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Event-driven adaptive intermittent
control applied to a rotational
pendulum
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Abstract
Intermittent control combines open-loop trajectories with feedback at discrete time instances determined by events.
Among other applications, it has recently been used to model quiet standing in humans where the system was assumed
to be time-invariant. This article expands this work to the time-variant case by introducing an adaptive intermittent con-
troller that exploits the well-known self-tuning architecture of adaptive control with a Kalman filter to perform online
state and parameter estimation. Simulation and experimental results using a rotational inverted pendulum show advan-
tages of the intermittent controllers compared to continuous feedback control since the former can provide persistent
excitation due to their internal triggering mechanism, even when no external reference changes or disturbances are
applied. Moreover, the results show that the event thresholds of intermittent control can be used to adjust the degree
of responsiveness of the adaptation in the system, becoming a tool to balance the trade-off between steady-state perfor-
mance and flexibility against parametric changes, addressing the stability–plasticity dilemma of adaptation and learning in
control.
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Introduction

Event-driven intermittent control (IC)1–4 has been pro-
posed as a model that explains the underlying control
mechanisms of human balance. At its core, the funda-
mental property of alternating between open- and
closed-loop configurations provides two main advan-
tages: (1) the open-loop evolution reduces the overall
bandwidth of the controller while providing resources
to perform state-dependant optimisation5 and (2)
serves as a mechanism to modulate the relationship
between exploration and exploitation or, in other
words, the stability and plasticity trade-off that is criti-
cal for adaptation and learning.6 While IC has been
used in the physiological control context,7–12 its engi-
neering origins come from the practical implementation
of model-based predictive control (MPC) in the pres-
ence of hard constraints13 and the observer-predictor-
feedback architecture,14 supported by experimental
results on physical real-time systems.15,16 While a vari-
ety of different IC implementations exist,3 the form of
IC considered in this article relies on the principle of
continuous observation and intermittent action,

meaning that the states are monitored all the time, but
only used to recalculate the control signal at discrete
points in time (or events) which are determined by a
triggering mechanism. Between events, the controller
applies an open-loop control signal that is generated by
a generalised hold and evolves using its own internal
states. When an event occurs, the controller uses
observed states instead to produce a new control signal
for the next open-loop interval.

IC has been extended recently to include the multi-
variable case, with an emphasis on multi-link unstable
models of human standing,4,6,17 where it has been
argued that the open-loop intervals and the impulse-like
control signals in IC could benefit adaptive schemes in
situations where model uncertainties are present or
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when the system parameters vary with time. This is
based on the idea that the variability caused by the
open-loop interval results in events and corresponding
control actions that excite the system more often than a
controller with less sensorimotor variability, facilitating
system identification. This hypothesis was tested in the
context of human control,18,19 verifying that an inter-
mittent strategy allowed subjects controlling a virtual
inverted pendulum with a joystick to perform better
against parameter variations compared to subjects that
used a continuous strategy. Gawthrop et al.4 applied
adaptive intermittent controllers to simulate human
balance control in single-input single-output scenarios,
using a formulation that solved the online identification
problem via state-variable filters, using a non-minimal
state-space representation of the system. A self-tuning
architecture was used,20,21 which separates the algo-
rithm in an online system identification stage followed
by a controller redesign.

In this article, an adaptive intermittent controller is
introduced by combining joint Kalman filters that per-
form online state and parameter estimation in a single
routine, using the aforementioned self-tuning architec-
ture. In addition, this controller uses a closed-loop rep-
resentation of the overall system dynamics to generate
open-loop control trajectories and is based on earlier
initial results.22 This particular type of hold is known
as the system-matched hold,23 and it provides a refer-

ence model of the ideal behaviour of the system under
the influence of a control signal. The framework is not
limited to this type of hold; for instance, an intermittent
tapping hold24 could be incorporated to produce the
inter-sample behaviour. In IC, an event triggers the use
of the observer states for feedback; however, since the
joint Kalman filter also estimates a vector of time-
varying parameters, these values are used to recalculate
the different components of the intermittent controller
before applying the final control law, providing an
adaptation layer to IC.

The next section of the article introduces our adap-
tive IC architecture. Thereafter, the simulation results
are presented, followed by experimental results, leading
to the conclusions drawn from this work.

Continuous control

The adaptive intermittent controller presented in this
article is based on a continuous predictive controller
(CC) which is shown in Figure 1(a). This model
assumes that the controlled system can be written as a
linear state-space model of order n, as follows

_x(t)=Ax(t)+Bu(t)

y(t)=Cx(t)

x(0)= x0

ð1Þ

(a)

(b)

Figure 1. Continuous and intermittent control: (a) the continuous observer-predictor-feedback model14 serves as the basis for IC.
The quantities y(t), u(t), and w(t) represent outputs, inputs, and reference, respectively. The product xssw(t) is the vector version of
w(t), and the observed states are defined by xo(t). The Predictor generates future states xp(ti) to compensate for the time-delay td.
The state-feedback block labelled as State FB represents the gains that are used to compute the control input u(t) continuously.
(b) IC uses a Hold to produce internal states xh(t) which are compared against xw(t) by a Trigger mechanism. If the difference exceeds
a predefined threshold q, then an event is created at time ti. The hold states xh(t) are used to compute the control signal u(t)
between events which evolves in an open-loop configuration, until it is reset at times ti by the Predictor. The dashed lines represent
quantities that are defined only at event times.
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where x 2 R
n, y 2 R

ny , and u 2 R
nu are the system state,

output, and input, respectively, and t corresponds to
continuous time. A is a matrix with a dimension of
n3 n, B is n3 nu, C is ny 3 n, and x0 is an n3 1 vector
of initial conditions. The dynamical model in equation
(1) is represented in the diagram by the block labelled
as System. The Observer estimates the system states
xo(t) continuously, which are passed to the rest of the
structures in the feedback loop after a reference input
w(t) is introduced to generate xw(t)= xo(t)� xssw(t).
The steady-state component xss is calculated offline,
and it is part of the design process described in the next
section. The Predictor compensates for possible delays
in the loop by generating the future states xp(t). To gen-
erate a control law that stabilises equation (1), we could
resort to an underlying continuous design (UCD) stage,
which involves the design of a state-feedback controller,
state prediction, and the introduction of steady-state
components.

Underlying continuous design

A state-feedback controller with gain k is used to for-
mulate a control law of the form

u(t)=� kxp(t� td)+ ussw(t) ð2Þ

which is used to stabilise the system in equation (1).
Here, w(t) is an external reference signal, td is a con-
stant time-delay, and xp(t) is the predicted state vector
at time t+ td based on the data available at time t.2,14

The delay td can be included to account for transmis-
sion and computational delays in the human operator,
which is an assumption derived from human motor
control and physiology.2 This implies that the delay is
part of the controller in the feedback loop.

A standard linear quadratic regulator (LQR)
approach25 is used to obtain k, this involves the mini-
misation of the LQR cost function

JLQR=

ð‘

0

x(t)TQcx(t)+ u(t)TRcu(t)
� �

dt ð3Þ

and the solution of its associated algebraic Riccati
equation. Both x(t) and u(t) in equation (3) are
weighted by the diagonal design matrices Qc (an n3 n
matrix that must be positive semi-definite) and Rc (an
nu 3 nu positive definite matrix). The state vector xp(t)
used in equation (2) is calculated via a state-predictor
of the following form

xp(t)= eAtdxo(t)+

ðtd
0

eAt
0
Buðt� t0Þdt0 ð4Þ

The reference w(t) is introduced by considering that
the system has reached the steady-state

0=Axf +Buf

yf =Cxf
ð5Þ

where xf, uf, and yf are the steady-state versions of the
states, inputs, and outputs, respectively. The goal is to
ensure that yf =w(t) at all times, which can be achieved
by substituting the expressions xf = xssw(t) and
uf = ussw(t) in equation (5) and cancelling the common
factor w(t), resulting in the following system from
which xss and uss can be obtained

xss
uss

� �
=

A B

C 0

� ��1
0

1

� �
ð6Þ

Both xss equation and uss can be computed offline.

Intermittent control

The general IC architecture,2,4,16 shown in Figure 1(b),
builds up on the previously introduced CC by adding
two fundamental components: The generalised Hold
uses the predicted states xp(ti) to create an open-loop
hold state xh, which is used to calculate the control tra-
jectories via the state-feedback gain k. These control
trajectories are applied between the events imposed by
the Trigger mechanism at discrete points in time ti. The
trigger mechanism involves continuously comparing
the Predictor states xp(t) with the state and xw(t) trig-
gering an event if the difference between them exceeds
a predefined threshold q. This action closes the feed-
back loop at ti.

Intermittent control time frames

The different time frames that are used in IC are
defined as follows:

1. Continuous time (t): time that describes the system
evolution.

2. Discrete-time (ti): instances of time that indicate
when an event has been generated, shown as sub-
script i. The elapsed time between consecutive
events is the intermittent interval Dol

i = ti+1 � ti.
3. Intermittent-time (t): when an event is generated

at ti, the continuous-time variable t is reset using
t = t� ti. A lower limit Dol

min . 0 is established for
every intermittent interval such that Dol

i . Dol
min.

The lower limit Dol
min is commonly known as the

minimum open-loop interval.

The system-matched hold

The open-loop behaviour of IC is dictated by the states
that the hold produces, which are used to generate a
control input of the following form
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u(t)=� kxh(t)+ ussw(t) ð7Þ

where xh are the hold states, which evolve in time
according to t, with dynamics generated by an autono-
mous system as follows

_xh(t)=Ahxh(t) ð8Þ

The dynamics of equation (8) are determined by Ah.
To produce hold states that are an approximation of
the real system states (in the absence of disturbances or
noise), Ah can be matched to the behaviour of an ideal
delay-free closed-loop system of the following form

_xc(t)=Acxc(t)

xc(0)= x0
ð9Þ

with dynamics dictated by the closed-loop matrix
Ac =A� Bk. This choice of hold, where Ah =Ac, is
known as the system-matched hold23 and provides a
suitable reference model for the detection of trigger
events. Its simplicity makes it particularly attractive
from an implementation point of view, and for this rea-
son, it has been used widely to implement intermittent
controllers. Alternative versions are also possible, such
as the tapping hold.24

At the start of each intermittent interval, t= ti, the
hold states are reset to the predicted state

xh(ti)= xp(ti � td) ð10Þ

Details on how to obtain the predicted states xp in
an intermittent context are given in the following
section.

Intermittent prediction

To compensate for a possible time-delay td, the follow-
ing dynamical system, based on the system matrices
from equation (1), can be established during the inter-
mittent time frame t

_xp(t)=Axp(t)+Bu(t) with xp(0)= xw(ti) ð11Þ

and evaluated at t = td. Combining equations (11) and
(8) yields the following extended system

d

dt
�X(t)=Aph

�X(t) ð12Þ

�X(0)= �Xi ð13Þ

Aph=
A �Bk

0n3 n Ah

� �
ð14Þ

where �X is defined as �X(t)= ½ xp(t) xh(t) �T during the
open-loop interval. At ti, �X takes the following form

�Xi =
xw(ti)

xp(ti � td)

� �
ð15Þ

The solution of equation (11) at t = td yields

�X(td)= eAphtd �Xi ð16Þ

Thus, the 2n3 2n matrix E= eAphtd can be used to
obtain the predicted states xp(ti) at every intermittent
interval, as discussed in Gawthrop et al.4

Event detection

Event-driven IC generates an aperiodic sequence of
events. This process starts with the continuous compari-
son between the estimated states xw(t) and the predicted
states xp(t), to compute the error ex = xp(t)� xw(t).
Events are produced when ex exceeds a threshold q; this
relationship is introduced with a quadratic criterion as
follows

eTx (t)Qtex(t)� q2 ø 0 ð17Þ

The positive semi-definite matrixQt selects which states
contribute to the event generation process.

Thresholds and open-loop intervals

The threshold value q and the minimum open-loop
interval Dol

min are two of the most relevant parameters in
IC. In our framework, setting the threshold to q=0
generates events at constant time intervals (clock-driven
or timed mode)4 that are equal in length to the mini-
mum open-loop interval Dol

min. For q=0, the response
of IC converges to the response of the equivalent con-
tinuous controller if Dol

min approaches zero, implying
that CC is included in IC as a special case. The exam-
ples by Gawthrop et al.4 provide an in depth explana-
tion of the effects of these parameters on simulated
systems.

Adaptive control

The continuous and intermittent controllers from
Figure 1 can be extended to account for time-varying
system parameters by adding an adaptation layer. In
this work, this is achieved by using a self-tuning archi-
tecture20,21 that runs a state and parameter estimation
algorithm continuously, which tracks both, the evol-
ving states and the system parameters, to then redesign
the controller based on the updated parameter values.
In the adaptive continuous controller, this redesign is
executed at every iteration, whereas in the adaptive
intermittent controller, this is done only once an event
is detected, that is, at ti. These concepts are illustrated
in Figure 2, where the block diagram of a general adap-
tive intermittent controller (Figure 2(b)) is presented
alongside its continuous counterpart (Figure 2(a)). The
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online estimation problem implies the use of a recursive
algorithm capable of tracking parameter changes in
real-time using only the control input u(t) and the sys-
tem output y(t). This can be done using techniques
such as recursive least squares;21 however, the control-
lers introduced in this article exploit the flexibility of
joint Kalman filters26 to estimate not only system para-
meters but also the states, in one single routine. We will
start by establishing the main aspects of the redesign
stage for both controllers, to then focus on the estima-
tion algorithms.

Adaptive continuous control

The entries in matrices A, B, and C in equation (1), are
linear expressions of the system parameters. If a para-
meter estimation routine is used to update specific
entries in these matrices, then a controller redesign can
take place. Assuming that these parameters are
obtained in real-time by a recursive estimator, a new
set of system matrices can be computed as follows

A=A(um(t)), B=B(um(t)) ð18Þ

The vector um(t) contains the selected system para-
meters to be estimated continuously. The re-
computation of matrices A and B for the adaptive con-
tinuous controller takes place at every iteration; this
operation can be considered as the initial step of the
redesign process. Once the new system matrices are

obtained, the quantities established in the underlying
continuous design stage have to be recomputed. This
involves solving the system in equation (5) to obtain xss
and uss, followed by a new state-feeback gain k gener-
ated via the LQR approach and the computation of
the predicted states xp(t) using equation (4). The final
control law that is applied to the system is given in
equation (2).

Adaptive Intermittent Control

The basic approach of adaptive IC is the same as for
continuous control, with the fundamental difference
that adaptive IC has to go through the redesign cycle
less often than adaptive CC, which is an advantage
from a computational point of view: the set of system
parameters um is estimated continuously but is only
used at event times, ti. Based on this, the estimated
matrices A and B are defined as

Ai =A(um(ti)) , Bi =B(um(ti)) ð19Þ

This means that Ai and Bi stay constant until the
next event occurs at ti+1, that is, during the open-loop
interval Dol

i . With the new system matrices defined at ti,
the re-computation of the steady-state components and
state-feedback gains can be performed giving xss(ti),
uss(ti), and ki = k(ti), using the same methods as before.

Adaptive IC requires the definition of additional
quantities that depend on the newly obtained ki and

(a)

(b)

Figure 2. Continuous and intermittent adaptive control: (a) The Par est./State est. block is in charge of generating the estimated
state and xo(t) the model parameters um(t) continuously. The input u(t) and the output y(t) can be corrupted by input noise vu(t)
and measurement noise vy(t), respectively. The Design block corresponds to the redesign stage and outputs new parameters uc(t)
to the standard CC from Figure 1. (b) The events from the standard IC are used not only to sample the states xw(t) but also the
estimated system parameters um(t) at ti. This yields a set of redesigned controller values uc(ti). Grey blocks show the components
that provide adaptation capabilities and the dashed lines are quantities defined only at ti.
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the system matrices Ai and Bi. One of them is the hold
mechanism, Ah, defined in equation (8), which dictates
the behaviour during the open-loop interval Dol

i and is
matched to the closed-loop matrix Ac when an event is
generated, that is

Ah(ti)=Ac(ti)=Ai � Biki ð20Þ

Expression (20) implies that Ah stays constant
throughout the open-loop interval. To simplify nota-
tion, we will write Ahi =Ah(ti) to represent the hold at
event times ti.

The aforementioned hold mechanism uses the pre-
dicted states xp(ti � td) at ti to reset its internal state as
shown in equation (10). The operations involved in the
calculation of xp depend on the dynamical system
defined in equation (12), which has a solution at t = td
given by equation (16). This solution relies on matrix
Aph, which needs to be re-calculated when the para-
meters are updated at ti

Aph(ti)=
Ai �Biki

0n3 n Ahi

� �
ð21Þ

Finally, an IC law is established as follows

u(t)=� kixh(t)+ uss(ti)w(t) ð22Þ

where the hold states xh(t) are reset according to equa-
tion (10) when there is a feedback event.

The stability of the proposed controllers is guaran-
teed by the underlying continuous design methodology
that serves as a basis for IC, as it defines the closed-
loop performance and the characteristics of the
response. In this work, the LQR approach25 was used
to obtain values of the feedback gain k that result in
stable closed-loop behaviour (see equation (9)). Other
design approaches could also be used such as directly
assigning the location of the closed-loop poles via pole-
placement methods. A more detailed treatment of the
stability properties of the system-matched hold version
of IC is given in Gawthrop and colleagues.4,23

The general IC framework can be designed in such a
way that constant disturbances affecting the system are
accounted for, for example, by including a disturbance
observer as a part of the state estimation process.2,4 In
order to simplify the analysis for this article, no exter-
nal disturbances were added to the simulations or to
the real-time experiments, and a disturbance observer
has not been included in the system.

State and parameter estimation

As discussed above, the general structure of the
Kalman filter allows it to be implemented as a joint
estimator, which tracks both system states and

parameters in a single algorithm.26 Let us assume the
following model for the system

_x(t)= f(x(t), u(t),um(t))+ vx(t)

y(t)= h(x(t), u(t))+ vy(t)
ð23Þ

The process and measurement noise vectors, vx 2 R
n

and vy 2 R
ny respectively, are considered Gaussian with

zero mean, with covariance matrices Q and R that are
known. In a Joint estimation process, the state vector
x(t) is augmented with the selected system parameters
as additional states, making the assumption that they
do not change through time. If the augmented state
vector is defined as xaug(t)= x(t) um(t)½ �T, then the
updated model can be written as follows

_x(t)
_um(t)

� �
=

f x(t), u(t),um(t)ð Þ
0

� �
ð24Þ

The Kalman filter formulation is then applied to the
model defined in equation (24). In this work, a non-
linear version of the filter known as the unscented
Kalman filter (UKF)27 is implemented, where statistical
transformations are used to avoid the linearisation pro-
cess involved in linear formulations of the filter, such
as the extended Kalman filter (EKF).28 The implemen-
tation details of the UKF are given in Appendix 1.

Augmented rotational pendulum model
for parameter estimation

A rotational pendulum model was selected to illustrate
the concepts introduced in the previous section. This
system is well known in the control literature and poses
interesting challenges from a control perspective. The
model describes the dynamics of a physical rotational
pendulum based on the SRV-02 and ROTPEN-E mod-
ules from Quanser (Canada). The details of the model,
including the nonlinear and linear equations describing
it, are shown in Appendix 2. The nominal values for all
the parameters in the model are shown in Table 1. To
design the adaptive controllers for the rotational pen-
dulum, first the augmented model that adds the system
parameters as extra states to the original state-vector
needs to be derived. These system parameters will be
estimated in order to update the corresponding control-
ler in the redesign stage. For this system, the state-
vector is defined in equation (47), which needs to be
augmented by the system parameters to obtain the
form given by equation (24). The arm and pendulum
angles are the outputs of the system and can be defined
in vector form as y(t)= ½ u a�T. Considering the case
where the mass of the pendulum mp and the length lp
are time-varying parameters, um(t)= ½ mp lp �T, then

Álvarez-Martı́n et al. 1005



the augmented state vector upon which the UKF is
designed can be written as

xaug(t)= u a _u _a mp lp
� �T ð25Þ

where u and a are the arm and pendulum angles,
respectively. By dropping time dependency notation for
simplicity, establishing u= x1, a= x2, _u= x3, _a= x4,
mp = x5, and lp = x6, and with the help of equation
(25), it is possible to write

_xaug =

_u
_a
z
_mp

_lp

2
66664

3
77775=

x3
x4

f(xaug, u)
0
0

2
66664

3
77775 ð26Þ

where z= ½ €u €a �T and f(�) being

f(xaug, u)=M�1

u�Drx3

�Dpx4

� �
�C

x3

x4

� �
�

0

�x5x6g sin (x2)

� �� � ð27Þ

The function f( � ) corresponds to the solution in
terms of the angular accelerations based on xaug and
the torque u, which serves as the only control input in
the system. The matricesM and C, as well as constants
Dr and Dp, are defined in Appendix 2.

Controller design and UKF parameters

The controller and joint Kalman filter parameters that
were used for the simulations are shown in Table 2. In
the first section, the timing and threshold parameters
are shown (applicable only to IC), followed by the
LQR controller design matrices Rc and Qc which are
defined offline to determine the state-feedback gain k.25

The UKF algorithm parameters (described in
Appendix 1) that need to be initialised before execution
are shown in the final section of Table 2, including the
initial error matrix Po, the process noise Q, and mea-
surement noise R covariance matrices. The off-diagonal
elements of all of them are 0. Both Po and Q have a
dimension of 63 6 due to the UKF being applied to

the augmented state-vector defined in equation (25).
The values of the parameter that controls the spread of
the sigma points involved in the unscented transforma-
tion, aukf, and the a-priori state distribution, bukf, are
shown for reference (Wan and Van Der Merwe).29

The time delay, td, was set to a very small value (i.e.
0:003 s), as the delays are thought to be negligible.

Simulation scenarios

In this section, simulations with time-varying system
parameters are evaluated. Both adaptive CC and IC
were implemented using the UKF as a combined state-
parameter estimator, which was started from the
following vector of initial conditions xo(0)=
½0 5:15 0 0 0:4 0:5�, this assigns 5.15� to the pendu-
lum angle u and the values of 0.4 kg and 0.5m to mp

and lp, respectively. As shown in Figure 2, vu 2 R
nu and

vy 2 R
ny correspond to the input and measurement

noise vectors, respectively; since, there are two outputs
in the system (ny =2), then vy is also a two-dimensional
vector. These signals were defined as randomly seeded
Gaussian noise with jvuj =0:01 and jvyj =0:001 as
the respective amplitudes.

Simulation results

Continuous vs Intermittent Control. In the first simulation,
the pendulum arm angle u follows the reference w(t),
which initially switches between 10� and 210� with a
period of 10 s, while keeping the pendulum angle a as
close as possible to 0�. After 30 s, the reference for u

becomes 0, cf. Figure 3(a, b). The pendulum length, lp,
and its mass, mp, are varied during the simulation,
which effectively changes the dynamics of the plant at
different times. The nominal value of mp is 0.127 kg,
which is used to start the simulation. At t=7:5 s, it is
increased by a factor of 2. The nominal starting length
is lp =0:168 m, which is increased by a factor of 2 at
t=17:5 s. After 32.5 s, mp is returned to its nominal
value while lp returns to its starting value at 42.5 s.

Table 1. Rotational pendulum parameters.

Parameter Value

mp 0.127 kg
lp 0.168 m
Lr 0.216 m
Jp 0.001 kg m 2

Jr 0.001 kg m 2

Dr 0.0024 N ms/rad
Dp 0.0024 N ms/rad

Table 2. Controller and UKF parameters.

Parameter Value

Timing q 0.5�
Dol

min 0.05 s
td 0.003 s
Qt, diag ½1 1 0 0�

LQR Rc 1
Qc, diag ½1 1 0 0�

UKF P0, diag ½0:1 0:1 0:1 0:1 1 1�
Qdiag ½10�8 10�8 10�8 10�8 10�7 10�7�
R 0:002 Iny3ny

aukf 0:1
bukf 2

LQR: linear quadratic regulator; UKF: unscented Kalman filter.

The subscript diag indicates the diagonal of the specified matrix.
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Finally, these two parameters are doubled once again
at 52.5 and 62.5 s, respectively (cf. Figure 3(c) and (d)).

The results of the simulations are shown in Figure 3,
where the estimated angles û and â are shown in (a)
and (b), the estimated parameters m̂p and l̂p in (c) and
(d), and the control input u(t) as well as t (which applies
to IC only) in (e) and (f). The results in red correspond
to CC and the ones in green are for IC. The controllers
started using the estimated parameters at ta =3 s,
shown by a grey vertical line. From Figure 3(a) and (b),
we can see that both angles follow closely the corre-
sponding reference. During the initial part of the simu-
lation, where the system is excited due to periodic
changes in the arm angle reference, both CC and IC
estimate the updated values of mp and lp well (Figure
3(c) and (d)); however, IC does this faster than CC,
continuously, without depending on the excitation due
to the change in reference angle (between 5 and 10 s for

mp and between 15 and 20 s for lp). In contrast, CC only
adjusts to the correct parameter value when the refer-
ence w(t) changes at t=10 s and t=20 s.

Interestingly, when the reference w(t) switches from
a tracking regime to a regulation case (after t=30 s),
the parameter estimates for IC in Figure 3(c) and (d)
converge to their expected values, whereas CC is not
capable of estimating the parameters correctly with the
estimation error growing after t=50 s. This is likely
due to a lack of excitation in the CC control signal u(t)
(cf. Figure 3e). On the contrary, IC generates a control
signal that is higher in amplitude, compared to CC,
ensuring persistent excitation which benefits the para-
meter estimation process.

The effect of the event threshold. The event threshold q
has a critical role in IC, defining how sensitive the

Figure 3. Responses for the simulation study using adaptive version of CC and IC: (a) estimated arm angle û, (b) estimated
pendulum angle â, (c) estimated pendulum mass m̂p, (d) estimated pendulum length l̂p, (e) control input u(t), and (f) behaviour of the
intermittent time t (which only applies to IC). The time when adaptation is enabled, ta is represented by a grey vertical line at 3 s. The
reference w(t) is shown in grey for both angles. The trajectories of all these variables are shown in red for CC and in green for IC.
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system will be to errors and therefore establishing if
feedback is used more or less often. In the context of
parameter adaptation, the threshold has the added ben-
efit of acting as variable that we can manipulate to con-
trol how much the system is excited, which affects the
parameter estimation rate of adaptive IC. To demon-
strate this effect, we evaluated the adaptive IC in a reg-
ulation case (w(t)=0 for both angles). Two sets of
parameter changes for mp and lp were established, the
first is applied between 0 and 50 s, followed by a second
change between 50 and 100 s. Both of these changes
were equal in terms of amplitude, doubling the nominal
value of the parameter when the change was applied.
During each of these time intervals, a different value of
the threshold q was used, starting with 0.1� (i.e. less
than in the previous simulation) and switching to a
threshold of 1.5� (i.e. larger than previously). All other

simulation parameters remain unchanged (cf. Tables 1
and 2).

The results of this simulation are shown in Figure 4
which displays the same quantities as in Figure 3. The
moment in time when the value of the threshold
changes is indicated by a green dashed vertical line at
50 s, denoted as tq. The estimated parameters m̂p and
l̂p, shown in Figure 4(c) and (d), exhibit different esti-
mation rates directly after their true values change. For
a threshold of 0.1� (t\ 50 s), the estimated parameters
slowly converge to the true values. Once the second
threshold of 1.5� is enforced at tq, the estimates con-
verge at a significantly faster rate, that is, almost
instantly for m̂p and in around 3–4 s for l̂p.

These different parameter estimation rates can be
explained by the effect of the threshold q on the system
excitation through the control input u(t), which is

Figure 4. Responses for the simulation study, using adaptive IC, when the thresholds are varied throughout the simulation:
(a) estimated arm angle û, (b) estimated pendulum angle â, (c) estimated pendulum mass m̂p, (d) estimated pendulum length l̂p,
(e) control input u(t), and (f) behaviour of the intermittent time t. The time when adaptation is enabled, ta is represented by a grey
vertical line at 3 s. The reference w(t) is 0� for both the arm and pendulum angles. The threshold q takes a value of 0.1� from 0 to
50 s, and after 50 s, its value is set to 1.5�. The time when the threshold changed is indicated with a green dashed vertical line and
labelled as tq.
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visible in the estimated angles û and â (cf. Figure 4(a),
(b) and (e)). Increasing the threshold value results in
larger variations in the output, associated with a larger
control input amplitude.

Real-time experiment

An experiment was performed using a real-time plat-
form that includes a servo motor (SRV-02) that pro-
vides a torque to a rotating arm (ROTPEN-E), both
modules are made by Quanser, see also Appendix 2,
Figure 6. The two outputs (angles of the arm, u and
pendulum, a) were measured by two incremental opti-
cal encoders and collected for processing with a
National Instruments acquisition card (PCI-6024E).
The arm angle u was regulated via the voltage that the
DC motor in the SRV-02 module produces. All con-
trollers were implemented in MATLAB (Mathworks
Inc.) using the Real-Time Windows target toolbox and
zero-order hold approximations with a 1-ms sample
interval. The values of threshold q, the delay td, and the
minimum open-loop interval Dol

min, that were used in
the experiment were unchanged from the simulations
and are defined in Table 2.

Both CC and IC were used to stabilise the pendulum
angle a, and a periodic square signal w(t) was used as a
reference for the arm angle u, ranging from 210� to
10�. In this experiment, only the pendulum mass mp

was estimated as a system parameter; as a consequence,
the last element of xaug in expressions (25) and (26),
which corresponds to the length parameter lp, is
removed. The total duration was 60 s, starting with 30 s
of evolution based on a design that used a pendulum
mass value of mp =0:07 kg, which is different com-
pared to the nominal value in Table 1. At ta =30 s, the
controllers were allowed to use the estimated para-
meters for redesign purposes, and this feature remained
active until the end of the experiment.

Results

Figure 5 shows the outputs u in Figure 5(a) and a in
Figure 5(b), the estimated parameter m̂p in Figure 5(c),
as well as the control input u(t) in Figure 5(d) and the
open-loop time t in Figure 5(e). While oscillations
around the reference w(t) for u can be observed
throughout the experiment, these decrease after the
redesigns take place at ta =30 s. In terms of amplitude,
the oscillations are similar for CC and IC. The pendu-
lum angle a, in Figure 5(b), also shows a slight reduc-
tion in amplitude when adaptation is enabled.

The parameter estimates (shown in Figure 5(c)) for
CC start deviating from the true value after ta; while
the IC estimates stay close to mp for the entire duration
of the experiment. The values of t in Figure 5(e) (which
only apply to IC, since CC does not have open-loop
instances), increase slightly after the redesign starts at
ta. During the experiment, t reaches values between 0.1

and 0.2 s consistently, which is approximately 2–4 times
greater than the imposed minimum open-loop interval
Dol
min =0:05 s. The control input in Figure 5(d) shows

clearly the effect of the parameter mismatch (before ta),
where high control values are produced early in the
experiment, these being higher for IC. When adaptation
is enabled, the amplitude of the inputs reduces signifi-
cantly because the estimates of mp, which are closer to
the nominal value, are used to improve the controllers.

Comparing the results shown in Figure 5 with those
of the simulation studies in Figure 3 and 4, it can be
observed that the arm and pendulum angles for both
IC and CC exhibit significantly larger oscillations in
the case of the real-time system when compared to the
simulated model. This is a result of un-modelled
dynamics of the physical system, such as friction and
gear backlash. Similarly, the open-loop periods (t) in
Figure 5, show a different pattern compared to the ones
observed in simulation, as a result of the induced oscil-
lations. Both u and a follow their respective references;
however, since the oscillations push these angles out of
the no-triggering region imposed by the threshold q,
the open-loop intervals in t exhibit a quasi-periodic
cycle of slow and fast triggering (corresponding to low
and high values of t).

Conclusion

The results of this article show the feasibility of adap-
tive intermittent controllers based on state and para-
meter estimation using joint Kalman filters. In our
Kalman filter framework, an extended state-vector is
used which is augmented with time-varying system
parameters as additional states which are to be esti-
mated. The estimated parameters are then used in a
redesign stage to update the controller, leading to a
self-tuning architecture. The adaptive intermittent con-
troller was compared in simulations with an equivalent
adaptive continuous controller. The adaptive intermit-
tent controller was further evaluated on a real-time
experimental control scenario. The results demonstrate
how these adaptive controllers are useful in cases where
the parameters of a system have a time-varying nature
or when the model parameters assumed for control
design do not approximate reality. The following list
includes important remarks about IC and CC in an
adaptation environment:

1. The use of IC results in persistent excitation of the
system, which ensures that parameter changes are
detected almost immediately and that they are
tracked even if the system is not otherwise excited
by a change in reference (cf. Figure 3). In contrast,
CC requires external excitation (through a change
in reference) to detect parameter changes. In the
real-time experiment (cf. Figure 5), the pendulum
mass estimate drifts away slowly from its true value
due to missing excitation when CC is used.
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2. The threshold q can be used to adjust the degree of
adaptation (i.e. the sensitivity to parameter
changes). Smaller thresholds generate less excita-
tion and consequentially slower adaptation (cf.
Figure 4).

3. In adaptive IC, the controller redesign only hap-
pens at event times ti, which provides a computa-
tional advantage compared to CC where the
redesign is done every iteration.

The adaptive IC introduced in this article relies on
the concept of combining feedback and open-loop con-
trol. Opening the feedback loop as a mechanism to dis-
cover the causal links relating state variables and inputs
has been mentioned before,18,30 an idea that results
from the observation that when a system operates
under the influence of continuous feedback control, it
becomes more difficult to clearly understand the effect

of external components affecting the system such as
noise or disturbances, as well as system parameters that
change through time. On the contrary, small instances
of open-loop control would result in rapidly growing
errors, which reveals the causes that lead to them and
clarifies the subsequent correcting actions.

A list of the main contributions of this article, which
revolve around the aforementioned ideas, is provided in
the interest of clarity:

� Adaptive IC is introduced as a framework that pro-
vides an acceptable steady-state response through a
control signal that also generates enough excitation
to detect system changes. This ability can be under-
stood in terms of the stability–plasticity dilemma,31

which raises the question of how a control metho-
dology can be designed with the goal of remaining
plastic in the presence of changes or uncertainty,

Figure 5. Summary of the responses for the real-time experiment using adaptive CC and IC: (a) arm angle u, (b) pendulum angle
a, (c) estimated parameter mp, (d) control input u(t), and (e) behaviour of the intermittent time t. Each controller is shown in a
different colour: red for CC and green for IC. For the first half of the experiment, the estimated mass values are not used, that is,
both controllers use an erroneous mass of mp = 0:07 kg. The time when adaptation is enabled, ta, is represented by a vertical line.
The reference w(t) is a square function for u and 0� for a.

1010 Proc IMechE Part I: J Systems and Control Engineering 237(6)



while maintaining stability performance levels that
have been achieved in part from past experience.

� Special emphasis is placed on the threshold para-
meter q. In the adaptation context, this parameter
not only determines when the events are generated,
but it also sets the rate of adaptation by regulating
how much error is allowed in the specified outputs,
that is, how much the system can be excited. In
practice, this becomes relevant since a closed-loop
system could potentially be designed with this prin-
ciple in mind: use a small threshold when precision
control is needed, uncertainty is low, and where the
main goal is to reduce variability; conversely, use
large thresholds if the goal is to detect parametric
changes in the system and redefine the control para-
meters to compensate accordingly.

A natural limitation of the proposed adaptive inter-
mittent controller is that if due to design constraints,
the outputs of a particular closed-loop process must
have very small steady-state error levels, then the ability
of using the threshold to regulate the adaptation rate
could potentially be limited.
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Appendix 1

Unscented Kalman filter

The unscented Kalman filter (UKF) is an alternative of
statistical nature to the more common linear EKF, and
it is based on an unscented transformation. The trans-
formation implies sampling data points (or sigma
points) from the a-priori mean and state covariance
and applying a nonlinear transformation to them. The
a-posteriori mean and state covariance are then calcu-
lated from the resulting transformation. A scaling para-
meter is needed to define how spread the sigma points
are. A description of each step in the algorithm is given
next, with a-priori and a-posteriori estimates indicated
by superscripts �, + , respectively:

1. Set the initial values of the estimated states x̂0, the
error covariance P0, and of Q and R.

2. Set the values of aukf, bukf, kukf, and obtain the scal-
ing parameter l. Calculate the vectors hm

0 , hc
0, and

hm
i .

l= c� n where c=a2
ukf(n+ kukf) ð28Þ

hm
0 =

l

n+ l
ð29Þ

hc
0 = l=(n+ l)+1� a2

ukf+bukf ð30Þ

hm
i =hc

i =
1

2(n+ l)
, for i=1, . . . , 2n ð31Þ

3. Collect the sigma points

x = x̂
+
k�1 x̂

+
k�1 +

ffiffiffiffiffiffiffiffiffiffiffiffiffi
cP+

k�1

q
x̂
+
k�1 �

ffiffiffiffiffiffiffiffiffiffiffiffiffi
cP+

k�1

q� �
ð32Þ

4. Prediction transformation: propagate the sigma
points x through the system model, calculate the
a-priori–predicted state mean x̂

�
k and the a-priori

state covariance matrix P�k

x�k = f(x, uk�1) ð33Þ

x̂
�
k =

X2n
i=0

hm
i x�k, i ð34Þ

P�k =Q+
X2n
i=0

hc
i (x

�
k, i � x̂

�
k )(x

�
k, i � x̂

�
k )

T ð35Þ

5. Observation transformation: propagate the a-priori
sigma points x�k through the observation model, cal-
culate the predicted output mean ŷ

�
k , its covariance

matrix P
yy
k , and the cross-covariance matrix P

xy
k

c�k = h(x�k , uk�1) ð36Þ

ŷ
�
k =

X2n
i=0

hm
i c�k, i ð37Þ

P
yy
k =R+

X2n
i=0

hc
i (c

�
k, i � ŷ

�
k )(c

�
k, i � ŷ

�
k )

T ð38Þ

P
xy
k =

X2n
i=0

hc
i (x

�
k, i � x̂

�
k )(c

�
k, i � ŷ

�
k )

T ð39Þ

6. Improve the estimates with measurements: calcu-
late the Kalman gain Kk. Improve the a-priori state
estimates with measurements yk to generate the
a-posteriori estimates x̂

+
k . Then calculate the

a-posteriori error covariance matrix P+
k to be used

in the following iteration

Kk =P
xy
k P

yy
k

	 
�1 ð40Þ
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x̂
+
k = x̂

�
k +Kk yk � ŷ

�
k

� �
ð41Þ

P+
k =P�k � KkP

yy
k KT

k ð42Þ

The aukf parameter defines the spread of the sigma
points. A small value of it means that the selected
points are closer to each other. The bukf parameter con-
veys information of the a-priori distribution, and a
value of bukf=2 is considered optimal for Gaussian
distributions. The kukf parameter was defined as 0.

Appendix 2

The rotational pendulum model

The pendulum system has an arm of length Lr which
rotates on a base that is actuated by motor, and a pen-
dulum pole of length Lp that is attached to the end of
the arm. The system outputs are the arm and pendulum
angles, indicated as u and a, respectivley. In Figure 6, a
diagram and images of the rotational pendulum used
for the experiment are shown.

The general nonlinear equations of this system can
be written as follows

M(q)€q+ C( _q, q) _q+G(q)= T b ð43Þ

where M(q) 2 R
n3 n is the inertia matrix,

C( _q, q) 2 R
n3 n the Coriolis matrix, and G(q) 2 R

n are
the gravity effects. Also, T b and q= ½ u a �T corre-
spond to the torque and joint position vectors, respec-
tively. The description in equation (43) comes from the

use of the Euler-Lagrange formulation on the rota-
tional pendulum system,32 resulting in the following
matrices

M(q)=
mp L2

r + l2p � l2p cos (a)
2

� �
+ Jr �mplpLr cos (a)

�mplpLr cos (a) Jp +mpl
2
p

" #

ð44Þ

C( _q, q)=
2mpl

2
p sin (a) cos (a)

� �
_a mplpLr sin (a)
	 


_a

� mpl
2
p cos (a) sin (a)

� �
_u 0

2
4

3
5
ð45Þ

G(q)= 0
�mplpg sin (a)

� �
, T b =

u�Dr
_u

�Dp _a

� �
ð46Þ

If the following state vector is defined z= ½ €u €a �T
and a solution for the angular acceleration terms is
found, then it is possible to use a state-variable formu-
lation as follows

_u
_a
z

2
4

3
5=

_u
_a

M(q)�1 T b � C( _q, q ) _q� G(q)ð Þ

2
4

3
5 ð47Þ

Equation (47) can be used to obtain a linear state-
space system from which a linear controller could be
designed. By linearising at the upright position (a
equals 0), it is possible to find simplified expressions
for the accelerations of both the arm and pendulum

€u=
1

JT
� Jp +mpl

2
p

� �
Dr

_u+mplpLrDp _a
h

+m2
pl
2
pLrga+ Jp +mpl

2
p

� �
u
i ð48Þ

€a=
1

JT
mplpLrDr

_u� Jr +mpL
2
r

	 

Dp _a

�
�mplpg Jr +mpL

2
r

	 

a�mplpLru

� ð49Þ

where JT is

JT = JpmpL
2
r + JrJp + Jrmpl

2
p ð50Þ

The values Jr and Lr correspond to the moment of
inertia and length of the arm, respectively. The length
of the pendulum pole is shown as Lp, and the associ-
ated centre of mass is at lp =Lp=2, the moment of iner-
tia of the pendulum is Jp with a mass mp. The damping
values for the pendulum and arm are Dp and Dr,
respectively, and the gravitational acceleration constant
is shown as g. If the state vector x(t)= ½ u a _u _a �T
is used, then it is possible to obtain a linear model with
the form given in equation (1), composed of the follow-
ing matrices

Figure 6. General diagram and image of the rotational
pendulum system made by Quanser. The torque u is generated
by the motor and makes the arm (of length Lr) rotate on the
horizontal plane. A pendulum pole of length Lp is mounted at
one end of the rotating arm. An a angle of zero indicates that
the pendulum is balanced upright. The pendulum and arm
angles, a and u, are measured by incremental encoders.
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A=
1

JT

0 0 JT 0
0 0 0 JT
0 A32 A33 A34

0 A42 A43 A44

2
664

3
775 ð51Þ

where

A32 =m2
pl
2
pLrg , A33 =� ðJp +mpl

2
pÞDr

A34 =mplpLrDp , A42 =�mplpg Jr +mpL
2
r

	 

A43 =mplpLrDr , A44 =� Jr +mpL

2
r

	 

Dp

and

B=
1

JT

0
0

Jp +mpl
2
p

�mplpLr

2
664

3
775 , C=

1 0 0 0
0 1 0 0

� �
ð52Þ

The torque u must be generated by the corresponding
controller and is the only input affecting the system
dynamics.
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