is well studied (Van Krevelen 1993), whereas
coal micro-structure and its rock mechanical prop-
erties related to the coal rank are only poorly
understood, especially at the micro- and nanoscale.

We thus report here a high-resolution micro-CT
imaging analysis and associated nano-indentation
tests for a wide range of coal ranks, from peat and
lignite to bituminous coals and anthracite, to expand
fundamental understanding in this area. The micro-
CT images clearly depict the change in maceral
structure with compaction and how the associated
micro-scale porosity reduces, first quickly with burial

Fig. 9. (a) Distributions of indentation elastic moduli EM

(GPa) for coals of different coal ranks. (b) Average

indentation elastic moduli EM (GPa) as a function of coal

rank.

Fig. 10. Average indentation elastic moduli (EM) for each coal type plotted versus: (a) fixed carbon content

Cf (%); (b) vitrinite reflectance Ro (%).
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and then more slowly with gelification and coalifi-
cation. The 3D visualizations offer the ability to see
the pore network and to quantitatively analyse the
morphology of the various phases of organic matter,
mineral matter and porosity across the range of sizes
in micro-scales. Clearly, the micro-CT results con-
firm that the medium-rank coal has the lowest pore/
fracture volume fractions, which has the same trend
in coal cleat spacing at previous studies (see Lau-
bach et al. 1998), while the average pore size de-
creases with increasing coal rank. More specifically,
the large pore size ranges decrease with increasing
coal rank, with large and medium pore sizes disap-
pearing by bituminous coal ranks diminishing the
interconnected pore network, whereas the micro-
pore structure is maintained or begins to increase at
high coal ranks. In contrast, cleats are absent from
soft brown coals developing in the lignite (hard
brown coal) stage through into the bituminous coal
ranks to become the main permeability conduit.
Both, the original pores and the cleats, can be sites
of diagenetic mineral crystallization, and this seems
particularly the case in structurally affected coals
such as near faults. The nano-indentation results
showed that the indentation moduli increase with an
increase in coal rank built-up, and such indentation
moduli highly correlated with vitrinite reflectance
and fixed carbon content inside the coal.
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