
1.  Introduction
The flow of multiple fluids in porous materials occurs in a wide variety of important natural and engineered 
settings relevant for the understanding of geological CO2 storage, geothermal energy extraction, magma 
flow, oil and gas recovery, contaminant transport, flow in fuel cells, microfluidics in drug delivery, and 
the effectiveness of respirators and surgical masks (see for instance, Blunt, 2017; Gjennestad et al., 2020; 
Iglauer et al., 2019; Pak et al., 2015; Reynolds & Krevor, 2015; Zhang et al., 2019; Zhao et al., 2018). It is as-
sumed that the flow rate is proportional to the pressure gradient, governed by a Darcy-type law (Blunt, 2017; 
Muskat, 1937; Muskat & Meres, 1936),
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where qp is the volume of phase p flowing per unit area per unit time, krp is the relative permeability, K is the 
absolute permeability, μp is the viscosity, ∇Pp is the pressure gradient, and ρpg is the contribution of gravity.

In this work, we will consider two-phase horizontal flow of a nonwetting phase, nw, and a wetting phase, 
w, where the gravitational term is zero. Also we will study steady-state flow where the macroscopic capil-
lary pressure (the average pressure difference between the phases) does not vary across the sample: hence 
∇Pp = ∇P for both phases. In this case, we can write the total Darcy flux qt = qnw + qw as

   ,t tq K P� (2)

where λt is the total mobility: λt = krw/μw + krnw/μnw.

The relative magnitude of viscous and capillary forces can be encapsulated in the capillary number, defined 
for each phase as Cap = μpqp/σ, where σ is the interfacial tension between the phases. We also define a total 
capillary number (Spurin et al., 2019b)
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where fw = qw/qt is the fractional flow. For a displacement with fixed fractional flow, but where the flow rate 
varies, Equation 2 implies a linear relationship: ∇P ∼ Ca.

It is well known that this linear law breaks down when, at the pore scale, viscous forces become comparable 
to capillary forces with a threshold value of Ca of around 10−3 (Blunt, 2017; Lake, 1989): in this regime, 
the two-phases flow together through the pore space with a fractional flow which is proportional to satu-
ration. Recently, however, a body of research has demonstrated that multiphase flow in porous media has 
a complex dynamics even at low Ca where displacement is still dominated by capillary forces at the pore 
scale (Armstrong & Berg, 2013; Berg et al., 2013; Datta et al., 2014a, 2014b; Reynolds et al., 2017; Rücker 
et al., 2015). It has been proposed that there is a transition from capillary-dominated to an intermittent flow 
regime with a power-law dependence between pressure gradient and flow rate

  aP Ca� (4)

with 1 > a > 0 for Ca > Cai. Tallakstad et al. (2009) conducted steady-state two-phase simultaneous flow 
experiments in a quasi-two-dimensional porous medium and found a ≈ 0.5 in Equation 4. Rassi et al. (2011) 
measured an exponent a between 0.3 and 0.45 depending on the fluid saturation from steady-state two-
phase flow in bead packs. Sinha et al. (2017) also conducted experiments and simulations and proposed a 
power-law flow regime with an exponent a = 0.5.

High-resolution X-ray tomography has allowed the fluid configurations to be imaged inside porous materi-
als to interpret the physical origin of this nonlinear regime, which is due to the intermittent occupancy of 
regions of the pore space by the two phases that facilitates flow (Gao et al., 2017, 2020; Spurin et al., 2019a, 
2019b).

From a theoretical perspective, Sinha and Hansen (2012) suggested that the exponent a was around 0.5 and 
confirmed this behavior using a dynamic pore-scale model. Roy et al. (2019) proposed a size dependence 
of the non-linear regime, such that for larger systems, the transition from intermittency to linear flow oc-
curred for lower Ca in a high flow rate regime. In the limit of an infinite system, this suggests that there is 
no linear Darcy regime at all. Gao et al. (2020) quantified the threshold capillary number for the onset of in-
termittency Cai as ∼10−5 and found a = 0.6 from experiments of steady-state flow on water-wet Bentheimer 
sandstone for fw = 0.5; however, there were only eight data points. Overall, despite this body of theoretical, 
numerical, and experimental work, there is no accurate quantification of when the transition to nonlinear 
flow occurs and the relationship between pressure gradient and flow rate in this intermittent regime.

In this paper, we study steady-state immiscible two-phase flow through a water-wet Bentheimer sandstone 
sample with different flow rates (capillary number varies from ∼10−7 to ∼10−4) and fractional flows during 
an imbibition displacement (fw = 0.2, 0.4, 0.5, 0.6, 0.8, and 1). We quantify the threshold capillary number 
for the onset of the power-law non-Darcy regime, Equation 4, and measure the exponent a, which we find 
to be a function of fractional flow. We use energy balance to predict accurately the onset of non-Darcy flow 
as a function of capillary number and fractional flow, and for different rocks and viscosity ratios.

2.  Materials and Methods
We performed experiments on a water-wet Bentheimer sandstone sample (5.97-mm diameter and 27.88-
mm length) mounted in a specially designed core flooding system: details of the experimental apparatus 
can be found in the literature (Gao et al., 2017, 2020). A long sample was chosen to allow an accurate meas-
urement of pressure drop. The diameter was chosen to be consistent with previous work (Gao et al., 2020) 
where pressure measurements were combined with pore-scale imaging. Further details about Bentheimer 
sandstone and associated pore-scale images can be found in Muljadi (2015). The wetting phase was 15 wt % 
KI (potassium iodide) brine, and the nonwetting phase was n-decane, both injected by high-precision ISCO 
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pumps. To ensure uniform flow at the inlet, we used a dual injection port 
(Gao et al., 2019); this provides a more even flow than T-junction injec-
tion used in previous studies which may have over-stated the degree of 
intermittent flow as a consequence (Gao et al., 2020).

During the flow, the pressure gradient between inlet and outlet of the 
sample was measured by a high-precision pressure transducer Keller PD-
33X. The viscosity of the brine μw = 0.821 mPa s, the n-decane viscosity 
μnw = 0.838 mPa s (PubChem, open chemistry database), while the inter-
facial tension was measured to be σ = 47 mN/m. The absolute permea-
bility for the sample was K = 1.85(±0.02) × 10−12 m2, measured from the 
relationship between flow rate and pressure gradient when the core was 
fully saturated with brine. We then injected n-decane at 3  ml/min for 
30 min to reach the initial brine saturation.

We started the two-phase flow experiment by injecting the two phases at 
a fractional flow fw of 0.2 at 0.04 ml/min total flow rate (Ca = 4.2 × 10−7); 
the pressure gradient was recorded after 10 h when it stabilized, and then 
we gradually increased the flow rate from low to high and recorded the 
pressure gradients at steady state. A stable pressure difference was used 
to determine that the system was at steady state. The time for the pressure 
gradient to become constant depended on the flow rates: it was up to 10 h 
for the low flow rates (<0.04 ml/min) but as little as 5 min for high flow 
rate flooding (greater than 3 ml/min). The highest flow rate was 4.25 ml/
min (Ca = 4.5 × 10−5).

Once we had reached the highest flow rate for a given fractional flow, we injected n-decane at 3 ml/min for 
30 min again to return to the initial saturation. We repeated the injection sequence at a series of increasing 
flow rates for other fractional flows: 0.4, 0.5, 0.6, 0.7, 0.8, and 1; we studied seven fractional flows with 20–30 
measurements at different rates for each fractional flow, making a total of 178 measurements.

3.  Results and Discussion
3.1.  The Nonlinear Flow Regime

The results, Figure 1, show that Ca is proportional to the pressure gradient ∇P at low flow rates: ∇P ∼ Ca 
with a = 1 is valid for all the fractional flows studied for sufficiently small Ca. However, in all cases, this is 
followed by a nonlinear regime, Equation 4. The exponent a is a function of the fractional flow, see Table 1: 

the highest value a = 0.74 ± 0.02 occurs when fw = 0.2, which displayed 
the lowest degree of intermittency defined as the deviation from a linear 
Darcy law; fw = 0.6 had the lowest exponent a = 0.44 ± 0.02 indicating a 
strong deviation from linear flow.

These observations are consistent with previous experiments where the 
rock and fluids were imaged at micron resolution, which concluded that 
intermittency, or a fluctuating pore occupancy, only constituted a small 
percentage of the total pore volume for fw < 0.5 (Spurin et al., 2019a). 
Moreover, in our experiments, when fw < 0.5, the pressure gradient in-
creased with fractional flow indicating that the total mobility decreases; 
for fw > 0.5, a more complex behavior emerged, where curves of ∇P as a 
function of Ca for constant fw crossed each other, indicating a significant 
increase in mobility with flow rate for the intermediate fractional flows, 
were both phases compete to occupy high-conductivity paths through the 
pore space (Gao et al., 2020).

The threshold capillary number Cai between the linear Darcy regime and 
intermittent flow, Table 1, is also a function of the fractional flow: Cai 
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Figure 1.  The measured pressure gradients ∇P as a function of capillary 
number Ca, Equation 3, for different fractional flows, fw: 0.2, 0.4, 0.5, 0.6, 
0.7, 0.8, and 1; also shown are the experimental results of Gao et al. (2020), 
where fw = 0.5. The error bars reflect the standard deviation in the 
measurement of pressure gradient.

Fractional 
flow (fw)

Exponent a 
(Ca < Cai) Cai i

nwCa i
wCa

Exponent a 
(Ca > Cai)

0.2 1 ∼10−5.1 ∼10−5.2 ∼10−5.8 0.74 ± 0.02

0.4 1 ∼10−5.2 ∼10−5.4 ∼10−5.6 0.57 ± 0.02

0.5 1 ∼10−5.3 ∼10−5.5 ∼10−5.5 0.48 ± 0.02

0.6 1 ∼10−5.4 ∼10−5.8 ∼10−5.6 0.44 ± 0.02

0.7 1 ∼10−5.5 ∼10−6.0 ∼10−5.7 0.47 ± 0.02

0.8 1 ∼10−5.7 ∼10−6.3 ∼10−5.8 0.56 ± 0.02

1 1 ∼10−6.4 — ∼10−6.4 0.66 ± 0.02

Table 1 
Summary of the Exponent a for ∇P ∼ Caa, Threshold Capillary Number 
Cai, the Associated Nonwetting Phase Capillary Number i

nwCa , and the 
Wetting Phase Capillary Number i

wCa  for the Onset of Intermittency, See 
Figure 1
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decreased from ∼10−5.1 to ∼10−6.4 as the fractional flow fw increased from 0.2 to 1. Thus, higher fractional 
flows have a lower critical flow rate i

tq  for the onset of intermittency. Note that the results for a fractional 
flow of 1 represent the capillary desaturation process (Lake, 1989); at steady state, there is only one mobile 
phase.

3.2.  Quantification of the Transition From Linear to Intermittent Flow

We assume that we see the onset of intermittency when the energy, associated with the injection of fluids 
over a characteristic length l, related to the distance between pores, is first matched by the change in surface 
energy needed to create a fluid meniscus (Blunt, 2017; Cueto-Felgueroso & Juanes, 2016; Gao et al., 2020). 
The interfacial energy required to form an interface between the fluids inside a single pore is of order σr2 
where r is a typical pore radius. The mechanical (PdV) work occurs over a volume l3 or a pore volume of 
dV = ϕl3 where ϕ is the porosity. The change in pressure, P, across this length is −l∇P where ∇P is the pres-
sure gradient. The mechanical work PdV is therefore −ϕl4∇P. Hence, intermittency first occurs when the 
interfacial and mechanical energies match, or

   2 4 .r l P� (5)

We now need to estimate ∇P over a typical pore length. We can assume a Darcy-like flow, although we 
need to note that we apply it at the pore scale. In imaging experiments, intermittency is caused by the 
nonwetting phase periodically finding more conductive pathways through the pore space (Gao et al., 2020; 
Spurin et al., 2019b). We assume that since both phases have to move, the pressure gradient necessary to 
allow intermittency is controlled by the total threshold flow rate i

tq . The limiting mobility is assumed to be 
(1 − fw)/μw, governed by the flow of the wetting phase into and out of pores filled with nonwetting phase 
with an effective relative permeability, at least in the viscous-flow limit, of 1 − fw, or the nonwetting phase 
fractional flow. Hence, from Equation 1, we estimate    / (1 )i

w t wP q K f . We then expect the onset of 
intermittency from Equation 5, when

  


4
2 .

(1 )

i
w t

w

q lr
K f

� (6)

This can be rearranged to write the threshold capillary numbers   /i i
w w w tCa f q  and 

  (1 ) /i i
nw nw w tCa f q  as follows:

  2(1 )i i
nw wCa Y f� (7)

and




 (1 ) ,i i w
w w w

nw
Ca Y f f� (8)

where the dimensionless number Yi is defined by


 


2

4 .i nw

w

KrY
l

� (9)

Note that Yi incorporates information on both pore structure and viscosity ratio. In our experiments, for 
Bentheimer sandstone, the porosity ϕ is 0.2, the mean pore radius r is 24 μm (Blunt, 2017), while to capture 
the onset of intermittency l has a value of ∼150 μm (Gao et al., 2020): l is the mean pore-to-pore distance 
obtained from a pore-network analysis of the pore structure (Raeini et al., 2017). Then using the fluid vis-
cosities in this experiment we calculate Yi ≈ 10−5.

In Figure 2, we delineate the threshold between Darcy-like and intermittent flow using Equations 7 and 8 
which provides an accurate prediction compared to the values in Table 1. Note, however, that Equations 7 
and 8 are only valid when we strictly have multiphase flow with 1 > fw > 0 and cannot be applied for fw = 1 
or 0.
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Our experiments were performed for one set of fluids with almost equal 
viscosities. To test the applicability of our theoretical result for different 
fluids, we apply Equation 9 to the data from Reynolds et al. (2017). As 
in this work, the rock studied was Bentheimer sandstone, so that the ge-
ometric terms in Equation 9 are the same. We show again that we make 
accurate predictions where we calculate Yi  =  10−6.5, for nitrogen and 
brine injection: the threshold line (Figure 3) between Darcy and inter-
mittent flow is consistent with the X-ray pore-scale images described in 
Reynolds et al. (2017).

Furthermore, we also apply our theory to a different rock sample, Es-
taillades carbonate with both low (nitrogen and brine, μnw/μw = 0.026) 
and high (hexadecane and brine, μnw/μw  =  4.21) viscosity ratio fluids; 
here ϕ = 0.295, r = 7.5 μm, K = 1.49 × 10−13 m2, and l has a value of 
∼63 μm (here the pore length is assumed to be the inverse of the cube 
root of the number of pores per unit volume, while the radius is found 
from a pore-network analysis) (Blunt, 2017): Equation 9 is used to cal-
culate Yi  =  10−7.3 and 10−5.1, respectively. The predicted thresholds are 
consistent with the results of Spurin et al. (2019b) where X-ray scanning 
results showed that the low viscosity ratio fluid system displayed strong 
intermittency, but no intermittency was observed at the pore scale for the 
high fluid viscosity ratio case although the total capillary numbers were 
similar. Estaillades has a more heterogeneous pore space with a wider 
range of pore size than Bentheimer sandstone (Blunt, 2017), and yet we 
still accurately capture the onset of intermittency for this rock.

We finally apply our theory to other data in the literature for Ben-
theimer sandstone, Estaillades limestone and glass bead packs (Datta 
et al., 2014a;Gao et al., 2017, 2019): details are provided in Figure 3 and 
Table 2. For a bead pack, we estimate l = Dϕ/(1 − ϕ) (Blunt, 2017; Porta 
et al., 2015; Whitaker, 2013), where D is the bead diameter; the radius, 
r, is assumed to be l/2. The permeability K can be estimated from the 
Kozeny-Carman equation K = ϕ3D2/180(1 − ϕ)2 (Blunt, 2017). In all cas-
es, we predict the onset of intermittency, as demonstrated in Figure 3, 
with only a few discrepancies for the bead pack data. Note, however, that 
in the experiments pressure gradient was not measured, and so the onset 
of intermittency was determined from an analysis of the pore-scale dy-
namics as described in the legend of the figure.

4.  Conclusions
We have measured the pressure gradient as a function of flow rate for 
different fractional flows of oil and brine through a small sample of Ben-
theimer sandstone. We have observed the Darcy flow regime and the 
transition to non-Darcy or intermittent flow. At low flow rates, the flow 
follows a standard linear Darcy law, while for higher flow rates we see 
∇P∼Caa. We proposed a relationship for the threshold capillary number 
for the onset of intermittent flow, Equations 7 and 8, which accurately 
matched the experimental results and is applicable to the different vis-
cosity ratio fluids and different rock types, reconciling a large body of 
experimental results in the literature.

Future work could include the study of flow at different viscosity ratios, 
system lengths, mixed-wet and oil-wet media, and different types of po-
rous material. We could also study what controls intermittency and the 

ZHANG ET AL.

10.1029/2020GL090477

5 of 7

Figure 2.  The phase diagram of the transition from Darcy flow (empty 
symbols) to intermittent flow (filled symbols) as a function of nonwetting 
phase capillary number i

nwCa  and wetting phase capillary number i
wCa ; the 

dashed line is the predicted threshold using Equations 7 and 8.

Figure 3.  The replotted phase diagram of the transition from connected 
pathway flow (Darcy flow, Equations 1 and 2) to no connected pathways 
(intermittent flow, Equation 4) using literature data (Datta et al., 2014a; 
Gao et al, 2017, 2019; Reynolds et al., 2017; Spurin et al., 2019b) where 
different viscosity fluids were injected into different rocks; full details can 
be found in Table 2. In these experiments, the pressure gradient was not 
measured; instead the onset of intermittent flow was estimated from the 
pore-scale dynamics as described in the legend. The dashed line is the 
predicted threshold from Equations 7 and 8.
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power-law exponent in Equation 4, including the balance of viscous, inertial and capillary forces (Ferrari & 
Lunati, 2013), and shear-stress at the fluid-fluid interface (Roman et al., 2020; Zarikos et al., 2018).

Data Availability Statement
The experimental data are available from https://data.mendeley.com/datasets/kgsh9nsdr4.
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