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A B S T R A C T   

To explore the complicated functional relationship between key parameters such as the recycled aggregate 
properties, mix proportion and compressive strength of recycled aggregate concrete (RAC), a complete database 
involving 607 records from relevant published literature was built. Two standard algorithms (artificial neural 
network (ANN) and support vector regression (SVR)) and two optimized hybrid models (Particle Swarm Opti-
mization based SVR (PSO-SVR) and grey Wolf optimizer based SVR (GWO-SVR)) were adopted. Furthermore, 
two interpretable algorithms (Partial Dependence Plot (PDP) and SHapley Additive exPlanations (SHAP)) were 
utilized to assess the global and local approaches independent of machine learning models, contributing towards 
decision-making rationales. Results indicated that the coefficient of determination (R2) of ANN, SVR, PSO-SVR 
and GWO-SVR were 0.7569, 0.5914, 0.8995 and 0.9056 respectively, showing that hybrid models out-
performed the conventional models. However, GWO-SVR was the most problematic with overfitting when 
analyzing its three subsets. The two feature importance analyses revealed cement content, water content, natural 
fine aggregates, and water absorption as significant characteristics that affect mechanical performance.   

1. Introduction 

Reduction of carbon dioxide (CO2) emissions associated with key 
industries such as building and construction plays a crucial role in 
achieving climate neutrality by 2050 (Rosa et al., 2022). Among these, 
the use of building materials, a major one of which is concrete, is a 
significant source of CO2 emissions. The annual production of >4 billion 
metric tons of Portland cement on a global basis accounts for 8–10% of 
global anthropogenic CO2 emissions (Her et al., 2021; Poudyal and 
Adhikari, 2021). Construction and demolition waste, one of the main 
by-products of fast industrialization and urbanization, involves various 
solid wastes generated in the construction of new buildings, and the 
reconstruction and demolition of older or unwanted structures. These 
include leftover concrete blocks, waste mortars, and waste bricks, with a 
trace of steel, wood, and decorative materials thrown in for good mea-
sure (Ma et al., 2022; Nunes and Mahler, 2020; Wang et al., 2021). 
Consumption of natural resources and the inability to properly dispose 
of building waste is undoubtedly a significant impediment to sustainable 
development. Recycling and reusing construction waste are critical in 
achieving a sustainable built environment, both in terms of environ-
mental protection and resource efficiency (Habibi et al., 2021). In terms 

of resource management, identification of the key factors that control 
the mechanical properties of recycled building components can facilitate 
the reuse of these products on a larger scale than currently practiced, 
thereby enabling the conservation of natural resources and recycling of 
these materials in value added applications rather than contributing to 
landfill. 

Recycled aggregate concrete (RAC) involves recycled concrete ag-
gregates obtained after crushing, cleaning, and grading of waste con-
crete blocks, which either partially or completely replace natural sand 
and gravel (Guo et al., 2018; Shi et al., 2016; Tam et al., 2021). The 
primary distinction between recycled aggregates and natural aggregates 
is that the former is composed of internal natural aggregates and 
external surfaces covered by hardened mortar. The porous structure of 
the hardened mortar on the surface of the recycled aggregates results in 
a high porosity, high water absorption, and low density (Kwan et al., 
2012; Tam et al., 2020). Additionally, recycled aggregates have larger 
interfacial transition zones (ITZ) than their natural counterparts due to 
the presence of older ITZ in the recycled aggregate, in addition to the 
new ITZ that forms during the hardening process (Kazmi et al., 2021; 
Xiao et al., 2013). Excessive recycled aggregate contents have been 
demonstrated to increase the porosity of concrete and reduce the bond 
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Table 1 
Distribution properties of input and output parameters.  

Classification Variable Unit Category Statistics 

Min Max Average STDEV 

Recycled aggregate properties Density kg/m3 Input 2000 2681 2414.09 121.43 
Water absorption % Input 0.886 12.7 4.98 1.87 

Mixture Proportions Water content kg/m3 Input 73 290 182.68 29.70 
Cement kg/m3 Input 225 864 410.92 94.06 
Natural fine aggregates kg/m3 Input 0 1317 712.78 197.07 
Recycled coarse aggregates kg/m3 Input 0 1731 592.24 377.20 
Natural coarse aggregates kg/m3 Input 0 1614 404.01 391.40 
Superplasticizer kg/m3 Input 0 222.6 4.06 18.60 

Mechanical property Compressive strength MPa Output 6.06 104.1 40.80 14.82  

Fig. 1. Correlation between the actual and predicted compressive strength of recycled aggregate concrete. (a) ANN (b) SVR (c) PSO-SVR (d) GWO-SVR.  
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strength in the ITZ, resulting in decreased compressive and tensile 
strengths, and elastic modulus (Kwan et al., 2012). These adverse effects 
can be alleviated by various pretreatment methods applied to these 
aggregates to enhance their performance. 

As with ordinary concrete, the mechanical properties of RAC are 
affected by curing conditions (Gayarre et al., 2014), mineral admixtures 
(Kou et al., 2011a), chemical admixtures (Kannan et al., 2021) and 
aggregate properties (Ozbakkaloglu et al., 2018). In addition to the 
investigation of the mechanisms by which raw material properties and 
mix proportion affect the strength of RAC, there is a focus on the 
development of mathematical functions or models to predict the me-
chanical properties and constitutive equations (stress-strain curve 
expression) under uniaxial stress state (Guo et al., 2019; Liang et al., 
2017; Peng et al., 2019). However, these mathematical expressions are 
often hampered by their inability to attain high forecast accuracy due to 
a lack of sufficient fitting parameters. They are constrained to a certain 
kind of function expression throughout the prediction process, in 
contrast to RAC’s high degree of flexibility. As a result, the proposed 
functions generally fail to properly predict RAC performance. 

Machine learning (ML), including both supervised and unsupervised 
learning, is increasingly regarded as a formidable contender to classic 
linear or nonlinear regression methods for predicting the mechanical 
strength of RAC. Using ML instead of conventional empirical or semi- 
empirical models enables better adaptation to diverse databases since 
function expressions are not rigidly enforced (Peng and Unluer, 2022). 
In addition, in the presence of several influencing factors, the conven-
tional techniques are plainly insufficient. This is because when an 
influencing factor is included, the function expression is seldom as 
straightforward as just adding an independent variable to the original 
basis, which is not an issue for ML. Among the several ML models 
available, artificial neural network (ANN) and support vector machine 
(SVM) are the two well-known and frequently used techniques (Deng 
et al., 2021; Yan and Shi, 2010; Yeh, 1998). ANN is a massively parallel 
interconnected network composed of adaptive simple units. Its organi-
zational structure can simulate the interactive response of the biological 
nervous system to real-world objects. SVM, which evolved from binary 
data categorization, is a statistically-based ML technique for data opti-
mization. In addition to these traditional algorithms, some recently 
developed algorithms are also used to optimize the hyperparameters of 
these traditional algorithms, such as genetic algorithm (Yuan et al., 
2014), particle swarm optimization (PSO) algorithm (Qi et al., 2018) 
and grey wolf optimizer (GWO) (Behnood and Golafshani, 2018). The 
implementation of these hybrid algorithms is more conducive to the 
rational selection of the optimal ML model for various datasets. 

The overall aim of this work is to present an applied model and 
analysis of the relationship between the key factors and outcomes to 
facilitate the optimization of the use of RAC in the built environment. To 

evaluate the complicated functional relationship between key parame-
ters such as the recycled aggregate properties, mix proportion and 
compressive strength of RAC, an extensive dataset accessible in pub-
lished literature was developed in this study. On this basis, four machine 
learning models, including two traditional models (ANN and support 
vector regression (SVR)) and two hybrid models (PSO based SVR and 
GWO based SVR) were used to predict the compressive strength of RAC, 
and their calculation results were compared by different performance 
evaluation methods. However, considering the non-visual characteris-
tics of ML, in order to clearly analyze how the initial variables affect the 
final results, partial dependence plot (PDP) and Shapley Additive ex-
Planations (SHAP) were used. This enabled the evaluation of the rela-
tionship between a feature and the expected responses for each 
observation, comparison of the importance of predictor variables, and 
investigation of the joint influence of the two variables on the prediction 
results. 

2. Materials and methodology 

2.1. Machine learning model development 

ANN is a mathematical model formed by imitating the structure and 
function of a biological system (Fig. A1(a)) (Zhang et al., 2021). As a 
result, it has many of the properties of biological brain systems, 
including (i) adaptation and self-study, (ii) computational parallelism 
and storage distribution, (iii) nonlinear mapping, and (iv) robustness/-
fault tolerance (Chen et al., 1995). The powerful nonlinear processing 
capability of artificial neural networks fuels researchers’ enthusiasm for 
the technology on a daily basis. Among them, the backpropagation 
neural network is the most mature and widely used multilayer feed-
forward network structure. In terms of learning rules, it is also a su-
pervised learning network because it can change its own structure and 
weights between neurons through continuous learning of sample data 
without knowing in advance that there is a specific mapping relationship 
between network input and output, and finally realize the correct 
mapping. 

In general, SVM turns the input space into a high-dimensional space 
through a nonlinear transformation defined by the inner product func-
tion and then determines the generalized optimal classification surface 
in this space. Most linear non-separable issues in input space can be 
turned into linear separable problems in feature space using the proper 
mapping function. SVM is primarily utilized in classification and 
regression, with SVR often employed to tackle prediction and 
regression-related issues (Fig. A1(b)) (Saha et al., 2020). 

Along with the two relatively classic single ML algorithms mentioned 
above, various enhanced hybrid algorithms have been created for 
hyperparameter optimization of traditional methods. PSO and GWO are 
two examples of standard optimization methods. PSO and GWO are both 
examples of bionic algorithms. The former is derived from simulation 
studies on bird foraging behavior, while the latter is derived from 
wolves’ hierarchy and predation strategy simulations (Behnood and 
Golafshani, 2018; Qi et al., 2018). To optimize and acquire the ideal 
solution for the goal, PSO utilizes a process of information exchange. It is 
an algorithm for population-based intelligent optimization. PSO has 
been extensively employed due to its small number of parameters, 
straightforward procedure, and, most significantly, its success in mul-
ticlass optimization situations. In comparison to other heuristic algo-
rithms, GWO offers the following advantages: simplicity of design, few 
parameters, ease of modification, rapid convergence speed, and 
powerful local search capability. 

2.2. Concrete database collection 

Proper data sets must be organized prior to performing ML compu-
tations. Not only should an acceptable data collection comprise a high 
number of samples (i.e. the bigger the sample set, the more extensively 

Table 2 
Statistical indicator results of different machine learning models.   

R2 RMSE MAE MAPE RSR 

ANN Training 0.8121 6.822 5.141 14.63 0.4334 
Validation 0.6381 7.212 5.575 14.82 0.6016 
Testing 0.3590 9.005 6.968 19.58 0.8006 
All 0.7569 7.301 5.479 15.62 0.4931 

SVR Training 0.5581 9.951 6.848 17.41 0.6648 
Validation 0.5986 8.601 6.534 18.84 0.6335 
Testing 0.7464 7.214 6.034 17.84 0.5036 
All 0.5914 9.464 6.679 17.95 0.6392 

PSO- SVR Training 0.9476 3.451 1.859 4.808 0.2289 
Validation 0.7573 6.761 5.310 14.11 0.4927 
Testing 0.7689 6.609 5.245 14.21 0.4808 
All 0.8995 4.693 2.884 7.715 0.3170 

GWO- SVR Training 0.9954 0.971 0.945 2.678 0.0681 
Validation 0.7508 6.794 4.987 12.64 0.4992 
Testing 0.7193 9.270 6.613 18.38 0.5298 
All 0.9056 4.549 2.401 6.608 0.3072  
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and deeply the ML model can investigate the possible association be-
tween variables), but should also contain all factors that can impact the 
findings. Only after achieving the preceding two criteria can the pro-
posed problem be adequately solved. 

Following this approach, to widen the coverage of the collected data 
as much as possible, 607 experimental data sets were acquired from 87 
publications (Abdulla, 2015; Adams et al., 2016; Anastasiou et al., 2018; 
Bai et al., 2020; Belén et al., 2011; Beltrán et al., 2014; Bhagat et al., 
2014; Butler et al., 2013, 2014; Çakır and Sofyanlı, 2015; Carneiro et al., 
2014; Casuccio et al., 2008; Chen et al., 2021; Corinaldesi, 2010; Dha-
nya et al., 2020; Dilbas and Güneş, 2021; Dilbas et al., 2014; Domi-
ngo-Cabo et al., 2009; Du et al., 2021; Duan et al., 2020; Duan and Poon, 
2014; Etxeberria et al., 2007a, 2007b; Fathifazl et al., 2011; Fiol et al., 
2020; Folino and Xargay, 2014; Gao et al., 2019, 2015; García-González 
et al., 2015; Gayarre et al., 2014; Gökçe and Şimşek, 2013; 
Gómez-Soberón, 2002; Gomez et al., 2001; Gonzalez-Corominas and 
Etxeberria, 2016; González-Fonteboa and Martínez-Abella, 2008; 

González et al., 2021; Gunasekara et al., 2020; Gupta et al., 2020; 
Haitao and Shizhu, 2015; Huang et al., 2017; Ismail and Ramli, 2013; 
Juan-Valdes et al., 2021; Kim et al., 2013, 2016, 2015; Kim et al., 2019; 
Kou et al., 2011b, 2014; Li et al., 2021; Liang et al., 2021; Lin et al., 
2004; Ling and Jiguang, 2018; Liu et al., 2021; Malešev et al., 2010; 
Manzi et al., 2013, 2017; Martinez et al., 2022; Medina et al., 2014; 
Mohammed et al., 2018; Nepomuceno et al., 2018; Nieto et al., 2019; 
Nili et al., 2019; Ozbakkaloglu et al., 2018; Pani et al., 2020; Pavlů et al., 
2019; Pereira-de-Oliveira et al., 2014; Poon et al., 2007; Poon et al., 
2004a; Poon et al., 2004b; Rangel et al., 2020; Santos et al., 2017; Savva 
et al., 2021; Setkit et al., 2021; Sharaky et al., 2021; Sheen et al., 2013; 
Silva et al., 2021; Soares et al., 2014; Somna et al., 2012; Sriravindrar-
ajah et al., 2012; Taffese, 2018; Tam et al., 2015; Tang et al., 2016; 
Thomas et al., 2018; Ulloa et al., 2013; Yang et al., 2008; Yang, 2018; 
Younis and Pilakoutas, 2013). 

The distribution properties of input and output parameters are listed 
in Table 1. In addition to the mix proportion, the properties of recycled 

Fig. 2. Error percentage distribution histogram. (a) ANN (b) SVR (c) PSO-SVR (d) GWO-SVR.  
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aggregates also have a considerable effect on the ultimate strength of 
RAC systems. Therefore, all input variables of this study were screened 
for these two aspects. For recycled aggregates, the primary properties to 
consider were set as particle size distribution/fineness modulus, density, 
water absorption, and LA abrasion. For the mix proportion, the contents 
of recycled coarse (fine) aggregates, water, cementitious materials 
(including cement and other mineral admixtures), natural coarse (fine) 

aggregates, and chemical admixtures were taken into account. It should 
be noted that some parameters were difficult to obtain using the unified 
test techniques described in the preceding references (e.g. some sources 
provide the fineness modulus of aggregates, whereas others illustrate the 
percentage distribution of aggregates in each particle size range, or only 
indicate a very rough particle size range such as the maximum and 
minimum particle sizes). Following further screening, eight parameters 

Fig. 3. 3D plots showing the 28-day compressive strength of RAC in relation to the (a) cement content and natural fine aggregates, (b) cement content and water 
content, (c) natural fine aggregates and water content, (d) recycled coarse aggregates and cement content, (e) recycled coarse aggregates and natural fine aggregates, 
and (f) recycled coarse aggregates and water content. 

Fig. 4. Visualization of predicted responses using PDP.  
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were chosen for ML calculation, two of which were recycled aggregate 
parameters, and the other six belonged to mix design parameters, 
including: (i) density of recycled aggregates (kg/m3), (ii) water 

absorption of recycled aggregates (%), (iii) water content (kg/m3), (iv) 
cement content (kg/m3), (v) natural fine aggregate content (kg/m3), (vi) 
recycled coarse aggregates content (kg/m3), (vii) natural coarse 

Fig. 5. Summary of the SHAP analysis showing the influence of eight parameters.  

Fig. 6. Mean absolute value of the SHAP values for each feature.  

Fig. A1. Schematic diagrams of two typical machine learning algorithms (ANN and nonlinear SVR), adapted from (Asteris et al., 2021; Saha et al., 2020).  

Y. Peng and C. Unluer                                                                                                                                                                                                                         



Resources, Conservation & Recycling 190 (2023) 106812

7

aggregates content (kg/m3), and (viii) superplasticizer content (kg/m3). 

2.3. Performance assessment 

The experimental database was often randomly separated into three 
subsets based on the categorization of the majority of prior studies: the 
training set, the validation set, and the testing sets (Chaabene et al., 
2020). The training set was used to train the model’s parameters (for 
example, in the case of an ANN, this is the process of continually opti-
mizing the weight and bias); the validation set was used to assess the 
model’s state and convergence throughout the training process. It was 
often used to alter the hyperparameters; the testing set was used to 
assess the model’s generalizability, or the capacity of the model to 
effectively forecast a given set of new databases after optimizing the 
hyperparameters. 

Four ML models were compared based on absolute error, error per-
centage, coefficient of determination (R2), root mean squared error 
(RMSE), mean absolute percentage error (MAPE), mean absolute error 
(MAE), and RMSE-to-observation’s standard deviation ratio (RSR) in 
order to assess the prediction performance difference Asteris et al., 
2021). The closeness of the anticipated value to the actual value could be 
quantified using these techniques. The assessment of a single sample 
(mix proportion) accounted for the first two parameters, while the al-
gorithm fitting degree of several subsets accounted for the last five. In 
addition, these five statistical parameters could also be set into a unified 
measurement parameter, namely the composite performance index 
(CPI) (Cook et al., 2019). The aforementioned eight parameters are 

expressed as Eqs. (1)-(8), where yi’ and yi are the predicted value and 
actual value, respectively. y is the average value, Pj is the statistical 
parameter of the j-th parameter. Pmin,j and Pmax,j are the minimum and 
maximum values of the jth statistical parameter across the five values 
using the same ML model. 

Absolute error = y
′

i − yi (1)  

Error percentage =
y′

i − yi

yi
(2)  

R2 = 1 −

∑n
i=1(y

′

i − yi)
2

∑n
i=1(yi − y)2 (3)  

RMSE =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
∑n

i=1(y
′

i − yi)
2

n

√

(4)  

MAE =
1
n

∑n

i=1
|y

′

i − yi| (5)  

MAPE =
1
n

∑n

i=1

⃒
⃒
⃒
⃒
y′

i − yi

yi

⃒
⃒
⃒
⃒× 100 (6)  

RSR =
RMSE

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
1
n

∑n
i=1(yi − y)2

√ (7)  

CPI =
1
N

∑N

j=1

Pj − Pmin,j

Pmax,j − Pmin,j
(8)  

2.4. Partial dependence plots (PDP) 

The objective of a machine learning business application is to output 
judgments for decision-making. Model interpretability relates to a 
comprehension of the model’s underlying process and output. The more 
interpretable a ML model is, the simpler it is for humans to comprehend 
why it makes certain conclusions or predictions. Its significance is re-
flected in the following: in the modeling stage, assist developers in 
comprehending the model, comparing and selecting the model, and 
optimizing and adjusting the model as necessary; in the operation stage, 
explain the model’s internal mechanism to the business party and 
explain the model results. Whether learning the underlying connection 
of data or calculating or deriving the anticipated value, ML is commonly 
recognized as a black box operation, which necessitates the develop-
ment of some interpretable local or global techniques for visually 
analyzing the ML process. Partial dependence plot (PDP) is a typical 
global interpretable technique. It is capable of not only representing the 
marginal influence of one or two features on the model’s prediction 

Fig. A2. Results calculated by different ML algorithms according to the ascending order of experimental value.  

Fig. A3. CPI values based on different machine learning algorithms.  
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outcomes, but also of ranking the relevance of features based on the 
operation results. PDP can show whether the relationship between 
target and feature is linear, monotonous, or more complicated (Fried-
man, 2001). The partial dependence function of regression is defined as 
follows: 

f̂ xS
(xS) = ExC

[
f̂ xS

(xS, xC)
]
=

∫

f̂ xS
(xS, xC)dP(xC) (9)  

Where, xS denotes the feature and the partial dependency function to be 
drawn, and xC represents the other features that are used by the ML 
model ̂f . Generally, set S has just one or two characteristics. The feature 
(s) in S that we are interested in are those that have an influence on the 
prediction. The combined feature vectors xS and xC define the whole 
feature space x. Partial dependency works by marginalizing the output 
of the ML model on the feature distribution in set C, resulting in a 
function that illustrates the link between the features in set C and the 
prediction outcomes. By marginalizing other features, a function that is 

dependent only on the features in S can be obtained, including their 
interaction. 

2.5. Shapley additive exPlanations (SHAP) 

The Shapley value is often used when discussing the distribution of 
interests in cooperative games. Its primary benefit is that its underlying 
principles and distribution outcomes are easily seen as equitable and 
acceptable by all stakeholders (Winter, 2002). The total inaccuracy of 
the combined prediction induced by the joint action of each individual 
prediction technique may be considered as income according to the use 
of Shapley value in income distribution. The income value can be allo-
cated among several prediction techniques according to their "cooper-
ative connection", i.e., the weight of each prediction method in the 
combined prediction model can be determined. 

SHapley Additive exPlanations (SHAP) employs an additive feature 
attribution approach to generate an interpretable model, in which the 
output model is defined as the linear sum of the input variables. SHAP 

Fig. A4. Relative errors between actual and predicted compressive strength. (a) ANN (b) SVR (c) PSO-SVR (d) GWO-SVR.  
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defines the explanation as follows, where g corresponds to the model for 
explanation, M denotes the maximum size of the coalition and z’∈{0, 
1}M represents whether the feature exists. 

g(z′

) = φ0 +
∑M

j=1
φjz

′

j (10) 

The SHAP value of each feature represents the change predicted by 
the expected model under the condition of this input parameter. For 
each feature, the SHAP value indicates the contribution of the feature to 
the overall prediction results to illustrate the difference between the 
average model prediction and the actual prediction of the database. 
When φi>0, it indicates that the feature can improve the predicted 
value; on the contrary, it indicates that the feature reduces the 
contribution. 

3. Results and discussion 

3.1. Performance assessments 

In this study, the number of hidden layers of ANN is 1, with a total of 
10 nodes, and the training algorithm is Levenberg-Marquardt (Lera and 
Pinzolas, 2002). Simultaneously, the radial basis function (RBF) is 
selected as the kernel function of the SVR algorithm (Blake and Kape-
tanios, 2003). For the hybrid algorithm, the maximum number of iter-
ations of PSO and GWO is 100, in which the learning factors c1 and c2 of 
PSO are 1.5 and 1.7, respectively, and the particle swarm size is 20. 
Fig. 1 shows the comparison results between the predicted values and 
their respective actual values based on the selected four machine 
learning algorithms. Whichever model is chosen for prediction, the 
input data statistics in Table 2 reveal that the eight input variables have 
various dimensional units and orders of magnitude. Therefore, the 
parameter dimensions are normalized to remove their impact on the 
simulation outcomes prior to computation (Jo, 2019). In addition, the 
division proportion of the training set, validation set, and testing set is 
70%, 15% and 15% (the corresponding number of data sets is 425, 91, 
and 91 respectively). 

According to the prediction and analysis of the experimental data, it 

can be found that for the two traditional algorithms (ANN and SVR), 
there are a small number of test points with large deviations from the 
centerline in all three subsets, which is more obvious for the calculation 
results of SVR. In contrast, PSO and GWO can learn more about the 
relationship between input and output variables after optimizing the 
hyperparameters of SVR, resulting in superior fitting results for the 
hybrid models. Different from the illustration in Fig. 1 (random 
arrangement of sample data), Fig. A2 shows the results obtained after 
arranging the test values from small to large, and each value corresponds 
to the predicted values of different machine learning models. By ar-
ranging and integrating the data sets, it can be found that when the 
experimental compressive strength of ANN and SVR is large, the devi-
ation between the predicted value and the actual value is greater. 
Similar to Fig. 1, the blue scatters in Fig. A2 that corresponds to the SVR 
changes significantly as the actual compressive strength exceeds 50 
MPa. 

Table 2 summarizes the evaluation parameters for three subsets and 
the total dataset, as determined by Eqs. (3)–(7). Similar to the visual 
interpretation of the findings in Fig. 1, although the R2 of ANN is 0.8121 
in the training set, it declines dramatically when extended to the vali-
dation and testing sets, with the testing set having a fitting accuracy of 
just 0.3590. In all three sets, the SVR method is difficult to provide 
adequate prediction results. PSO-SVR and GWO-SVR, by contrast, have 
much greater evaluation parameters than the two aforementioned 
methods, both in terms of subset and total dataset. Fig. A3 shows the 
results obtained after integrating the above five evaluation indexes into 
one index, i.e., CPI. The order of the CPI values from low to high is GWO- 
SVR, PSO-SVR, ANN, and SVR; in other words, GWO-SVR still achieves 
the highest score and exhibits the greatest prediction performance after 
considering all subsets and evaluation indicators. However, it should 
still be noted here that the R2 corresponding to the GWO-SVR training 
set is as high as 0.9954, while in the testing set, the value is reduced to 
0.7193, showing a significant reduction. While this is not the lowest 
value among the four methods, it does indicate that when GWO is 
employed for optimization, overfitting may occur (Abdel-Basset et al., 
2020). 

Along with describing the three subsets of the original database, it is 
important to perform a statistical analysis on each sample of data. The 

Fig. A5. Comparison of the importance of predictor variables.  

Fig. A6. Local multiple force interpretation diagram based on XGBoost algorism (X1: density, X2: cement content, X3: water content, X4: water absorption, X5: natural 
fine aggregates, X6: recycled coarse aggregates, X7: natural coarse aggregates, and X8: superplasticizer). 
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absolute error of each group of 607 samples in the total database is 
shown in Fig. A4. PSO-SVR and GWO-SVR exhibit the least degree of 
point dispersion in this regard. However, it is worth mentioning that the 
error value for the first 425 samples of GWO-SVR is really tiny, and then 

the error rapidly grows as the number of samples increases. This also 
verifies the earlier conjecture about the GWO-SVR algorithms, namely 
the phenomena of overlearning. Additionally, to account for the dif-
ference in absolute value across various mix proportions, the ratio of the 

Fig. A7. Influence of single feature parameter on the SHAP value.  
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calculated absolute error to the actual value must be employed to 
quantify the degree of divergence of the forecast results from the true 
value. The histogram of the frequency distribution of the sample error 
percentage according to the statistics of various interval ranges is shown 
in Fig. 2. Clearly, when the error percentage of all samples acquired by 
an algorithm is closer to 0, this algorithm has a higher fitting accuracy. 
Although the number of samples with a GWO-SVR error percentage of 
− 10%− 10% is the highest in terms of frequency distribution, given that 
the majority of these samples are attributable to the training set’s ultra- 
high fitting accuracy, the PSO-SVR method may exhibit more steady 
simulation capabilities by comparison. 

3.2. PDP 

Fig. A5 illustrates the calculation results performed using PDP to 
evaluate the significance of input variables. The concept of feature 
importance is critical in machine learning. It converts the effect of a 
feature on model prediction to a numerical value, which PDP can be 
used to depict the effect of this feature on prediction (Molnar et al., 
2021). Unexpectedly, among the eight input variables, the three most 
important variables are cement, natural fine aggregate, and water con-
tent, but there is no input variable for recycled aggregate. Additionally, 
when the characteristics of recycled aggregate are further sorted, it is 
discovered that their density and water absorption have a greater effect 
on the predicted outcomes than their own content. 

Alongside categorizing the input variables according to their feature 
importance, PDP makes an effort to visualize the machine learning 
operation process. In practice, feature sets often include just one or a 
maximum of two features, since only three-dimensional images can be 
used to define how input variables affect output variables. Fig. 3 is a 3D 
scatter diagram in which the upper three are drawn by selecting the top 
three predictors, i.e., water content, cement content, and natural fine 
aggregate, while the bottom three employ recycled coarse aggregate as 
the x-axis. The above variables are used respectively to investigate both 
the interaction of the three most significant variables and the influence 
of recycled aggregate content separately. As can be observed, there is no 
significant interacting connection between compressive strength and the 
selected variables, which may be owing to the low effect weights of two 
factors on the results induced by an excessive number of variables and a 
wide fluctuation range. In addition to the two coordinate axes shown in 
Fig. 3, there are six more factors that might have a substantial influence 
on the findings. Therefore, the link between PDP-based variables and 
output outcomes is reinforced to mitigate the effect of the other six el-
ements. As shown in Fig. 4, the six surfaces are not as smooth as ex-
pected, indicating that even after minimizing the effect of other input 
factors, the chosen two variables still struggle to demonstrate a signifi-
cant positive or negative relationship with compressive strength. Water 
content, cement content, and natural fine aggregate content all have a 
reasonable range, allowing the compressive strength to achieve its 
maximum value locally. When the recycled coarse aggregate content is 
used as the x-axis, regardless of which factor is used as the y-axis, the 
change of recycled coarse aggregate content is shown to not have a 
significant impact on the results. 

3.3. SHAP 

The contribution analysis of prediction outcomes based on Shapley 
value can be classified into two tiers according to the established model. 
On a global scale, the Shapley value distribution can be used to explain 
the unique effect, law, and correlation of characteristics; on a local scale, 
the quantitative contribution of each feature to each sample prediction 
can be specified (Liang et al., 2021). The typical contribution of each of 
the eight influencing parameters addressed in this investigation to the 
prediction outcomes, namely compressive strength, is shown in Fig. A6. 
The image depicts the viewpoint of a local interpretation. While it is 
likely that some of these features will have a positive influence on the 

outcomes (red bar area), others will have a negative impact (blue bar 
area). The visualization results shown in Fig. A6 indicate that recycled 
aggregate density, cement content, and natural and recycled coarse 
aggregate all have a beneficial effect on the outcomes within a particular 
range. On the contrary, water content has a detrimental effect on 
strength, while the force value of the X8, i.e., superplasticizer, is 0, 
showing that it has no meaningful link with the final mechanical qual-
ities. Additionally, the effect of each individual element on the outcome 
can be quantified, thus obtaining Fig. A7. It is readily apparent that the 
changing trend in RCA compressive strength with respect to these eight 
parameters is similar to that shown in the force diagram. For instance, in 
Fig. A7(c) and (d), the cement and water contents exhibit considerable 
positive and negative variations in response to the results. However, the 
change trend of several groups in Fig. A7 is different from Fig. A6, i.e., 
the change of scatter points (Fig. A7(b) and (f)) is in the opposite di-
rection of the change depicted in the force diagram. 

In contrast to local interpretation, global interpretation considers the 
cumulative effect of all distinct features on the results. As seen in Figs. 5 
and 6, the first five significant features based on Shapley values are 
cement, superplasticizer, water content, natural fine aggregation, and 
water absorption. This ranking is comparable to the results of a PDP- 
based feature significance analysis, although there are still some dis-
crepancies. Based on PDP findings, natural fine aggregate is regarded to 
be the second most significant influencing factor after cement content. 
This is reasonable since fine aggregate makes up a large proportion of 
the constituents in concrete to bind with the cement paste and larger 
aggregate to form strong connections. On the other hand, the effect 
weight of superplasticizer is rated second according to SHAP. However, 
Fig. A6 indicates that the content of superplasticizer does not correspond 
to either the positive or negative impact. This conflict may occur as a 
result of the asymmetric distribution of input parameters. 

4. Conclusion 

Reusing construction waste in RAC is an efficient and practical 
approach to achieve net-zero greenhouse gas emissions within building 
materials. This study aimed to use hybrid machine learning techniques 
(ANN, SVR, GWO-SVR and PSO-SVR) to reasonably predict the me-
chanical performance of RAC according to the given input parameters 
and present a solution for the inaccurate prediction abilities of tradi-
tional empirical models. Furthermore, two interpretable algorithms, 
PDP and SHAP, were used to reveal how variables specifically affected 
the compressive strength results. The performance of each model was 
evaluated, resulting in the following observations: 

(1) For the two traditional machine learning models, ANN out-
performed SVR in terms of prediction accuracy. The optimization 
algorithms were demonstrated to significantly improve the pre-
dictive ability of the SVR model. The evaluation of the eight 
statistical indicators in detail led to the identification of GWO- 
SVR as the most accurate model out of the four models, with an 
R2 of 0.9056. PSO-SVR attained very similar results.  

(2) The comparison and analysis of the actual and predicted values 
for each sample revealed very small errors for the first 425 groups 
of data in GWO-SVR. This outcome confirmed that hyper-
parameter optimization of SVR with GWO significantly improved 
its understanding of the training set. However, the training and 
testing phases exhibited large variations in results, especially 
with a deterioration in R2 from 0.9954 to 0.7193 for GWO-SVR, 
indicating overfitting and leading to inaccuracies in the vali-
dating and testing phases. As a result, although GWO-SVR 
demonstrated a greater overall prediction accuracy than PSO- 
SVR, the latter may provide a more consistent prediction per-
formance for the training, validation and testing sets. 

(3) The PDP and SHAP algorithms were used to illustrate the prin-
ciple of ML and to visualize its black-box operation process. 
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Although both feature importance and feature dependence ana-
lyses demonstrated that the two algorithms’ output results were 
relatively similar, their ranking of feature significance remained 
distinct. While SHAP placed the influence weight of super-
plasticizer and water contents in front of natural fine aggregate 
content, PDP implied that the effect weight of natural fine ag-
gregates content was second only to cement content. Further-
more, when compared to PDP, SHAP could demonstrate whether 
each input variable’s impact on the output was positive or 
negative. In this respect, cement content, recycled aggregate 
density, and natural/recycled coarse aggregates contents all had 
a positive effect; whereas water content had a negative impact on 
the mechanical properties of RAC. 

ML is regarded as a promising predictive tool for a wide range of 
engineering applications. With their continuous development, hybrid 
models reveal more accurate prediction performance than single algo-
rithm models due to their hyperparameter optimization. Furthermore, 
global and local model-agnostic global interpretation techniques rep-
resented by PDP and SHAP provide algorithmic help for different users 
to understand the prediction basis behind the characteristics of ML 
black-box operations. The combination of these approaches can enable 
the accurate prediction of the mechanical performance of RAC based on 
existing data, thereby saving engineering costs, improving efficiency 
and enhancing the sustainability of building materials. For the wide-
spread application of ML in the analysis of concrete materials, the 
further development of hyperparameter optimization algorithm (pre-
cursor algorithm) and the identification of the relevant experimental 
database are the focus of future research. 
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García-González, J., Rodríguez-Robles, D., Juan-Valdés, A., Morán-del Pozo, J.M., 
Guerra-Romero, M.I., 2015. Porosity and pore size distribution in recycled concrete. 
Mag. Concr. Res. 67 (22), 1214–1221. 

Gayarre, F.L., Perez, C.L.C., Lopez, M.A.S., Cabo, A.D., 2014. The effect of curing 
conditions on the compressive strength of recycled aggregate concrete. Constr. Build. 
Mater. 53, 260–266. 
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