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Abstract 1 

Anaerobic digestion (AD) is a promising technology for recovering value-added resources 2 

from organic waste, thus achieving sustainable waste management. The performance of AD is 3 

dictated by a variety of factors including system design and operating conditions. This 4 

necessitates developing suitable modelling and optimization tools to quantify its off-design 5 

performance, where the application of machine learning (ML) and soft computing approaches 6 

have received increasing attention. Here, we succinctly reviewed the latest progress in black-7 

box ML approaches for AD modelling with a thrust on global and local model interpretability 8 

metrics (e.g., Shapley values, partial dependence analysis, permutation feature importance). 9 

Categorical applications of the ML and soft computing approaches such as what-if scenario 10 

analysis, fault detection in AD systems, long-term operation prediction, and integration of ML 11 

with life cycle assessment are discussed. Finally, the research gaps and scopes for future work 12 

are summarized. 13 

Research Highlights 14 

• Popularly used ML-based AD models are ANN, SVM, RF, and XGBOOST 15 

• Predicted variables are biogas yield, process stability, and effluent characteristics 16 

• Global and local model-agnostic explainability approaches are reviewed 17 

• Potential applications are process parameter optimization, fault detection, and LCA 18 

• It is necessary to inform ML models with biokinetic equations to improve accuracy 19 

Keywords: Data-driven Modelling; Sustainable waste management; Renewable energy; 20 

Bioenergy; Artificial intelligence  21 
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1. Introduction 1 

Due to the increasing industrialization worldwide, the CO2 concentration in the atmosphere has 2 

monotonically increased, posing great threats to Earth’s ecosystem and human society. A 3 

recent report reveals that about 53% of the annual global CO2 emissions are caused by China 4 

(26.4%), United States of America (12.5%), India (7.06%), and European Union (7.03%) (Ge 5 

et al., 2020). These concerning statistics necessitates incorporation of negative CO2 emission 6 

technologies via circular bioresource utilization, among which anaerobic digestion (AD) of 7 

organic waste is a promising alternative. 8 

AD is a multi-step, multi-physics, biokinetic degradation process comprising of four 9 

stages: hydrolysis, acidogenesis, acetogenesis, and methanogenesis. Initiated by the 10 

hydrolysis-based breakdown of organic matter in feedstock, the AD process generates several 11 

intermediates (e.g., volatile fatty acid (VFA), H2, CO2, acetate, etc.), which are finally 12 

transformed to biogas in the methanogenesis stage. Since the AD process involves a series of 13 

biochemical and physical processes, its efficiency and stability are influenced by various 14 

parameters including temperature, pH, moisture content, chemical oxygen demand (COD), 15 

VFA, total ammonia nitrogen (TAN), carbon to nitrogen to phosphorous ratio (C:N:P), trace 16 

elements, and toxic substances (Ajayi-Banji & Rahman, 2022). 17 

A wide variety of first principles (or mechanistic) models have been developed for the 18 

design and optimization of AD processes. The mechanistic models consider the conservation 19 

of mass and energy to predict the cumulative biogas yield and compositions. The most rigorous 20 

mechanistic AD model developed to date is the Anaerobic Digestion Model No. 1 (ADM1), 21 
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which can predict the time-dependent biogas production accurately (Batstone et al., 2002). 1 

However, the implementation of ADM1 model for real-time prediction and control purpose is 2 

highly impractical due to its computationally demanding characteristics. In addition, 3 

extensively performing ADM1 parameter calibration is infeasible for the full-scale industrial 4 

AD processes with varying feedstock contents (Emebu et al., 2022). To circumvent these 5 

drawbacks, machine learning (ML)-based models and soft computing techniques have emerged 6 

as an alternative method for AD process modelling (Cruz et al., 2022). 7 

The drawbacks mitigated by ML-based AD process modelling when compared 8 

mechanistic models (e.g., ADM1) are: (a) shorter execution time, (b) not requiring the multi-9 

disciplinary knowledge related to bio-kinetics, microbiome, heat/mass transfer, and (c) 10 

avoidance of model re-calibration if trained based on extensive datasets. A wide variety of 11 

regression and classification models such as neural network (NN), support vector machine 12 

(SVM), random forest (RF), k-nearest neighbours (KNN), gaussian process regression (GPR), 13 

and extreme gradient boosting (XGBOOST) have been developed to predict biogas yield, 14 

process stability parameters (e.g., VFA), effluent quality indicators (e.g., COD) (Cruz et al., 15 

2022). Nevertheless, scepticism exists among researchers due to the black-box nature of the 16 

ML approaches. 17 

Two different types of ML approaches have been developed: (a) black-box ML and (b) 18 

explainable ML, with the latter attempting to provide a deeper understanding of the functional 19 

dependence of the output variables on the input variables. It is important to note that the ML 20 

research community advocates the use of explainable (or interpretable) ML for all applications 21 
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(Rudin, 2019). Several recent works for AD process modelling have demonstrated the benefits 1 

as obtained from ML integrated with various explainability metrics such as feature importance 2 

assessment, partial dependence analysis, etc. (Choi et al., 2022; Cinar et al., 2022; Long et al., 3 

2021; Wang et al., 2021a). The explainable ML models offer a better understanding of the 4 

representative physical processes (i.e., AD) than its black-box counterpart. However, there has 5 

been no systematic review that summarizes ML model explainability metrics and discusses the 6 

implications of these approaches for improving AD process modelling. 7 

The present review provides a critical summary of ML models integrated with 8 

explainability approaches for AD process modelling, with a detailed discussion on various 9 

model explainability methods, process parameter optimization, and fault detection algorithms. 10 

Potential ML integration with life cycle assessment (LCA) tools is discussed. The associated 11 

challenges, opportunities, and research directions are also summarized to aid the development 12 

of explainable ML models for AD process modelling. 13 

2. Machine learning models 14 

2.1. Machine learning models 15 

Black-box ML approach is a data-driven modelling technique, which is entirely empirical and 16 

does not include phenomenological information on AD. These models are of two types: (a) 17 

regression (e.g., NN, gaussian process regression (GPR), linear regression, logistic regression, 18 

ridge regression, lasso regression, polynomial regression, and Bayesian linear regression, etc.) 19 

and (b) classification (e.g., SVM, KNN, logistic regression, naive bayes (NB), etc.) (Asgari et 20 
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al., 2021a). A regression model predicts output variables (e.g., biogas yield) based on numerical 1 

(e.g., total solids (TS)) or categorical (e.g., reactor type) predictor variables of AD processes. 2 

In contrast, a classification model deployed for AD processes is used for faulty or anomalous 3 

state detection of the reactor such as process inhibition due to VFA accumulation. Table 1 4 

provides a summary of the explainable/interpretable ML-based AD models. The explainability 5 

of the results obtained from black-box ML models are enabled by approaches such as 6 

correlation analysis, feature importance assessment, partial dependence analysis, etc. Some of 7 

the important ML models included this review are NN, SVM, GPR, Decision Tree (DT), and 8 

Ensembles. The abovementioned ML-based AD models have several advantages compared to 9 

physics-based models (e.g., ADM1) such as rapid implementation by open-source tools, high 10 

generalizability, uncertainty quantification capability, fast training, and short execution time, 11 

which make these methods favourable for real-world deployment (Cruz et al., 2022). 12 

2.2. Neural networks 13 

NNs are generalizable non-linear models that have the abilities for complicated data trend 14 

learning. The unit quantity of an NN is a neuron which comprises of weights, bias, and transfer 15 

function. A variety of NNs have been developed such as (a) feedforward neural network 16 

(FNN), (b) extreme learning machine (ELM) (c) recurrent neural network (RNN), and (d) 17 

convolutional neural network (CNN). 18 

FNNs, popularly referred to as artificial neural networks (ANNs), is the simplest class of 19 

NN for predicting process output variables (e.g., cumulative biogas yield and methane (CH4) 20 
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content) based on several input variables (e.g., TS, volatile solids (VS), organic loading rate 1 

(OLR), pH, and temperature) (Cruz et al., 2022; Yi-Fan et al., 2017). Essentially, the FNNs 2 

developed for AD processes are regression models that avoid a priori assumption of the 3 

functional dependence between output and inputs, which is a common drawback of the 4 

mechanistic models (e.g., Gaussian, Gompertz and multi-regression) (Emebu et al., 2022). 5 

FNNs comprise of an input layer, hidden layers, and an output layer, among which the optimal 6 

number of hidden layers and number of neurons within those layers are required to be 7 

determined by model training. Notably, the number of hidden layers or neurons should be 8 

trained to prevent overfitting or underfitting. 9 

Optimal parameters and network structures for NN models are determined using 10 

backpropagation (BP) algorithm-based training coupled with optimization algorithms (e.g., 11 

grid search, random search, and Bayesian optimization) (Cruz et al., 2022). The BP is a 12 

supervised learning algorithm that uses gradient descent technique in which the network’s 13 

weights are changed along with the negative of the performance function’s gradient. Another 14 

advanced class of FNN i.e., ELM does not tune the weights and bias, but rather randomly assign 15 

projections with nonlinear transformation. The ELMs possess better generalization capability 16 

and have shorter training time than the FNNs trained via the BP method (Kazemi et al., 2021; 17 

Kazemi et al., 2020b). 18 

Nevertheless, either of the classical FNN or advanced ELM are not suitable for predicting 19 

time-dependent process variables because that do not have feedback loops or memories (e.g., 20 

transient biogas yield). The RNNs are used for predicting the transient trend of process output 21 
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variables by adding feedback loops to the FNN structure. Inclusion of the feedback loop allows 1 

RNNs to learn data sequences. However, simple RNNs with only feedback loops suffer from 2 

the problem of vanishing gradients for which the accuracy of the model is compromised. This 3 

drawback has been circumvented by the RNN architecture with long-short term memory 4 

(LSTM), which is a popular choice for learning transient process variables (Asgari et al., 5 

2021b). The RNNs also have similar components such as input, hidden, and output layers, and 6 

must be trained in such a way that both overfitting and underfitting are minimized. 7 

When the elements in the input layer of an NN prohibitively increases (e.g., spatiotemporal 8 

velocity or concentration field resolved via computational fluid dynamics (CFD) simulation of 9 

AD reactor), implementation of FNNs or RNNs become extremely challenging (Arnau Notari, 10 

2022). To address this drawback, 2D-CNN has been developed, which can extract fine-grained 11 

information from high-dimensional data space and map them onto a coarse-grained low 12 

dimensional data space, enabling essential feature extraction from the input dataset. 13 

Conventional CNNs add feature extraction modules with convolution layer and max pooling 14 

layer prior to an FNN. For transient high-dimensional datasets CNNs must be combined with 15 

RNNs (or LSTMs) to add both spatial and temporal aspects to the regression model (Asgari et 16 

al., 2021a). A modified version of CNN i.e., 1D-CNN can also be used for learning time-series 17 

sequence, where the single dimension is the time-dependent output variable (e.g., biogas yield) 18 

(McCormick & Villa, 2019). 19 

The most popular application for FNN developed for AD processes is related to prediction 20 

of biogas yield, CH4 yield, and CH4 content (Li et al., 2022; Wang et al., 2021a). These outputs 21 
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are predicted based on various feedstock parameters (e.g., C/N ratio, VS/TS ratio, VS, TS, 1 

COD, TSS, and OLR), AD operational variables (e.g., HRT, SRT, pH, temperature, VFA, NH3 2 

content, and H2S content), and genomic data (Long et al., 2021). In some of the cases, additive 3 

materials such as zero valent iron, and biochar are used to enhance the biogas production 4 

efficiency, in which the dosage of these materials are considered as additional inputs of the NN 5 

models (Li et al., 2022; Xu et al., 2021). However, the FNN models that predict the average 6 

biogas production cannot quantify the process dynamics (time dependency) and are not 7 

applicable for process control or anomaly detection. In this regard, researchers have focused 8 

on deploying transient NN techniques such as RNN, 1D-CNN, and LSTM. Apart from biogas 9 

yield, NNs have also been applied for prediction of effluent COD (Yi-Fan et al., 2017), 10 

accumulated VFA in reactor (Kazemi et al., 2021; Kazemi et al., 2020b), NH3 content in the 11 

effluent (Alejo et al., 2018), or relative abundance of genes (Haffiez et al., 2022). Advanced 12 

FNNs, i.e., ELM have been applied to predict biogas production and showed superior 13 

performance (up to 6.4% accuracy improvement) than conventional FNNs with fixed weights 14 

and biases (Kazemi et al., 2021; Kazemi et al., 2020b; Yan et al., 2020). However, in several 15 

instances (Li et al., 2022; Long et al., 2021; Wang et al., 2021a), advanced ML algorithms such 16 

as SVM, DT, or ensembles have significantly outperformed the NN models due to their high-17 

dimensional adaptive feature learning capability. This suggests that the choice of optimal data-18 

driven model can largely vary based on the nature of the dataset for AD modelling, which 19 

requires significant standardization efforts in future. 20 
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2.3. Support vector machine 1 

An SVM is a non-parametric, deterministic, supervised ML model, which is frequently used 2 

for solving classification and regression problems. The input features are mapped onto a high-3 

dimensional data space with the aid of a non-linear kernel function, which then imposes an 4 

optimal hyperplane to differentiate between different subsets. Training a conventional SVM 5 

(C-SVM) is achieved by solving a quadratic optimization problem to find a hyperplane with 6 

the maximum margin from the closest datapoints in the multi-dimensional feature space 7 

(Asgari et al., 2021c). Selection of kernel function is essential as it helps to tune the predictive 8 

accuracy, where the kernel scale plays an important role. Least-square support vector machine 9 

(LS-SVM) being another class of SVM solves a set of linear equations for model training, 10 

mitigating the computational complexity of C-SVM. 11 

Both C-SVM and LS-SVM have been extensively developed for modelling of AD process. 12 

In several studies, the predictive accuracies of C-SVMs were compared to other models (e.g., 13 

NN, DT). A C-SVM model was developed to predict the effluent composition of the two-stage 14 

AD process with poultry manure as a feedstock (Alejo et al., 2018). The work compared the 15 

accuracy of C-SVM with other predictive models based on FNN and stoichiometric analytical 16 

methods, where C-SVM showed superior accuracy. This accuracy improvement corresponds 17 

to the capability of mapping low-dimensional features into a high-dimensional feature space. 18 

In another instance (Kazemi et al., 2020b), a C-SVM model was constructed to predict the 19 

time-dependent concentration of VFA in an AD process. The input data for the model relied 20 

on the Benchmark Simulation Model No, 2 (BSM2) model that simulates an activated sludge-21 
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based wastewater treatment plant (WWTP) integrated with the AD process. Five different data-1 

driven models were compared among which four models (C-SVM, FNN, ELM, and genetic 2 

programming (GP)) achieved high R2 ≈ 0.99 with low RMSE values.  3 

C-SVM models have been developed by assimilating many AD data from the literature for 4 

a similar set of microbial communities and reactor configurations (Wang et al., 2020). 5 

Specifically, four different data-driven models (i.e., RF, SVM, KNN, and generalized linear 6 

model network (GLMNET)) were compared. It was concluded that the GLMNET and KNN 7 

models outperformed the RF and C-SVM models. Another novel research effort showed that 8 

by adding a time series feedback loop to the C-SVM can decrease the RSME of CH4 yield 9 

prediction by 45% (Park et al., 2021). This approach was further used in another work for a 10 

bio-electrochemical AD process, which compared five different models including RF, 11 

XGBOOST, C-SVM, RNN, and LSTM (Cheon et al., 2022). LSTM and RNN models showed 12 

improved performances than the C-SVM model due to their superior capability in predicting 13 

time-series data. Metagenomic information (i.e., the relative abundance of various bacterial 14 

families) has also been embedded in C-SVM models in parallel to feedstock information and 15 

AD operational parameters (Li et al., 2022; Long et al., 2021). The competitive significance of 16 

bacterial communities was described, results of which can help justify the augmentation of 17 

biogas production.  18 

In a latest effort (Ge et al., 2022), a C-SVM model has been developed to learn the kinetic 19 

parameters of ADM1 using feedstock composition and reactor temperature as input parameters. 20 
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By using SVM-assisted parameter learning for ADM1, the predictive accuracy has been 1 

significantly improved. 2 

2.4. Gaussian process regression 3 

GPR is a non-linear, non-parametric, Bayesian probabilistic data-driven model for regression 4 

problems (Asgari et al., 2021c). In contrast to deterministic data-driven models, GPR predicts 5 

mean values of output parameters with prediction uncertainty bands. Therefore, both the mean 6 

and variance information of the state variables could be informed to the control system. In 7 

addition, GPR is data-efficient since they balance the trade-off between model fitting and 8 

model complexity by minimizing the log-marginal likelihood function. A generalized 9 

expression for predicting a target variable y based on input x via GPR reads 𝑦 = 𝛽𝑓(𝑥) +10 

𝜎2𝑍(𝑥, 𝜔), where 𝛽𝑓(𝑥) is the mean of GP, 𝜎2 is the variance, 𝑍(𝑥, 𝜔) is the stochastic 11 

process with zero mean and unit variance, 𝛽 is the coefficient determined via regression, and 12 

𝑓(𝑥) is the basis function. Given a predefined choice of 𝑓(𝑥) and 𝑍(𝑥, 𝜔), the values of 𝛽 13 

and 𝜎2 are estimated based on the input and output datasets of AD experiments. One of the 14 

most essential aspects of developing a GPR is the choice of 𝑍(𝑥, 𝜔), referred to in the literature 15 

as kernel or covariance functions. The kernel functions correlate training input data points x 16 

with new testing data points 𝑥′ . Popular choices of the GPR kernel functions include 17 

exponential, squared exponential, matern 5/2, matern 3/2, and rational quadratic (Schulz et al., 18 

2018).  19 
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There have not been many efforts of utilizing GPR for ML-based AD modelling. In a prior 1 

work (Južnič-Zonta et al., 2012), GPR was used to quantify the uncertainty associated with 2 

ADM1 model parameters and time-dependent composition in COD substrates. The original 3 

simulations were replaced with meta-models, which enabled stochastic quantification of the 4 

ADM1 model parameters. The model was used to statistically approximate the pareto frontier 5 

(or trade-off) between CH4 production and the COD of waste substrate. Recently, GPR-based 6 

surrogate modelling was used for uncertainty quantification and global sensitivity analysis of 7 

the modified ADM1 that predicts CH4 production and VFA accumulation in AD processes 8 

(Trucchia & Frunzo, 2021). Various model parameters were ranked based on their relative 9 

impact using the data-driven surrogate model (i.e., GPR). The performance of GPR-based 10 

surrogate modelling with FNN and the polynomial chaos expansion (PCE) (a method of 11 

expressing a random variable as a polynomial function of other random variables) were 12 

compared for a WWTP with an AD unit (i.e., BSM2) (Al et al., 2019). The results revealed 13 

that GPR-based global sensitivity analysis outperformed the FNN and PCE models in terms of 14 

training time since they required lower number of datapoints during training. 15 

2.5. Decision trees and ensembles 16 

Decision trees (DT)-based ML models are constructed by nodes (or leaves) and branches, 17 

which are routinely used for building regression-based process parameter prediction or 18 

classification-based conditional decision making (Alloghani et al., 2020). Recently, the usage 19 

of DT (and associated algorithms) has gained significant attention for AD process modelling 20 

and management. The complexity of DT models is characterized by various attributes such as 21 
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the depth of the tree and the number of branches from each leaf. It has been evidenced that the 1 

models with a single DT (yet deep) lead to inferior performance due to model simplicity and 2 

overfitting. DT ensembling approach addresses this drawback, where multiple DTs are 3 

constructed in parallel based on subsets, balancing the trade-offs between model bias 4 

(performance on the training dataset) and variance (performance on the testing dataset). There 5 

are two types of ensembling methods: bagging and boosting. The bagged ensembling randomly 6 

splits the training dataset into subsets to train multiple parallel models with separate outputs 7 

(Fawagreh et al., 2014). These outputs are further unified using statistical metrics such as mean, 8 

median, or mode. A classic example of a bagged ensembling DT is the RF model which offers 9 

collective intelligence. In contrast, the boosting process converts weak learners to strong 10 

learners by averaging, weighing, or voting multiple learners (Natekin & Knoll, 2013). The 11 

main difference between bagging and boosting is that in boosting the trees are built additively 12 

to improve the model performance, while in the bagging approach the trees are built and 13 

branched in parallel independently. Thus, the boosted tree-based algorithms are much faster 14 

than bagging algorithms. Popular boosting algorithms are XGBOOST, Gradient Boosting 15 

Machine (GBM), and Adaptive Boosting (AdaBoost), which avoid overfitting by setting 16 

constraints on tree size and performing tree pruning (i.e., removing unnecessary sub-nodes of 17 

a decision node). Some other controllable hyperparameters for ensemble methods are minimum 18 

leaf size, number of learners, and learning rate. 19 

A large segment of the data-driven AD modelling literature has used ensembled DTs for 20 

predicting AD process variables. For example, RF and XGBOOST (De Clercq et al., 2020) 21 
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have been utilized to predict transient biomethane production for an industrial-scale anaerobic 1 

co-digestion (ACoD) system, where XGBOOST performed better (R2 = 0.88) than the RF 2 

model (R2 = 0.80). Another work showed that retraining these two models (RF and 3 

XGBOOST) using a one-step ahead time-series method can further improve the predictive 4 

accuracy (Cheon et al., 2022; Park et al., 2021). Further, an RF-based combined regression-5 

classification model was developed and compared to GLMNET, C-SVM, and NN (Wang et 6 

al., 2020). The findings revealed that RF models had an inferior predictive performance for 7 

both classification and regression applications when compared to all other models. A research 8 

effort (Long et al., 2021) combined genomic data, waste parameters, and operational conditions 9 

of the AD process to compare five different ML models including RF and XGBOOST, where 10 

RF showed the best performance in CH4 yield prediction. An automatic ML algorithm selection 11 

tool was developed (Wang et al., 2021a), which compared various DT algorithms (RF, 12 

XGBOOST, AdaBoost, and GBM), C-SVM, linear models (Ridge, ElasticNet, LassoLars), and 13 

KNN for predicting the ACoD of organic waste. The ExtraTree algorithm provided the highest 14 

accuracy (R2 = 0.72) for the testing dataset. XGBOOST algorithm also proved to be superior 15 

for predicting biogas yield for AD processes enhanced with foreign material such as zero-valent 16 

iron (Xu et al., 2021) or biochar (Li et al., 2022).  17 

DT-based ML models have also been developed to predict critical parameters in AD 18 

process other than biogas yield, CH4 yield, or CH4 composition in biogas. For example, prior 19 

work used an ensemble approach to predict the transient VFA accumulation in AD reactors 20 

which is highly detrimental to biogas production. These models are either regression-based for 21 
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process variables control (Kazemi et al., 2020b) or classification-based for fault detection 1 

(Kazemi et al., 2021). In another work, the relative abundance of antibiotic-resistant genes or 2 

mobile genetic elements was predicted using RF, XGBOOST, and FNN models (Haffiez et al., 3 

2022). However, the FNN model showed superior predictive performance (R2 = 0.77) than 4 

both the ensemble-based DT models (RF and XGBOOST). 5 

3. Accuracy metrics 6 

The accuracy of the ML models discussed in Section 2 is positively correlated with its 7 

prediction capability and reliability of finding target solutions. A wide variety of statistical 8 

metrics have been utilized to evaluate the predictive accuracy of the ML models. For regression 9 

problems, some popular choices of metrics are (a) coefficient of determination (R2), (b) root 10 

mean square error (RMSE), (c) mean absolute deviation (MAD), (d) mean absolute scaled error 11 

(MASE), (e) mean absolute error (MAE), (f) mean squared error and (g) mean absolute 12 

percentage error (MAPE). In case of classification problem, the accuracy is routinely visualized 13 

by confusion matrix and evaluated using metrics such as precision, recall, and F1-score (Jeong 14 

et al., 2021; Li et al., 2022). Two of the most widely used metrics for regression problems are 15 

RMSE and R2, which quantify the average error of the model and the deviation from the parity 16 

line, respectively. A low value of RMSE is desirable, while an R2 = 1 indicates optimal model 17 

fitting. In ML pipelines, several models are evaluated serially following which the optimal 18 

model is identified based on the abovementioned accuracy metrics. For classification models, 19 

the routinely used F1-score is the harmonic mean of precision and recall which further depend 20 

on correctly and falsely classified scenarios (De Clercq et al., 2020; Wang et al., 2020). 21 
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4. Model explainability methods 1 

The scepticism towards ML models being entirely black-box approaches have resulted in 2 

significant research efforts towards enhancing the explainability/interpretability of the results 3 

predicted by these models. Some of the models such as GLMNET, DT, KNN, and NB are 4 

inbuilt with interpretability methods, while other models require additional integration with 5 

model-agnostic interpretability methods. The model-agnostic interpretability essentially 6 

determines the functional dependence between the output and input parameter space and is 7 

therefore independent of the choice of the ML model. Furthermore, there are global and local 8 

model-agnostic methods which explain the average and individual predictions, respectively, 9 

for the ML models. The outcome of the model explainability assessment for various research 10 

efforts in the AD literature is summarized in Table 2. 11 

4.1. Global model-agnostic explainability methods 12 

Some of the global explainability metrics are partial dependence plots (PDP), accumulated 13 

local effects (ALE), permutation feature importance, and global surrogate model. The PDP 14 

describes the marginal effect of one or two input features on the ML model outcome, where 15 

the functional dependence can be either linear or non-linear. The ALE plots are more advanced 16 

version of PDPs, which offer advantages such as lower computation time and removal of bias. 17 

The permutation feature importance is another popular method, which compares the baseline 18 

ML model predictions to a range of model predictions by shuffling individual values of an 19 

input parameter. This process is repeated for each of the input parameters, which results in a 20 
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global permutation feature importance plot. The global surrogate model approach builds an 1 

interpretability-enabled model (e.g., GLMNET, DT, KNN, NB) to explain the predictions of a 2 

non-interpretable model. A high-level investigation of Table 1 reveals that only two of the 3 

research works adopted one-way and two-way PDP analysis (De Clercq et al., 2020; Wang et 4 

al., 2021a), while quantification of permutation feature importance was more frequent (Choi et 5 

al., 2022; Cinar et al., 2022; De Clercq et al., 2020; Li et al., 2022; Wang et al., 2021a). A 6 

summary of global-model agnostic ML model explainability analysis is provided in Table 2, 7 

which reveals the functional trend of PDP plots and the most influent factors that regulate 8 

model outputs. 9 

4.2. Local model-agnostic explainbility methods 10 

Among the local model-agnostic explainability methods the Shapley additive explanation 11 

(SHAP) is a popular choice for ML model development. The SHAP is a method to explain 12 

individual predictions by an ML model and is based on the game theory-based Shapley values. 13 

The SHAP explains the contribution of each entry of an input parameter of the ML model by 14 

computing Shapley values based on coalitional game theory. The analogy between game theory 15 

and ML model is that an input feature in ML model is similar to a player in the game theory. 16 

The distribution of Shapley values provides the knowledge about how each entry of the input 17 

feature are correlated to the output. The absolute SHAP values can be further averaged to 18 

develop a global model-agnostic explainability method. This provides an alternative means to 19 

the permutation feature importance method for evaluating global feature importance. In 20 

contrast to global model-agnostic metrics, local model-agnostic metric (e.g., SHAP) are more 21 
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frequently used to explain the AD modelling results. All the research works shown in Table 1 1 

adopted at least one of the feature importance analyses. Some of the exceptions to SHAP-based 2 

feature ranking are (a) based on Garson’s method (Ghatak & Ghatak, 2018), (b) 3 

MeanDecreaseGini, (c) IncNodePurity (Long et al., 2021; Wang et al., 2020), and (d) fscaret 4 

(Kazemi et al., 2020b). A summary of the local model-agnostic explainability approaches is 5 

provided in Table 2 which reveals the most influential features that regulate output variables. 6 

5. Applications of machine-learned models in anaerobic digestion 7 

5.1. Integration with optimization algorithms 8 

The most important application of ML-based model for AD is to understand the interplay 9 

between the input variables and output variables for a wide range of parametric scenarios, thus 10 

enabling the identification of the optimal range of different process variables. Thus, to obtain 11 

optimal values for process output variables, an ML-based predictive model pipeline can be 12 

coupled with popular heuristic optimization solvers such as genetic algorithm (GA), particle 13 

swarm optimization (PSO), simulated annealing (SA), or ant colony optimization (ACO). 14 

These optimizers can be either single- or multi-objective, based on which a pareto frontier of 15 

process output variables (e.g., biogas yield, biogas composition, and effluent characteristics) 16 

are generated. The results of such ML-coupled multi-objective optimization problems form 17 

essential look-up tables for an AD process management team. 18 

Several important parameters that regulate the performance of AD processes are TS, VS, 19 

OLR, pH, reactor temperature, oxidation reduction potential (ORP), electrical conductivity, 20 
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alkalinity (ALK), TAN, VFA, ACoD parameters, number of reactor stages, reactor volume, 1 

scale of implementation, feedstock pre-treatment parameters, C/N ratio, C/P ratio, solid 2 

retention time (SRT), hydraulic retention time (HRT), etc. Since the ML-based algorithms do 3 

not embed any physical laws such as conservations of mass, energy, momentum, and species, 4 

the accuracy and robustness of these algorithms are largely affected by the data collected. For 5 

example, earlier ML-based AD models show high accuracy (R2 > 0.9), although they are 6 

applicable to very limited number of feedstocks (Dahunsi et al., 2017; Jacob & Banerjee, 2016; 7 

Zareei & Khodaei, 2017). Therefore, the quantification of the accuracy of a model cannot 8 

provide a fair judgment of the generalizability and interpretability of these models. Moreover, 9 

integration of these models with optimization solvers cannot provide a robust what-if scenario 10 

analysis for a wide range of feedstock and reactor operating conditions. These drawbacks can 11 

be circumvented by generalized ML pipelines integrated with the explainability methods. 12 

Optimization algorithms can be combined with ML models as either a pre-processor or a 13 

post-processor. In the pre-processing applications, the optimization solvers (e.g., GA and 14 

ACO) have been used to select the most influential process variables for developing an FNN 15 

model that predicted biogas yields (Beltramo et al., 2019). The work showed that the addition 16 

of GA- or ACO-based feature selection to the FNN model reduced the dimensionality of the 17 

problem by eliminating superfluous features. This resulted in a reduction of model overfitting 18 

and improved the accuracy of FNN by 6.2%. In other instances, PSO- or GA-based 19 

optimization algorithms have been used downstream to ML models (mainly FNN) for 20 

maximizing the yield of biogas or CH4 produced by AD plants (Alrawashdeh et al., 2022; Asadi 21 
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& McPhedran, 2021; Zaied et al., 2020). Integration of FNN with a GA-based multi-objective 1 

optimization framework was also attempted to determine the pareto frontier (trade-off diagram) 2 

between biogas production and effluent COD, which revealed that maximizing the first variable 3 

inevitably minimized the latter (Huang et al., 2016). In future, ML-integrated optimization 4 

problems must be coupled with model explainability methods such as PDP and feature 5 

importance to justify the correlation between pareto frontier and multi-dimensional input space. 6 

5.2. Machine learning models as soft sensors 7 

Since AD processes involve several time-dependent output variables, obtaining precise control 8 

on these can facilitate the improvement of process efficiency and stability. In this realm, soft 9 

sensors are beneficial due to their capacity of state estimation for control application, anomaly 10 

detection, and fault identification. A few researchers have reviewed the development of 11 

dynamic soft sensor for AD processes that enhanced supervisory control actions (Cruz et al., 12 

2021; Yan et al., 2021). Conventional methods for developing AD soft sensors are based on 13 

Kalman filters, dynamic principal component (PCA) analysis, and recursive partial least square 14 

(PLS). However, a number of works showed that ML-based time-series prediction approaches 15 

could significantly improve the accuracy, thus reducing the fluctuation of a state variable (e.g., 16 

biogas yield, VFA, CODeff, etc.) as detailed subsequently. 17 

For example, a group of literature (Kazemi et al., 2021; Kazemi et al., 2020a; Kazemi et 18 

al., 2020b) developed ML-based model-predictive control (MPC) algorithms using RF, FNN, 19 

ELM, C-SVM, and GP. The VFA predictions from these models were further coupled to 20 
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statistical control charts such as squared prediction error (SPE) and cumulative sum (CUSUM) 1 

charts to determine various anomalous events (or faults) occurring in AD reactors. These 2 

methods were compared to PCA-based fault detection, which showed up to 86.2% 3 

improvement in F1-score for various fault classification. Furthermore, the ML-based models 4 

included fscaret feature ranking method-based feature importance analysis. This in turn 5 

enhanced the explainability of the data-driven models, reduced inclusion of superfluous 6 

feature, and resulted in better model generalizability. Nevertheless, the studies lacked SHAP 7 

and PDP analysis which can provide insightful information on the granular feature importance 8 

and variational trends of output variables as the functions of input variables. 9 

Another group of researchers (Wang & Li, 2019; Wang & Wang, 2021; Wang et al., 2021b; 10 

Yan et al., 2020) developed more advanced ML-based control algorithms to predict VFA 11 

accumulation for AD of kitchen waste. These approaches included PLS, BP-FNN, C-SVM, 12 

deep belief network (DBN), ELM, hierarchal ELM, stacked auto-encoder (SAE), SAE-ELM, 13 

CNN, graph convolutional network (GCN), gated recurrent unit (GRU), and spatiotemporal 14 

GCN (STGCN). Some of the abovementioned methods offered feature reduction of the input 15 

dataset using maximal information coefficient (MIC), minimum redundancy maximum 16 

correlation (mRMR), or fast filter-based correlation (FCBF), resulting in a higher prediction 17 

accuracy of the models. As an example, feature reduction-enabled SAE-ELM algorithm 18 

reduced the number of input variables from 9 to 4, while enhancing the accuracy by 6.4% 19 

compared to BP-FNN (Wang & Wang, 2021). These promising results show that integration 20 
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of feature reduction and model-agnostic interpretability methods are effective for the 1 

construction of data-driven AD process models. 2 

5.3. Machine learning models for long term operation 3 

Long-term AD operation includes a start-up period and a stable operation process, the study of 4 

which can support the development of effective start-up strategies, AD performances, reliable 5 

data to describe system conditions, stability control methods, and microbial community 6 

information. In contrast to the previously discussed works in Section 5.1 which are suitable for 7 

what-if scenario and parametric optimization, deploying ML algorithms for supporting long-8 

term AD operation requires extensive training dataset and sophisticated time series techniques 9 

(with feedback loops), a few of which are similar to those used in AD control applications (see 10 

Section 5.2). 11 

Combining model interpretability methods with time-series AD modelling techniques 12 

offers significant benefits such as a priori prediction of biogas yield or VFA accumulation 13 

based on historical information, or dynamical tuning of (or re-train) model parameters based 14 

on changes in input datasets. Researchers have shown that the use of static feature importance 15 

analysis for ML model based on which dimensionality reduction is performed can lead to 16 

exclusion of important features in transient scenarios. For example, a recent study compared 17 

the feature importance maps of 4 days and 40 days from the AD start-up point, and showed 18 

that the dominant features were drastically different (De Clercq et al., 2020). Therefore, for 19 
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such dynamic process models, it is instructive to investigate time-dependent change of SHAP, 1 

permutation importance, and PDP. 2 

In another instance, popular time series forecasting techniques such as LSTM were further 3 

improved by integrating with dual-stage attention (DA) and variable selection network (VSN) 4 

(Jeong et al., 2021). This hybrid model exhibited up to 36% relative accuracy improvement 5 

when compared to an LSTM for predicting two-year biogas generation for ACoD. The study 6 

enabled model interpretability for continuous and discontinuous datasets, revealing the 7 

essential feature that regulated biogas yields. Subsequent research efforts on ML-based AD 8 

model indicated that 1-step ahead retaining method could further improve accuracy, especially 9 

for the OLR transition periods during long-time operation (Cheon et al., 2022; Park et al., 10 

2021). Moreover, using the 1-step ahead method, pH could be only used as the input parameter 11 

for real-time prediction of CH4 yield, which indicated the promising potential towards reducing 12 

model training and execution time. 13 

In a latest study, a tree-based ML pipeline optimization tool (TPOT), was developed to 14 

simulate the impact of organic waste and operating parameters on biogas yields using 8 years 15 

data of an industrial-scale WWTP (Wang et al., 2021a). The data included daily input of 31 16 

waste stream compositions (such as brine, dairy, fats, oils, greases, primary sludge, thickened 17 

waste activated sludge, etc) and 5 operating parameters. The robust predictive power of TPOT 18 

for ACoD process modelling showed superior predictive performance when compared to a 19 

FNN model. The combination of SHAP, permutation feature importance, and PDP analyses 20 

showed the functional dependence of the most significant parameters towards regulating biogas 21 
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yields and CH4 contents. The TPOT method was further used to investigate the decomposition 1 

mechanisms of different wastes streams within the digester. The results showed that the 2 

predictive models were powerful tools for supporting efficient operation in long-term 3 

scenarios, understanding microbial dynamics, and balance the interplay of operating 4 

parameters. 5 

5.4. Life cycle assessment informed by machine-learning models 6 

A potential application of explainable ML models is in facilitating LCA for AD systems, which 7 

improves the quantification of the environmental impact abatement potential offered by biogas 8 

and digestate utilization. As per ISO, an LCA framework constitutes four phases: (a) setting 9 

goal and scope (system boundary, functional unit, etc), (b) process model development and 10 

generation of life cycle inventory (LCI), (c) life cycle impact assessment (LCIA), and (d) 11 

interpretation of the results (Gupta et al., 2022). During the second phase of LCA (i.e., LCI 12 

development), data from relevant literature are collected, which raises several questions 13 

towards the generalizability of the LCA framework.  14 

First, the LCI data used in the AD literature are about a limited number of scenarios based 15 

on the input waste type, ACoD strategy, operation mode, reactor design, and operation 16 

parameters, ultimately limiting the usage and generalization of LCA results obtained. Second, 17 

the LCI data are often subject to uncertainties that are difficult to quantify, therefore adversely 18 

affecting the confidence of policymakers in trusting the LCA results. Third, even though 19 

intricate physics-based models (e.g., ADM1) can ensure better generalizability of LCA 20 
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framework (Meneses et al., 2015), they require extensive model calibration and require larger 1 

computation time, making them less attractive for whole-system modelling.  2 

LCA framework integrated with ML models for AD systems can circumvent these 3 

drawbacks. For example, explainable ML models based on extensive data collection (waste 4 

compositions, operating modes, microbiome abundance data and operating condition) can 5 

ensure better generalizability of a unit process in LCA and allow the prediction of biogas/CH4 6 

yield for a wide range of scenarios (De Clercq et al., 2020; Li et al., 2022; Long et al., 2021; 7 

Zhao et al., 2021). Probabilistic ML models such as GPR enable the quantification of both the 8 

mean and the uncertainty associated with predicted variables (e.g., biogas yield, CH4 yield, 9 

VFA, etc.), which can facilitate the evaluation of the uncertainty propagation towards 10 

calculating the LCIA metrics (e.g., global warming potential) (Al et al., 2019; Južnič-Zonta et 11 

al., 2012; Trucchia & Frunzo, 2021). Due to lower computation time required by ML model-12 

based predictions, they serve as a promising alternative to the models involving solving a large 13 

number of differential equations (e.g., ADM1). Although there have been rare attempts of 14 

integrating LCA with ML models to date, the discussion indicates the promising potential of 15 

developing a holistic whole-system model for the environmental accounting of AD 16 

development in future. 17 

6. Challenges and perspectives  18 

Despite the significant efforts toward developing ML models for AD processes in recent years, 19 

the relevant development is yet in its initial stage. Majority of the prior works treat ML 20 
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modelling of AD as a “black-box approach” with limited (or zero) physical understanding of 1 

process phenomena, which poses several challenges.  2 

• First, black-box models are mostly on basis of experimental data from prototypical lab-3 

scale or pilot-scale reactors, leading to limited generalizability for industrial scale 4 

development. In other words, it is potentially problematic to make extrapolation of these 5 

models for predicting a full-scale system.  6 

• Second, except for a few recent works, most of the ML modelling applied to AD processes 7 

lacks the presentation of SHAP, permutation feature importance, and partial dependence 8 

quantification. These metrics are extremely important for understanding the correlation and 9 

variational relationship between predictors (input) and predicted (output) variables. When 10 

several types of ML algorithms are to be compared for automatic optimal algorithm 11 

selection, most of the prior works did in terms of their predictive accuracies. However, 12 

model explanatory metrics which can resolve the reasons behind the performance 13 

improvement are mostly overlooked. In future, it will be valuable to deploy and examine 14 

the other model model-agnostic explainability approaches such as functional 15 

decompositions, counterfactual explanations, and scoped rules (or anchors). 16 

• Third, most of the ML models for AD processes are either based on metagenomics data or 17 

operational parameters. Nevertheless, examples of unifying metagenomic data and 18 

operation parameters are rare, for which the generalizability of the model is compromised. 19 

Moreover, despite the promising potential of GPRs for model uncertainty quantification, 20 
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they have not been extensively used in ML modelling of AD processes, which is an 1 

essential scope for future work.  2 

• Additionally, efforts to integrate between existing mechanistic AD models and the data-3 

driven models are limited, which has led to unrealistic predictions by some of the data-4 

driven models. This drawback can be mitigated in two ways: (a) using ML models to learn 5 

parameters of the mechanistic models from experimental data or (b) embedding the 6 

residuals of the ADM1 differential equations in the loss function of the ML models.  7 

• Finally, coupling the vector and scalar fields from CFD simulation of AD reactor can 8 

improve the predictive performance of the ML models. Significant efforts are required 9 

toward fast and robust control models (or soft sensors) for enabling real-time model 10 

predictive control of AD reactors. In this realm, exploration of the feature importance of a 11 

data-driven model can eliminate unimportant features and reduce the execution time of 12 

online model training (for re-enforcement learning) and evaluation. 13 

7. Conclusions 14 

This review comprehensively summarized the state-of-the-art of black-box ML approaches 15 

integrated with model interpretability methods for AD processes. Applications of these models 16 

included process optimization and control, what-if scenario investigation, process fault 17 

identification, carbon footprint assessment, and kinetic parameter learning for ADM1. In 18 

addition, model-agnostic explainability metrics that describe the correlations between 19 

predicted variables and input features are critically discussed for AD process modelling. 20 



29 

 

Despite the progress in ML modelling of AD processes, this field is still in its early stage due 1 

to insufficient (or unstandardised) data, and lack of consistent principles for model selection. 2 
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Table 1. Summary of research works related to ML-based AD integrated with model explainability assessment. 

Reference Models explored Optimal 

Model 

Inputs Outputs R2 RMSE Exaplainability 

Methods 

(Yi-Fan et al., 

2017) 

FNN --- CODinf, HRT, ALK, 

pH, VFA, ORP 

CODeff 0.87 0.38 mg/l Statistical feature ranking 

using correlation analysis 

(Alejo et al., 2018) C-SVM, FNN C-SVM TAN, VS, CODinf, TS TANeff 0.90 0.31 

gTAN/l 

Statistical feature ranking 

using correlation analysis 

(Ghatak & Ghatak, 

2018) 

FNN --- Feedstock 

composition, HRT, 

temperature 

Biogas 

yield 

0.99 43 ml/gVS Feature importance using 

Garson metric 

(Oloko-Oba et al., 

2018) 

FNN with GA --- Reactor shape, 

feedstock composition 

Biogas 

yield 

0.85 --- Feature importance 

assessment 

(De Clercq et al., 

2020) 

RF, XGBOOST, 

ElasticNet 

RF Feedstock 

composition 

CH4 yield  0.80 --- Permutation feature 

importance, one-way and 

two-way PDPs 
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(Kazemi et al., 

2020b) 

RF, FNN, ELM, 

C-SVM, GP 

GP pH, TAN, pressure, 

TS, COD, ALK, gas 

flow, mole fractions of 

CH4, H2 and CO2 

VFA 0.99 --- Statistical feature ranking 

using fscaret 

(Wang et al., 2020) RF, GLMNET, C-

SVM, KNN 

KNN Feedstock 

composition and 

temperature 

CH4 yield 0.73 26.7 

ml/(l.day) 

MeanDecreaseGini and 

IncNodePurity feature 

importance 

(Jeong et al., 2021) LSTM, DA-

LSTM, DA-

LSTM-VSN 

DA-LSTM-

VSN 

Sludge inflow and 

outflow, temperature, 

SRT. VS/TS, BOD, 

COD, SS, TN, TP 

    

(Long et al., 2021) GLMNET, RF, 

XGBOOST FNN, 

KNN, C-SVM 

RF Feedstock 

composition, 

operational conditions, 

and genomic data.  

CH4 yield 0.82 40 ml/gVS MeanDecreaseGini 

feature importance 
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(Park et al., 2021) XGBOOST, C-

SVM, RNN, RF 

RNN pH, alkalinity, COD 

removal efficiency, 

VFA 

CH4 yield 0.97 23 

ml/gCOD 

Principal component 

analysis, PDP 

(Wang et al., 

2021a) 

DT, AdaBoost, 

XGBOOST, RF, 

ExtraTrees, GBM, 

Ridge, ElasticNet, 

LassoLars, LS-

SVM, SGD, and 

KNN 

ExtraTrees Waste property, TS, 

VS, VFA, ALK 

CH4 yield 0.72 247 scfm Permutation feature 

importance, one-way PDP 

(Xu et al., 2021) RF, XGBOOST, 

FNN 

XGBOOST TS, VS, COD, ZVI 

concentration and size, 

pH, temperature 

CH4 yield --- 21 ml/gVS Surrogate-based feature 

importance analysis 

(Cheon et al., 2022) RF, XGBOOST, 

C-SVM, LSTM, 

RNN 

RNN OLR, pH, alkalinity, 

VFA, and COD 

removal efficiency 

CH4 yield 0.97 20 

ml/gCOD 

Principal component 

analysis, PDP 
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(Cinar et al., 2022) Linear regression, 

GLMNET, KNN, 

C-SVM, DT, RF, 

XGBOOST 

C-SVM Temperature, pressure, 

feed, volume, and 

nutrient solution usage 

CH4 yield 0.85 --- Permutation feature 

importance 

(Haffiez et al., 

2022) 

RF, XGBOOST, 

FNN 

FNN Operating mode, 

feedstock pre-

treatment, additives, 

temperature, and HRT 

Relative 

abundance 

of ARG 

and MGE 

0.79 --- SHAP feature importance 

(Li et al., 2022) KNN, RF, GBM, 

C-SVM, FNN 

GBM with 

C-SVM 

C/N, VS/TS, HRT, 

OLR, pH, biochar 

dosage, temperature, 

and COD 

CH4 yield 

and 

percentage 

0.84 68.04 

ml/gVS 

and 5.84% 

SHAP feature 

importance, permutation 

feature importance, 

correlation coefficient 

analysis 

(Choi et al., 2022) C-SVM, RF, 

AdaBoost, 

XGBOOST 

XGBOOST Feedstock 

composition, VS, TS, 

HRT, pH, ALK, COD 

VFA 0.64 --- SHAP feature 

importance, permutation 

feature importance 
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Abbreviations- FNN: feedforward neural network, COD: chemical oxygen demand, HRT: hydraulic retention time, ALK: alkalinity, VFA: volatile 

fatty acid, ORP: oxidation reduction potential, TAN: total ammonium nitrogen, VS: volatile solid, TS: total solids, RF: random forest, XGBOOST: 

extreme gradient boosting, GP: genetic programming, C-SVM: conventional support vector machine, ELM: extreme learning machine, KNN: k-

nearest neighbours, GLMNET: generalized linear model network, PDP: partial dependence plot, DT: decision tree, GBM: gradient boosting 

machine, SGD: stochastic gradient descent, LS-SVM: least square support vector machine, LSTM: long-short term memory, ZVI: zero-valent 

iron, AdaBoost: adaptive gradient boosting, SHAP: shapley additive explanations, OLR: organic loading rate, ARG: antibiotic resistant genes, 

MGE: mobile genetic elements, BOD: biological oxygen demand, SRT: solid retention time, SS: suspended solids, TN: total nitrogen, TP: total 

phosphorus. 
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Table 2. Results of various ML model explainabiliy-based research works for AD systems. This table is to be interpreted in accordance with Table 

1. 

Reference Outcome of model explainability assessment 

(Yi-Fan et al., 2017) • Feature importance analysis revealed that VFA and CODinf had 50.4% and 24.7% for predicting CODeff using 

FNN. 

(Alejo et al., 2018) • Feature importance analysis revealed that TANinf and VSinf were top two features for predicting TANeff. 

(Ghatak & Ghatak, 2018) • Garson’s metric-based feature importance analysis suggested that waste composition, HRT and temperature 

had 78%, 17%, and 5%, respectively for predicting cumulative biogas yield. 

(Oloko-Oba et al., 2018) • Feature importance analysis across different types of input wastes indicated that cow dung, piggery waste, 

poultry dropping, and plantain peels had 45%, 25%, 15% and 10% contributions, respectively, for predicting 

biogas yield.  

(De Clercq et al., 2020) • XGBOOST model was dependent on a higher number of features than the RF model.  

• The permutation feature importance distribution for each model was also time dependent.  

• Top five features for RF model are: total waste input, percolate input, co-digested amount, food waste input, 

and cassava input, while those for XGBOOST are: food waste input, bagasse input, cassava input, total waste 

input, and pig manure input.  
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• One-way PDP analysis shows and exponential increasing trend of biomethane output upon increasing the 

important input features. In addition, two-way PDP also suggested positive interaction effects. 

(Kazemi et al., 2020b) • As per fscaret-based feature ranking the top five features for regulating VFA are: pH, TAN, pressure, CO2 

mole fraction, and TSeff. 

(Wang et al., 2020) • Top five features for RF-based regression model are: total carbon, TAN, lignin content, C/N ratio, and xylan 

content.  

• For RF-based classification model, the top five features are: temperature, glucan content, cellulose content, 

total carbon, and C/N ratio. 

(Jeong et al., 2021) • For continuous time series of input variables, the influential feature are sludge loading, HRT, and temperature. 

• For discontinuous time series of input variables, SS, VS/TS, BOD, TN, and TP. 

(Long et al., 2021) • Feature importance analysis for RF model revealed that genomic abundance data influences the CH4 to a larger 

extent than the process operating condition and feedstock compositions.  

• The top five features are abundances of proteobacteria, chloroflexi, fibrobacteres, actinobacteria, and 

spirochaete. 



38 

 

(Wang et al., 2021a) • Top five important features for the tree-based automatic ML pipeline are: general waste content with COD > 

20000 mg/l, dairy waste content, content of fat, oil, and gas (FOG), content of rendering waste, and amount of 

poultry blood.  

• PDP shows linear and exponential increasing trends of CH4 yield when the most influential parameters are 

altered.  

(Xu et al., 2021) • The top five parameters obtained from feature importance that regulate CH4 yield are: TSeff, sCOD, ZVI 

dosage, ZVI particle size, and TSinf. 

(Cinar et al., 2022) • The top five important feature for KNN model obtained via permutation feature importance are biogas 

temperature, reactor temperature, nutrient solution usage, reactor pressure, and OLR.  

(Haffiez et al., 2022) • For predicting the abundance of ARG and MGE, the top five SHAP features are: feedstock type, mode of 

operation, HRT, adoption of feedstock pre-treatment, and temperature. 

(Li et al., 2022) • As per the SHAP-based feature importance analysis, the top five feature for regulating CH4 yield and content 

are: sCOD, VS/TS, OLR, biochar dosage, and temperature. The 4th and 5th important features changed to pH 

and C/N, when the permutation importance was utilized. 

(Choi et al., 2022) • As per SHAP-based feature importance, the top five important parameters for predicting VFA are: ALK, 

content of FW, TKN of FW, SO4 of FW, and lipid content in FW.   
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Abbreviations - VFA: volatile fatty acid, COD: chemical oxygen demand, TAN: total ammonium nitrogen, VS: volatile solid, XGBOOST: extreme 

gradient boosting, HRT: hydraulic retention time, RF: random forest, PDP: partial dependence plot, TS: total solids, C/N ratio: carbon to nitrogen 

ratio, ALK: alkalinity ZVI: zero-valent iron, ARG: antibiotic resistant gene, MBE, mobile genetic element, OLR: organic loading rate, SHAP: 

shapley additive explanations, FW: food waste, TKN: total Kjeldahl nitrogen, sCOD: soluble chemical oxygen demand, KNN: k-nearest neighbour. 



40 

 

References 1 

1. Ajayi-Banji, A., Rahman, S. 2022. A review of process parameters influence in solid-2 

state anaerobic digestion: Focus on performance stability thresholds. Renewable and 3 

Sustainable Energy Reviews, 167, 112756. 4 

2. Al, R., Behera, C.R., Zubov, A., Gernaey, K.V., Sin, G. 2019. Meta-modeling based 5 

efficient global sensitivity analysis for wastewater treatment plants–An application to 6 

the BSM2 model. Computers & Chemical Engineering, 127, 233-246. 7 

3. Alejo, L., Atkinson, J., Guzmán-Fierro, V., Roeckel, M. 2018. Effluent composition 8 

prediction of a two-stage anaerobic digestion process: machine learning and 9 

stoichiometry techniques. Environmental Science and Pollution Research, 25(21), 10 

21149-21163. 11 

4. Alloghani, M., Al-Jumeily, D., Mustafina, J., Hussain, A., Aljaaf, A.J. 2020. A 12 

systematic review on supervised and unsupervised machine learning algorithms for data 13 

science. Supervised and unsupervised learning for data science, 3-21. 14 

5. Alrawashdeh, K.A.B., Al-Samrraie, L., Al Issa, H.A., Qasem, I., Hussien, A., Al-15 

Zboon, K. 2022. Prediction and optimization of biogas production from OMW 16 

digestion using fenton pre-treatment process with particle swarm optimization. 17 

International Journal of Design, Nature & Ecodynamics, 17(2), 157-168. 18 

6. Arnau Notari, M.R. 2022. Hydrodynamic and biochemical Computational Fluid 19 

Dynamic modelling of full-scale anaerobic digesters for wastewater treatment, 20 

Universitat Jaume I. 21 

7. Asadi, M., McPhedran, K. 2021. Biogas maximization using data-driven modelling 22 

with uncertainty analysis and genetic algorithm for municipal wastewater anaerobic 23 

digestion. Journal of Environmental Management, 293, 112875. 24 



41 

 

8. Asgari, S., Gupta, R., Puri, I.K., Zheng, R. 2021a. A data-driven approach to 1 

simultaneous fault detection and diagnosis in data centers. Applied Soft Computing, 2 

110, 107638. 3 

9. Asgari, S., MirhoseiniNejad, S., Moazamigoodarzi, H., Gupta, R., Zheng, R., Puri, I.K. 4 

2021b. A gray-box model for real-time transient temperature predictions in data centers. 5 

Applied Thermal Engineering, 185, 116319. 6 

10. Asgari, S., Moazamigoodarzi, H., Tsai, P.J., Pal, S., Zheng, R., Badawy, G., Puri, I.K. 7 

2021c. Hybrid surrogate model for online temperature and pressure predictions in data 8 

centers. Future Generation Computer Systems, 114, 531-547. 9 

11. Batstone, D.J., Keller, J., Angelidaki, I., Kalyuzhnyi, S., Pavlostathis, S., Rozzi, A., 10 

Sanders, W., Siegrist, H., Vavilin, V. 2002. The IWA anaerobic digestion model no 1 11 

(ADM1). Water Science and technology, 45(10), 65-73. 12 

12. Beltramo, T., Klocke, M., Hitzmann, B. 2019. Prediction of the biogas production using 13 

GA and ACO input features selection method for ANN model. Information Processing 14 

in Agriculture, 6(3), 349-356. 15 

13. Cheon, A., Sung, J., Jun, H., Jang, H., Kim, M., Park, J. 2022. Application of Various 16 

Machine Learning Models for Process Stability of Bio-Electrochemical Anaerobic 17 

Digestion. Processes, 10(1), 158. 18 

14. Choi, S., Kim, S.I., Yulisa, A., Aghasa, A., Hwang, S. 2022. Proactive Prediction of 19 

Total Volatile Fatty Acids Concentration in Multiple Full-Scale Food Waste Anaerobic 20 

Digestion Systems Using Substrate Characteristics with Machine Learning and Feature 21 

Analysis. Waste and Biomass Valorization, 1-16. 22 

15. Cinar, S.Ö., Cinar, S., Kuchta, K. 2022. Machine Learning Algorithms for Temperature 23 

Management in the Anaerobic Digestion Process. Fermentation, 8(2), 65. 24 



42 

 

16. Cruz, I.A., Andrade, L.R., Bharagava, R.N., Nadda, A.K., Bilal, M., Figueiredo, R.T., 1 

Ferreira, L.F. 2021. An overview of process monitoring for anaerobic digestion. 2 

Biosystems Engineering, 207, 106-119. 3 

17. Cruz, I.A., Chuenchart, W., Long, F., Surendra, K., Andrade, L.R.S., Bilal, M., Liu, H., 4 

Figueiredo, R.T., Khanal, S.K., Ferreira, L.F.R. 2022. Application of machine learning 5 

in anaerobic digestion: Perspectives and challenges. Bioresource Technology, 345, 6 

126433. 7 

18. Dahunsi, S.O., Oranusi, S., Efeovbokhan, V.E. 2017. Cleaner energy for cleaner 8 

production: Modeling and optimization of biogas generation from Carica papayas 9 

(Pawpaw) fruit peels. Journal of cleaner production, 156, 19-29. 10 

19. De Clercq, D., Wen, Z., Fei, F., Caicedo, L., Yuan, K., Shang, R. 2020. Interpretable 11 

machine learning for predicting biomethane production in industrial-scale anaerobic 12 

co-digestion. Science of the Total Environment, 712, 134574. 13 

20. Emebu, S., Pecha, J., Janáčová, D. 2022. Review on anaerobic digestion models: Model 14 

classification & elaboration of process phenomena. Renewable and Sustainable Energy 15 

Reviews, 160, 112288. 16 

21. Fawagreh, K., Gaber, M.M., Elyan, E. 2014. Random forests: from early developments 17 

to recent advancements. Systems Science & Control Engineering: An Open Access 18 

Journal, 2(1), 602-609. 19 

22. Ge, M., Friedrich, J., Vigna, L. 2020. World Resources Institute, Charts Explain 20 

Greenhouse Gas Emissions by Countries and Sectors, https://www.wri.org/insights/4-21 

charts-explain-greenhouse-gas-emissions-countries-and-22 

sectors#:~:text=China%20is%20the%20biggest%20emitter,the%20European%20Uni23 

https://www.wri.org/insights/4-charts-explain-greenhouse-gas-emissions-countries-and-sectors#:~:text=China%20is%20the%20biggest%20emitter,the%20European%20Union%20at%207.03%25.&text=Most%20of%20the%20top%2010,tCO2e%20per%20person
https://www.wri.org/insights/4-charts-explain-greenhouse-gas-emissions-countries-and-sectors#:~:text=China%20is%20the%20biggest%20emitter,the%20European%20Union%20at%207.03%25.&text=Most%20of%20the%20top%2010,tCO2e%20per%20person
https://www.wri.org/insights/4-charts-explain-greenhouse-gas-emissions-countries-and-sectors#:~:text=China%20is%20the%20biggest%20emitter,the%20European%20Union%20at%207.03%25.&text=Most%20of%20the%20top%2010,tCO2e%20per%20person


43 

 

on%20at%207.03%25.&text=Most%20of%20the%20top%2010,tCO2e%20per%20pe1 

rson. 2 

23. Ge, Y., Tao, J., Wang, Z., Chen, C., Mu, L., Ruan, H., Yon, Y.R., Su, H., Yan, B., 3 

Chen, G. 2022. Modification of Anaerobic Digestion Model No. 1 with Machine 4 

Learning Models towards Applicable and Accurate Simulation of Biomass Anaerobic 5 

Digestion. Chemical Engineering Journal, 140369. 6 

24. Ghatak, M.D., Ghatak, A. 2018. Artificial neural network model to predict behavior of 7 

biogas production curve from mixed lignocellulosic co-substrates. Fuel, 232, 178-189. 8 

25. Gupta, R., Miller, R., Sloan, W., You, S. 2022. Economic and environmental 9 

assessment of organic waste to biomethane conversion. Bioresource Technology, 345, 10 

126500. 11 

26. Haffiez, N., Chung, T.H., Zakaria, B.S., Shahidi, M., Mezbahuddin, S., Maal-Bared, 12 

R., Dhar, B.R. 2022. Exploration of machine learning algorithms for predicting the 13 

changes in abundance of antibiotic resistance genes in anaerobic digestion. Science of 14 

The Total Environment, 156211. 15 

27. Huang, M., Han, W., Wan, J., Ma, Y., Chen, X. 2016. Multi‐objective optimisation for 16 

design and operation of anaerobic digestion using GA‐ANN and NSGA‐II. Journal of 17 

Chemical Technology & Biotechnology, 91(1), 226-233. 18 

28. Jacob, S., Banerjee, R. 2016. Modeling and optimization of anaerobic codigestion of 19 

potato waste and aquatic weed by response surface methodology and artificial neural 20 

network coupled genetic algorithm. Bioresource technology, 214, 386-395. 21 

https://www.wri.org/insights/4-charts-explain-greenhouse-gas-emissions-countries-and-sectors#:~:text=China%20is%20the%20biggest%20emitter,the%20European%20Union%20at%207.03%25.&text=Most%20of%20the%20top%2010,tCO2e%20per%20person
https://www.wri.org/insights/4-charts-explain-greenhouse-gas-emissions-countries-and-sectors#:~:text=China%20is%20the%20biggest%20emitter,the%20European%20Union%20at%207.03%25.&text=Most%20of%20the%20top%2010,tCO2e%20per%20person


44 

 

29. Jeong, K., Abbas, A., Shin, J., Son, M., Kim, Y.M., Cho, K.H. 2021. Prediction of 1 

biogas production in anaerobic co-digestion of organic wastes using deep learning 2 

models. Water Research, 205, 117697. 3 

30. Južnič-Zonta, Ž., Kocijan, J., Flotats, X., Vrečko, D. 2012. Multi-criteria analyses of 4 

wastewater treatment bio-processes under an uncertainty and a multiplicity of steady 5 

states. Water research, 46(18), 6121-6131. 6 

31. Kazemi, P., Bengoa, C., Steyer, J.-P., Giralt, J. 2021. Data-driven techniques for fault 7 

detection in anaerobic digestion process. Process Safety and Environmental Protection, 8 

146, 905-915. 9 

32. Kazemi, P., Giralt, J., Bengoa, C., Steyer, J.-P. 2020a. Data-driven fault detection 10 

methods for detecting small-magnitude faults in anaerobic digestion process. Water 11 

Science and Technology, 81(8), 1740-1748. 12 

33. Kazemi, P., Steyer, J.-P., Bengoa, C., Font, J., Giralt, J. 2020b. Robust data-driven soft 13 

sensors for online monitoring of volatile fatty acids in anaerobic digestion processes. 14 

Processes, 8(1), 67. 15 

34. Li, J., Zhang, L., Li, C., Tian, H., Ning, J., Zhang, J., Tong, Y.W., Wang, X. 2022. 16 

Data-driven based in-depth interpretation and inverse design of anaerobic digestion for 17 

CH4-rich biogas production. ACS ES&T Engineering, 2(4), 642-652. 18 

35. Long, F., Wang, L., Cai, W., Lesnik, K., Liu, H. 2021. Predicting the performance of 19 

anaerobic digestion using machine learning algorithms and genomic data. Water 20 

Research, 199, 117182. 21 

36. McCormick, M., Villa, A.E. 2019. LSTM and 1-D convolutional neural networks for 22 

predictive monitoring of the anaerobic digestion process. International Conference on 23 

Artificial Neural Networks. Springer. pp. 725-736. 24 



45 

 

37. Meneses, M., Concepción, H., Vrecko, D., Vilanova, R. 2015. Life cycle assessment as 1 

an environmental evaluation tool for control strategies in wastewater treatment plants. 2 

Journal of Cleaner Production, 107, 653-661. 3 

38. Natekin, A., Knoll, A. 2013. Gradient boosting machines, a tutorial. Frontiers in 4 

neurorobotics, 7, 21. 5 

39. Oloko-Oba, M.I., Taiwo, A.E., Ajala, S.O., Solomon, B.O., Betiku, E. 2018. 6 

Performance evaluation of three different-shaped bio-digesters for biogas production 7 

and optimization by artificial neural network integrated with genetic algorithm. 8 

Sustainable Energy Technologies and Assessments, 26, 116-124. 9 

40. Park, J.-G., Jun, H.-B., Heo, T.-Y. 2021. Retraining prior state performances of 10 

anaerobic digestion improves prediction accuracy of methane yield in various machine 11 

learning models. Applied Energy, 298, 117250. 12 

41. Schulz, E., Speekenbrink, M., Krause, A. 2018. A tutorial on Gaussian process 13 

regression: Modelling, exploring, and exploiting functions. Journal of Mathematical 14 

Psychology, 85, 1-16. 15 

42. Trucchia, A., Frunzo, L. 2021. Surrogate based global sensitivity analysis of ADM1-16 

based anaerobic digestion model. Journal of Environmental Management, 282, 111456. 17 

43. Wang, L., Long, F., Liao, W., Liu, H. 2020. Prediction of anaerobic digestion 18 

performance and identification of critical operational parameters using machine 19 

learning algorithms. Bioresource technology, 298, 122495. 20 

44. Wang, Y., Huntington, T., Scown, C.D. 2021a. Tree-based automated machine learning 21 

to predict biogas production for anaerobic co-digestion of organic waste. ACS 22 

Sustainable Chemistry & Engineering, 9(38), 12990-13000. 23 



46 

 

45. Wang, Y., Li, X. 2019. Soft measurement for VFA concentration in anaerobic digestion 1 

for treating kitchen waste based on improved DBN. IEEE Access, 7, 60931-60939. 2 

46. Wang, Y., Wang, S. 2021. Soft sensor for VFA concentration in anaerobic digestion 3 

process for treating kitchen waste based on SSAE-KELM. IEEE Access, 9, 36466-4 

36474. 5 

47. Wang, Y., Yan, P., Gai, M. 2021b. Dynamic soft sensor for anaerobic digestion of 6 

kitchen waste based on SGSTGAT. IEEE Sensors Journal, 21(17), 19198-19208. 7 

48. Xu, W., Long, F., Zhao, H., Zhang, Y., Liang, D., Wang, L., Lesnik, K.L., Cao, H., 8 

Zhang, Y., Liu, H. 2021. Performance prediction of ZVI-based anaerobic digestion 9 

reactor using machine learning algorithms. Waste Management, 121, 59-66. 10 

49. Yan, P., Gai, M., Wang, Y., Gao, X. 2021. Review of Soft Sensors in Anaerobic 11 

Digestion Process. Processes, 9(8), 1434. 12 

50. Yan, P., Shen, B., Wang, Y. 2020. Soft sensor for VFA concentration in anaerobic 13 

digestion process for treating kitchen waste based on DSTHELM. IEEE Access, 8, 14 

223618-223625. 15 

51. Yi-Fan, H., Chang-Zhu, Y., Jin-Feng, D., Wen-Hong, P., Jia-Kuang, Y. 2017. Modeling 16 

of expanded granular sludge bed reactor using artificial neural network. Journal of 17 

environmental chemical engineering, 5(3), 2142-2150. 18 

52. Zaied, B., Rashid, M., Nasrullah, M., Bari, B.S., Zularisam, A., Singh, L., Kumar, D., 19 

Krishnan, S. 2020. Prediction and optimization of biogas production from POME co-20 

digestion in solar bioreactor using artificial neural network coupled with particle swarm 21 

optimization (ANN-PSO). Biomass Conversion and Biorefinery, 1-16. 22 



47 

 

53. Zareei, S., Khodaei, J. 2017. Modeling and optimization of biogas production from cow 1 

manure and maize straw using an adaptive neuro-fuzzy inference system. Renewable 2 

Energy, 114, 423-427. 3 

54. Zhao, B., Shuai, C., Hou, P., Qu, S., Xu, M. 2021. Estimation of unit process data for 4 

life cycle assessment using a decision tree-based approach. Environmental Science & 5 

Technology, 55(12), 8439-8446. 6 

 7 


	Enlighten Accepted coversheet (CC BY-NC-ND 4.0)
	286299

