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Abstract
The COVID-19 pandemic has highlighted delayed reporting as a significant
impediment to effective disease surveillance and decision-making. In the
absence of timely data, statistical models which account for delays can be
adopted to nowcast and forecast cases or deaths. We discuss the four key sources
of systematic and random variability in available data for COVID-19 and other
diseases, and critically evaluate current state-of-the-art methods with respect
to appropriately separating and capturing this variability. We propose a general
hierarchical approach to correcting delayed reporting of COVID-19 and apply
this to daily English hospital deaths, resulting in a flexible prediction tool which
could be used to better inform pandemic decision-making. We compare this
approach to competing models with respect to theoretical flexibility and quanti-
tative metrics from a 15-month rolling prediction experiment imitating a realistic
operational scenario. Based on consistent leads in predictive accuracy, bias, and
precision, we argue that this approach is an attractive option for correcting
delayed reporting of COVID-19 and future epidemics.
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1 INTRODUCTION

The coronavirus disease or COVID-19 is an infectious
disease caused by the severe acute respiratory syndrome
coronavirus 2 (SARS-Cov-2) virus. Like many infectious
diseases, data on COVID-19 cases and deaths are typi-
cally subject to delayed reporting, otherwise known as
‘notification delay’. This is when available count data
are, for a time, an under-representation of the truth,
owing to flaws or ‘lags’ in the data collection mecha-
nism. In disease surveillance, delays—for example, ones
that occur during the transfer of information from local
clinics to national surveillance centers—mean that com-

This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the
original work is properly cited.
© 2022 The Authors. Biometrics published by Wiley Periodicals LLC on behalf of International Biometric Society.

plete and informative counts of new cases or deaths
are not immediately available. Often these delays are
substantial, so that it can take several weeks or even
months for the available data to reach a total reported
count.
From April 2020 until July 2022, the National Health

Service for England (NHS England) published daily count
data of deaths occurring in hospitals in England of patients
who had either tested positive for COVID-19 or where
COVID-19 was mentioned on their death certificate (NHS
England, 2021). Each daily file contained the number of
deaths reported in the 24-h “reporting period” starting 4
pm 2 days prior to publication and ending 4 pm 1 day

Biometrics. 2022;1–14. wileyonlinelibrary.com/journal/biom 1

 15410420, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1111/biom

.13810 by U
niversity O

f G
lasgow

, W
iley O

nline L
ibrary on [22/02/2023]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense

https://orcid.org/0000-0003-0612-4306
mailto:oliver.stoner@glasgow.ac.uk
http://creativecommons.org/licenses/by/4.0/
https://wileyonlinelibrary.com/journal/biom
http://crossmark.crossref.org/dialog/?doi=10.1111%2Fbiom.13810&domain=pdf&date_stamp=2022-12-27


2 STONER et al.

F IGURE 1 Bar plot of reported COVID-19 hospital deaths in
the East of England region, for the days leading up to and including
day 𝑡, January 1, 2021. The grey bars represent the number of deaths
which have not yet been reported as of day 𝑡 + 1 (January 2), while
the different colored bars show the number of deaths reported after
each day of delay (i.e. published on January 2).This figure appears
in color in the electronic version of this paper, and any mention of
color refers to that version

prior to publication, grouped in time by date of death
and in space by seven regions (e.g., London). For exam-
ple, Figure 1 shows reported COVID-19 hospital deaths in
the East of England in the days leading up to and includ-
ing day 𝑡, the January 1, 2021. This figure appears in color
in the electronic version of this paper, and any mention
of color refers to that version. The colored bars show the
partially reported data available at the end of day 𝑡 + 1,
the January 2, while the grey bars show the number of
deaths that have not been reported as of day 𝑡 + 1. The 24
hour delay between the end of the reporting period and
data publication means day 𝑡 + 1 is the earliest any deaths
occurring on day 𝑡 will be reported. We refer to this first
interval of reporting as ‘the first delay’. In Figure 1, the
portion of deaths reported within the first delay is shown
in green. For 𝑡 − 1, we have data reported within the first
delay (green) as well as ones reported within the ‘second
delay’ (orange). We therefore observe one additional por-
tion of deaths—which we call the ‘delayed counts’—for
each day we go back into the past.
Significant heterogeneity in the delay mechanism (e.g.,

in the proportion of deaths reported in the first delay)
makes it challenging to draw conclusions about the total
counts in a timely manner. For example, fewer deaths
occurring on day 𝑡 − 1 were reported in the first 2 delays
(green plus orange) than for 𝑡 − 2 (Figure 1). For a prac-
titioner analyzing the data published at the end of day
𝑡 + 1, there is no clear sign from the available reported
counts that the total deaths occurring on day 𝑡 − 1 is in
fact larger. Delayed reporting can therefore make it diffi-
cult to confidently detect a disease outbreak within a time

frame during which interventions are most effective. For
COVID-19, failure to tackle local or regional outbreaks in a
timelymanner carries the risk of loss of life,while unneces-
sary interventions can also be costly for the local economy
or other aspects of population well-being.
For effective disease surveillance, we need to correct the

delayed reporting and in doing so predict total counts (e.g.,
the number of deaths) for both recent days (nowcasting)
and future days (forecasting), based on any available par-
tial counts and potentially on any historical total counts
which have now been fully observed. This necessitates
careful treatment of the variability associatedwith both the
total counts and the delayed reporting, beyond the capabil-
ity of standard statistical methods. Here, we demonstrate
that a general generalized-Dirichlet-multinomial (GDM)
hierarchical framework published in the year prior to
the pandemic can address the challenges associated with
correcting delayed reporting of COVID-19, resulting in a
versatile operational tool for decision-makers. In recent
years, several compelling methods have been proposed
for correcting delayed reporting, and we aim to show
that the GDM approach can yield considerably more
accurate and precise predictions, to better inform pan-
demic decision-making. At the same time, the generality
of the GDM framework enables novel insights into the
structure of the reporting delay, for example, weekly
cycles, which can help inform improvements to reporting
processes.
The paper is structured as follows. In Section 2, we

discuss the need to consider different sources of variabil-
ity in COVID-19 data suffering from delayed reporting
and use this as a principled basis for comparing current
approaches; in Section 3, we present the general frame-
work for correcting delayed reporting in COVID-19 data;
in Section 4, we apply this framework to counts of hospital
deaths from COVID-19 in regions of England and present
a 15-month rolling prediction experiment to illustrate the
GDM method’s operational effectiveness in comparison
with other approaches. Finally, we conclude with a critical
discussion of our approach and avenues for future research
in Section 5.
Accompanying the paper is a substantial Web

Appendix structured as follows: in Web Appendix A,
we apply our approach to severe acute respiratory infec-
tion (SARI) data from Brazil, demonstrating applicability
to general disease surveillance data; in Web Appendix B,
we illustrate the COVID-19 data structure using examples;
in Web Appendix C, we present a simulation experi-
ment that assesses the ability of the framework (i) to
appropriately infer covariate effects on disease incidence
and reporting delays, and (ii) to capture unknown delay
variance structures; in Web Appendix D, we present the
mathematical formulation of competingmodels appearing
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STONER et al. 3

F IGURE 2 Scatter plot of daily hospital deaths in England. Dashed line and points: the number of deaths reported on each day
(announced deaths), by publication date. Different shapes and colors represent the day of the week. Dotted line: the number of actual deaths
on each day (𝑦). Solid line: smooth trend of the actual deaths. This figure appears in color in the electronic version of this paper, and any
mention of color refers to that version

in Section 4; in Web Appendix E, we explain and study the
use of moving data windows to improve computational
feasibility; and in Web Appendix F, we discuss how
under-reporting in the overall counts can be allowed
for.

2 BACKGROUND

Webegin by introducing some notation. Let 𝑦𝑡 be the num-
ber of COVID-19 deaths or cases occurring on a given day 𝑡,
and let 𝑧𝑡,𝑑 be the portion of 𝑦𝑡 observedwithin 𝑑 = 1, … , 𝐷

delays, so that
∑𝐷

𝑑=1
𝑧𝑡,𝑑 = 𝑦𝑡. More generally, 𝑦𝑡 is a count

and 𝑡 is the associated time step (e.g., weekly dengue cases).
To better understand existing modeling approaches, it is
instructive to appreciate the different sources of variability
which might be present in data relating to COVID-19 but
also other diseases. Suppose we arrange 𝑧𝑡,𝑑 into a matrix
𝑧′

𝑡,𝑡′ of countswhere the rows are the date of death 𝑡 and the
columns are the date 𝑧𝑡,𝑑 was first reported, where 𝑡′ = 𝑡 +

𝑑 (see Table 1 of theWebAppendix). Taking the sum across
columns for each row results in the total deaths occurring
on each day 𝑦𝑡, which we call the ‘actual’ deaths. The 𝑦𝑡

are of course unknown on day 𝑡 due to delayed reporting.
Alternatively, taking the sum across rows for each column
results in the total deaths reported (rather than occurred)
on each day, which we call the ‘announced’ deaths in
the case of COVID-19 mortality. The announced deaths
are, by definition, known for days up to and including
the most recent date of publication, but tend to con-
sist of deaths which occurred days ago. Figure 2 shows
both the ‘actual’ (dotted line) and ‘announced’ (dashed
line) in-hospital deaths from COVID-19 on each day in
England between the October 1, 2020 and the March 1,

2021. This period broadly captures the second wave of
COVID-19, which brought more than 800 deaths per day
at its peak. Both the actual and announced deaths follow a
clear trend, where daily fatalities reached an initial maxi-
mum in November–December before later accelerating to
a more severe peak in January. This trend, illustrated by
the solid line, is what we call the ‘systematic variability’
in 𝑦𝑡, which will vary regionally, for example, due to dif-
ferent population sizes, population densities or time since
the disease took hold of the region. The day-to-day fluctu-
ation about the smooth curve is what we call the ‘random
variability’ of 𝑦𝑡.
In addition to the variability in 𝑦𝑡, we must furthermore

consider variability in the reporting delay, which can also
be decomposed into random and systematic. Notice for
instance the clear ‘weekly cycle’ in the announced deaths
(Figure 2)—also referred to as the ‘weekend effect’—where
significantly fewer deaths tend to be announced on Sun-
days and Mondays. The weekend effect can be explained
here by lower levels of administrative staffing at many hos-
pital trusts on Saturday and Sunday. Figure 2 shows some
instances of around double the number of deaths being
announced on Wednesdays compared to Mondays in the
same 7-day period. In the absence of widespread under-
standing of delayed-reporting, such events can generate
misguided belief that deaths are ‘surging’ or ‘plummet-
ing’, which highlights the risks of using such data as
a raw indicator of the progression of the epidemic. We
would also expect systematic between-region variability
in the reporting delay, for example, resource inequality
between regions; as well as systematic temporal variabil-
ity, for example, if reporting efficiency improves over time.
From a modeling perspective, failure to take into account
this kind of systematic variability in the reporting delay

 15410420, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1111/biom

.13810 by U
niversity O

f G
lasgow

, W
iley O

nline L
ibrary on [22/02/2023]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



4 STONER et al.

(which in conjunction with systematic variability in 𝑦𝑡

makes up the overall systematic variability in the delayed
counts 𝑧𝑡,𝑑) means ignoring crucial information when it
comes to nowcasting and forecasting.
In summary, attempts to correct for delayed reporting

of COVID-19 should carefully consider the following four
sources of variability in the available data:

1. Systematic variability in the total count 𝑦𝑡 (e.g., expo-
nential growth/decay, seasonal patterns, regional varia-
tion).

2. Random variability in 𝑦𝑡 (e.g., day-to-day variation in
death count).

3. Systematic variability in the reporting delay (e.g.,
weekly cycles, improvements in reporting efficiency
over time, between-region differences).

4. Random variability in the reporting delay (e.g., day-to-
day variation).

The available data at any given time comprise historical
(fully) reported counts 𝑦𝑡 and partial counts 𝑧𝑡,𝑑 corre-
sponding both to historic 𝑦𝑡 and tomore recent unobserved
𝑦𝑡. These are the sources of information to be utilized
for nowcasting and forecasting and as explained in the
following section, the appropriate handling of their respec-
tive variability will result in more optimal predictions of
current and future counts 𝑦𝑡.

2.1 Review of existing approaches

Stoner and Economou (2020) presented an overview of
the well-established biostatistical literature on correcting
reporting delay. We revisit some of that but with a par-
ticular focus on utility to COVID-19 applications: Höhle
and an der Heiden (2014) and Salmon et al. (2015) both
proposed approaches which combine a Poisson/negative-
binomial model to describe 𝑦𝑡 with a multinomial model
for the partial counts 𝑧𝑡,𝑑|𝑦𝑡, to describe variability in the
delayed reporting. The main strength of these approaches
is the intuitive separation of variability (random and sys-
tematic) in the total count 𝑦𝑡 (a and b) from variability
in the reporting delay (c and d). Specifically, Höhle and
an der Heiden (2014) presented two separate options: (1)
the multinomial probabilities are realizations from the
generalized-Dirichlet distribution for each time step, and
(2) the multinomial probabilities are modeled with a logis-
tic transformation of potentially informative covariates.
The first option offers considerable flexibility to capture
different levels of random variability in the reporting delay,
but lacks the capability of capturing systematic variabil-
ity like a weekly-cycle in reporting performance. This is
because the parameters of the generalized-Dirichlet are

not assumed to vary systematically over time or other-
wise. The second option allows systematic variability to be
captured, at the expense of model fit and non-optimal pre-
dictions in the (very common) situations, where 𝑧𝑡,𝑑|𝑦𝑡 are
over-dispersed with respect to the multinomial (Stoner &
Economou, 2020).
Epidemiological applications (including disease surveil-

lance) often have a spatial dimension (Cabrera & Taylor,
2019) and this is certainly true for COVID-19, where data
are often grouped into geographical units like regions
or health authorities. Two existing approaches that deal
with spatio-temporal data are Bastos et al. (2019) and
Rotejanaprasert et al. (2020). In both cases, the partial
counts 𝑧𝑡,𝑑 are assumed negative-binomial in a Bayesian
hierarchical framework, where 𝔼[𝑧𝑡,𝑑] = 𝜇𝑡,𝑑 depends on
covariates and random effects intended to capture sys-
tematic variability in the total count (a)—albeit indirectly
through 𝑦𝑡 =

∑
𝑑

𝑧𝑡,𝑑 – and in the reporting delay (c).
This approach, applied to spatio-temporal SARI data from
Brazil (Bastos et al., 2019) and to dengue fever data from
Thailand (Rotejanaprasert et al., 2020), is a generalization
of older chain-ladder approaches (e.g., Mack 1993) and is
quite flexible, as it can potentially incorporate a wide vari-
ety of temporal, spatial, and spatio-temporal structures.
However, the total counts are not explicitlymodeled, while
the partial counts are assumed independent given covari-
ates and random effects. As such, random variability in the
total counts (b) is not necessarily captured well in addi-
tion to the added risk of excessive predictive uncertainty
when nowcasting and forecasting (Stoner & Economou,
2020). This is in part due to the lack of separation between
systematic variability in the total count (a) and the report-
ing delay (c). A similar approach which partly addresses
this separation issue is given by McGough et al. (2020),
where themean of 𝑧𝑡,𝑑 is defined as 𝜇𝑡,𝑑 = 𝛽𝑑𝜆𝑡. Parameter
𝛽𝑑 ∈ (0, 1), where

∑
𝑑

𝛽𝑑 = 1, is the proportion expected
to be reported with delay 𝑑, while 𝜆𝑡 = 𝔼[𝑦𝑡] is effectively
the mean of the total count. The proportions 𝜷 = {𝛽𝑑} are
fixed in time, while 𝜆𝑡 is modeled by random effects at the
log-scale. To account for systematic variation (over time) in
the reporting delay (c), the model is applied over a sliding
temporal window of fixed length. As such, 𝛽𝑑 is represen-
tative of reporting behavior in more recent data. Although
this allows flexibility to capture structured temporal vari-
ability in the delay, it may result in over-smoothing of the
delay distribution if the window size is too big relative to
significant short-term structured variability in reporting
performance (like those exhibited by UK COVID-19 data,
as illustrated later in Figure 4).
Finally, Stoner & Economou (2020) proposed a general

framework for correcting delayed reporting, which uti-
lizes a negative-binomial model for 𝑦𝑡 and a GDM model
for 𝑧𝑡,𝑑|𝑦𝑡. Covariates and random effects can be included
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STONER et al. 5

in the parameters of the GDM, to account for system-
atic variability in the mean and variance of the reporting
delay. The benefit of this approach is that all four sources
of variability are accounted for separately using flexible
distributions, leading to enhanced interpretability of the
model design alongwith improved prediction performance
when nowcasting and forecasting (Stoner & Economou,
2020). In the following sections, we will detail how a
spatio-temporal extension of this framework can be used
to correct delayed reporting in COVID-19 (Section 4) and
other disease surveillance data (Web Appendix A).
Existing approaches can be broadly classified into two

groups: one where the delayed counts 𝑧𝑡,𝑑 are modeled
marginally without explicitly modeling/using historical
information on the totals 𝑦𝑡, for example, Bastos et al.
(2019) andMcGough et al. (2020); and anotherwhichmod-
els the delay counts jointly but also conditionally on 𝑦𝑡,
that is, 𝒛𝑡|𝑦𝑡, in conjunction with a separate model for 𝑦𝑡,
for example, Stoner & Economou (2020) andHöhle and an
der Heiden (2014). We argue that the latter group is better
able to explicitly capture (a) and (b) in the model for 𝑦𝑡,
as well as (c) and (d) in the model for 𝒛𝑡|𝑦𝑡, especially if
the model is sufficiently flexible to capture overdispersion
relative to the multinomial—like the GDM. Emphasiz-
ing that the predictand of interest is the total 𝑦𝑡, we note
that the Bayesian GDM framework produces the predic-
tive distribution 𝑝(𝑦

(unseen)
𝑡 |𝑦(obs)

𝑡 , 𝒛
(obs)
𝑡 ), thus utilizing

all available information. The ‘marginal’ approaches pre-
dict 𝑦𝑡 indirectly as

∑
𝑑

𝑧𝑡,𝑑, potentially failing to capture
random variability in 𝑦𝑡, due to the absence of an explicit
model for 𝑦𝑡.
In Section 4.5, we apply and compare predictive per-

formance of models based on (i) our GDM approach, (ii)
the method in Bastos et al. (2019), and (iii) the method
in McGough et al. (2020) to UK COVID-19 mortality data.
In our opinion, these are the three main contenders (in
terms of flexibility and practical feasibility) for operational
COVID-19 delay correction.

3 MODELING FRAMEWORK

Extending the GDM framework in Stoner & Economou
(2020) to include a spatial dimension 𝑠 ∈ 𝑆 (e.g., dis-
tricts, regions, countries) results in the following model
formulation:

𝑦𝑡,𝑠 ∣ 𝜆𝑡,𝑠, 𝜃𝑠 ∼ Negative-binomial(𝜆𝑡,𝑠, 𝜃𝑠);

log(𝜆𝑡,𝑠) = 𝑓(𝑡, 𝑠); (1)

𝒛𝑡,𝑠 ∣ 𝑦𝑡,𝑠, 𝝂𝑡,𝑠, 𝝓𝑡,𝑠 ∼ GDM(𝝂𝑡,𝑠, 𝝓𝑡,𝑠, 𝑦𝑡,𝑠). (2)

Systematic spatio-temporal variability in the total counts
𝑦𝑡,𝑠 is captured by the general function 𝑓(𝑡, 𝑠), which may
include an offset (e.g., population), covariates or random
effects. Variability in the delay mechanism is modeled
by the GDM distribution, a multinomial mixture whose
vector of probabilities has a generalized-Dirichlet distri-
bution (Wong, 1998). The use of the GDM for modeling
the partial counts, instead of the multinomial, affords
a great deal of extra flexibility in accounting for over-
dispersion in the random variability of the reporting delay
(d) which improves nowcasting efforts—and in captur-
ing unusual covariance structures in the partial counts
(Stoner & Economou, 2020). Here, we choose to parame-
terize theGDM in terms of 𝝂𝑡,𝑠 = (𝜈𝑡,𝑠,1, … , 𝜈𝑡,𝑠,𝐷) and𝝓𝑡,𝑠 =

(𝜙𝑡,𝑠,1, … , 𝜙𝑡,𝑠,𝐷). These are respectively the mean and
dispersion parameters of the beta-binomial conditional
models for each partial count:

𝑧𝑡,𝑠,𝑑 ∣ 𝒛𝑡,𝑠,−𝑑, 𝑦𝑡,𝑠, 𝜈𝑡,𝑠,𝑑, 𝜙𝑡,𝑠,𝑑 ∼ Beta-binomial(
𝜈𝑡,𝑠,𝑑, 𝜙𝑡,𝑠,𝑑, 𝑛𝑡,𝑠,𝑑 = 𝑦𝑡,𝑠 −

∑
𝑗<𝑑

𝑧𝑡,𝑠,𝑗

)
. (3)

Parameter 𝜈𝑡,𝑠,𝑑 (the relative mean) is therefore the pro-
portion of the yet-to-be unreported part of 𝑦𝑡,𝑠 which is
expected to be reported at delay 𝑑. In Stoner & Economou
(2020), two options were suggested for modeling the rela-
tive means 𝜈𝑡,𝑠,𝑑. In the first (named the Hazard variant),
they are modeled directly with a logit link, so that:

log

(
𝜈𝑡,𝑠,𝑑

1 − 𝜈𝑡,𝑠,𝑑

)
= 𝑔(𝑡, 𝑠, 𝑑), (4)

for some general function 𝑔(𝑡, 𝑠, 𝑑). In the second (the sur-
vivor variant), amodel is constructed for𝑆𝑡,𝑠,𝑑, the expected
cumulative proportion reported before and including delay
𝑑:

probit(𝑆𝑡,𝑠,𝑑) = 𝑔(𝑡, 𝑠, 𝑑). (5)

The relative means are then easily derived as 𝜈𝑡,𝑠,𝑑 =

(𝑆𝑡,𝑠,𝑑 − 𝑆𝑡,𝑠,𝑑−1)∕(1 − 𝑆𝑡,𝑠,𝑑−1). Stoner & Economou (2020)
argued that it is more intuitive to consider models for
the cumulative proportion of 𝑦𝑡,𝑠 reported by delay 𝑑,
than to consider models for the expected proportion of
𝑦𝑡,𝑠 reported at delay 𝑑 out of those not already reported
by delay 𝑑 − 1, and so advocate for the survivor variant
over the hazard variant. Here, we take a more nuanced
view that both variants have merits. Using the hazard
variant, it is more straightforward to specify flexible mod-
els that capture more complex delay distributions, while
for the survivor variant 𝑔(𝑡, 𝑠, 𝑑) must be monotonically
increasing in 𝑑. This constrains the choice of functions
and may result in less efficient sampling of related param-
eters. Meanwhile, using the survivor variant it is more
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6 STONER et al.

straightforward to specify simple models for the mean
delay distribution, which if appropriate may result inmore
reliable predictive performance. Because we implement
the GDM framework using flexible Markov chain Monte
Carlo (MCMC) software (Section 4.3), it is possible to try
both variants, as well as a variety of choices for 𝑓(𝑡, 𝑠)

and 𝑔(𝑡, 𝑠, 𝑑) (e.g., random walks, autoregressive terms,
Gaussian processes) to capture structured variability in
the total counts (deaths) and the reporting delay. In the
application to COVID-19 mortality data in Section 4, we
opt for a GDM Survivor model where 𝑓(⋅) and 𝑔(⋅) con-
sist of regionally-structured penalized regression splines,
to capture spatio-temporal variability. Later in Section 4.5,
we employ models based on both variants in a rolling
prediction experiment.

4 APPLICATION TO COVID-19
DEATHS

Where testing is not widely available, deaths can be more
reliable for surveillance than case counts, as those who
have died are more likely to have been hospitalized and
therefore tested (Lu et al., 2021). In the UK, for instance,
testing was not available for community cases early on
in the pandemic—reflecting infrastructure limitations
(Iacobucci, 2020)—leading to severe under-reporting. In
subsequent months, community testing was available but
not evenly distributed in space and time. These issues
highlight the importance of COVID-19 deaths as a key
indicator for informing government decision-making
(Seaman et al., 2022).

4.1 Data

Recall from Section 1 that the National Health Service
for England (NHS England) publishes daily count data of
deaths occurring in hospitals in England. These counts
were of patients who had either tested positive for COVID-
19 or where COVID-19 was mentioned on their death
certificate (NHS England, 2021). Focusing on data for an
individual region 𝑠 for the moment, we first assemble
published files into amatrix of counts 𝑧′

𝑡,𝑡′ , where rows cor-
respond to the dates of death 𝑡 and columns correspond
to the dates data are published 𝑡′. This is the same matrix
described in Section 2, from which we can easily derive
the daily ‘announced’ deaths and the daily ‘actual’ deaths.
For modeling, we can organize the columns according to
the reporting delay 𝑑 = 𝑡′ − 𝑡 between the date of death 𝑡

and the data publication dates 𝑡′ (see Table 2 of the Web
Appendix). Recall that data for each 24-h reporting period
are published 1 day after the period ends, meaning that

𝑑 ≥ 1 day. This results in the matrix 𝑧𝑡,𝑑, which can be
combined across regions into a 3D array of counts 𝑧𝑡,𝑠,𝑑.
As with other approaches (e.g., McGough et al. 2020),

the total counts must be assumed fully reported after
a specified delay cut-off, 𝐷max. Resulting predictions of
𝑦𝑡,𝑠 therefore correspond to the number of cases/deaths
reported 𝐷max days after the actual day of death. If only
a low proportion (e.g., < 50% of 𝑦𝑡,𝑠) is reported after the
first 𝐷max delays, nowcasts, and forecasts will not offer
a complete picture of ongoing or upcoming outbreaks to
decision-makers. If 𝐷max is needlessly high, then more
data on totals 𝑦𝑡,𝑠 will be unknown and thus require sam-
pling duringmodel fitting, increasing the complexity of the
model and potentially making the model impractical for
frequent use (e.g., daily). Ideally, 𝐷max is chosen to be suf-
ficiently high that on average most of 𝑦𝑡,𝑠 (e.g., 90%) are
reported. The choice of 𝐷max is therefore very application-
dependent but not daunting, because inmany applications
most of 𝑦𝑡,𝑠 is reported in the first few delays (i.e., 𝑑 < 10),
with less and less reported afterward. For this dataset in
the time period April 2, 2020 to October 28, 2021, 93% of all
deaths reported within 28 days were reported within 7 days
and 97% were reported within 14 days. Here, we opt for
𝐷max = 14 days. If no value of𝐷max is specified, then all 𝑦𝑡,𝑠

are unknown and the model is non-identifiable without
additional information (e.g., informative prior distribu-
tions), similar to the case of correcting under-reporting
(Stoner et al., 2019).

4.2 Nested spline model

Stoner & Economou (2020) presented a model for a time
series of dengue fever data in Rio de Janeiro, Brazil,
where the incidence of the total recorded dengue counts
is modeled by the combination of an intercept term, a
temporal effect, and a seasonal effect: 𝑓(𝑡) = 𝜄 + 𝛼𝑡 + 𝜂𝑡.
The temporal (𝛼𝑡) and seasonal (𝜂𝑡) effects were defined
using penalized cubic splines, and set up using the jagam
function from the mgcv package for the R programming
language (Wood, 2016). This was shown to be a very flex-
ible model in capturing smooth temporal and seasonal
variation, so we also consider it here to describe the time
series of COVID-19 deaths counts for any individual region,
though dropping the seasonal component (as we have only
a few months of data). To capture spatio-temporal vari-
ability, we extend this to include spatially-varying intercept
and temporal effects:

𝑓(𝑡, 𝑠) = 𝜄𝑠 + 𝛿𝑡,𝑠, (6)

with 𝜄𝑠 assigned a non-informative Normal(0, 102) prior
distribution and 𝛿𝑡,𝑠 characterized using penalized cubic
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STONER et al. 7

splines of time for each region, defined by 𝛿𝑡,𝑠 = 𝑿𝑡𝜿
(𝛿)
𝑠 .

Here, 𝑿𝑡 is a model matrix of the basis functions evalu-
ated at each time point, and 𝜿

(𝛿)
𝑠 is a vector of coefficients.

To penalize the splines for over-fitting, the coefficients are
assigned a multivariate-normal prior with mean zero and
precision matrix 𝛀

(𝛿)
𝑠 = 𝜏

(𝛿)
𝑠 𝑴(𝛿). Matrix 𝑴(𝛿) is a known

non-diagonal matrix, scaled by a smoothing (penalty)
parameter 𝜏

(𝛿)
𝑠 (Wood, 2016), so that larger values of 𝜏

(𝛿)
𝑠

result in a smoother 𝛿𝑡,𝑠 for each 𝑠.
For applications with a high spatial resolution (e.g.,

local authorities), incorporatingmore sophisticated spatio-
temporal structures may enable better understanding of
disease spread, allowing resources to be allocated to areas
which are likely to be affected in the near future. Addi-
tionally, when missing information is not solely due to
reporting delays, for example, data loss or national hol-
idays, these structures can allow regions with less data
to borrow information from the others. Here, the regions
are geographically very large, thus we are more concerned
with accounting for similarity in trends between regions—
in both the fatality rate and in the reporting delay over
time—than with explicitly modeling any space–time inter-
actions.
To achieve this, we can re-introduce the temporal effect

𝛼𝑡 and make its (basis function) coefficients the mean of
the coefficients for the regional effects 𝛿𝑡,𝑠, that is,

𝛼𝑡 = 𝑿𝑡𝜿
(𝛼);

𝜿(𝛼) ∼ Multivariate-normal(𝟎, 𝛀(𝛼) = 𝜏(𝛼)𝑴(𝛼));

𝜿
(𝛿)
𝑠 ∼ Multivariate-normal(𝜿(𝛼), 𝛀

(𝛿)
𝑠 ). (7)

The function 𝛼𝑡 therefore captures common temporal
variation across all regions (and so can be interpreted as
the overall trend in the fatality rate for the whole of Eng-
land), while the 𝛿𝑡,𝑠 capture regional deviations from these
overall trends. The parameter 𝜏(𝛼) penalizes the overall
(England) effect for smoothness, while the 𝜏

(𝛿)
𝑠 penalize

the smoothness of the regional deviations from the overall
effect. The main advantage of using this structure is that
𝛼𝑡 can capture temporal covariation between regions. This
hierarchical pooling is akin to random effect (multi-level)
models that effectively utilize properties of the normal (in
this case multivariate normal) distribution, decomposing
variability into individual-level terms centered on overall
terms (Gelman & Hill, 2006).
We adopt the same approach when extending the rela-

tively simple (survivor) model used in Stoner & Economou
(2020) for the expected cumulative proportion reported at
each delay, 𝑔(𝑡, 𝑑) = 𝜓𝑑 + 𝛽𝑡, first to include spatial vari-
ability and second to account for any weekly cycles (see
Figure 2) in the reporting delay:

𝑔(𝑡, 𝑠, 𝑑) = 𝜓𝑠,𝑑 + 𝛽𝑡,𝑠 + 𝛾𝑡,𝑠. (8)

The ‘delay curve’ effects 𝜓𝑠,𝑑 capture the overall shape
of the cumulative proportion reported after each delay
and are independent across regions. They are assigned
first-order random walk prior distributions, that is, 𝜓𝑠,𝑑 ∼

normal(𝜓𝑠,𝑑−1, 102), but truncated such that 𝜓𝑠,𝑑 > 𝜓𝑠,𝑑−1

(since the cumulative proportion should increase with
𝑑). The temporal effects 𝛽𝑡,𝑠 are penalized cubic splines
centered on an overall temporal trend 𝜉𝑡 (as in Equa-
tion (7)). Finally, 𝛾𝑡,𝑠 are independent penalized splines
for each region, with a cyclic (periodic) cubic basis over
the days of the week to account for systematic variabil-
ity such as the ‘weekend-effect’. To summarize, the final
model to be fitted is given by Equations (6) and (8), where
𝛿𝑡,𝑠 and 𝛽𝑡,𝑠 are regional splines centered around overall
national-level splines.

4.3 Prior distributions and
implementation

Prior distributions for other parameters were chosen to
constrain the parameter space to reasonable values (rel-
ative to the data) but without being overly informative:
for the negative-binomial dispersion parameters 𝜃𝑠 we
specified independent Gamma(2,0.02) prior distributions,
where the 95% prior credible interval (CI) [12.1,279] covers
high levels of over-dispersion (e.g., 𝜃𝑠 = 20), while more
extreme levels (e.g., 𝜃𝑠 = 10) are less likely a priori. We
also specified Gamma(2,0.02) priors for the beta-binomial
dispersion parameters 𝜙𝑠,𝑑, following the same reasoning.
Finally, it can be more interpretable to parameterize the
spline precision penalties (e.g., 𝜏

(𝛿)
𝑠 ) as standard-deviation

penalties (i.e., 𝜎
(𝛿)
𝑠 = 1∕

√
𝜏

(𝛿)

𝑠
), so that smaller values for

𝜎
(𝛿)
𝑠 correspond to a stricter penalty. For these, we speci-
fied positive half-normal(0,1) prior distributions, meaning
smoother functions are more likely a priori.
As discussed in Stoner & Economou (2020), instead of

explicitly modeling all available partial counts 𝑧𝑡,𝑠,𝑑, we
can reduce computational complexity by choosing to only
explicitlymodel counts for 𝑑 ≤ 𝐷′

≤ 𝐷max.We achieve this
by only including the conditional beta-binomialmodels for
𝑧𝑡,𝑠,𝑑 up to𝐷′, so that the remainder 𝑟𝑡,𝑠 = 𝑦𝑡,𝑠 −

∑𝐷′

𝑑=1
𝑧𝑡,𝑠,𝑑

is modeled implicitly. The trade-off associated with this
choice is that predictive precision for 𝑦𝑡,𝑠,𝑑 is reduced, but
generally only for past weeks 𝑡 ≤ 𝑡0 − 𝐷′. Hence, selecting
a small 𝐷′ may be considered pragmatic where optimally
precise predictions are not needed far into the past. In this
experiment, we opt for𝐷′ = 6, which we consider sensible
in a situation where optimally precise predictions are not
needed for 6 days or more into the past.
All code was written in the R programming language.

The model was implemented in the nimble package
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8 STONER et al.

(de Valpine et al., 2017), which facilities highly flexible
implementation of Bayesian models using MCMC. We
used the Automated Factor Slice Sampler (AFSS), which
can efficiently sample vectors of highly correlated param-
eters (Tibbits et al., 2014), for regional spline coefficients
and spline penalty parameters, to reduce the number of
MCMC iterations and overall computation time needed
for convergence. We ran eight MCMC chains in paral-
lel, with different randomly generated initial values, for
80K iterations, discarding 60K as burn-in and then thin-
ning by 2. We assessed convergence of the MCMC chains
by computing the univariate potential scale reduction fac-
tor (PSRF) (Brooks & Gelman, 1998) for all unknown
parameters in the model. By convention, starting mul-
tiple chains from different initial values, and obtaining
a PSRF close to or less than 1.05 for a given parameter
is taken to indicate convergence. Here, PSRFs were at
most 1.02 across all parameters. Unless otherwise stated,
point estimates are posterior medians (50% quantiles of
the posterior samples) and 95% posterior credible or pre-
diction intervals are defined by taking the 2.5% and 97.5%
quantiles of the samples. Finally, we computed predic-
tions for the whole of England by summing the regional
predictions.

4.4 Results for January 1, 2021

To illustrate our approach as a tool for real-time decision-
making, we look at estimates and predictions from the
model imagining we are fitting it after 5 pm on January 2,
2021, a point in time where the fatality rate was surging in
muchof England.Weuse only datawhichwouldhave been
available then, meaning that the latest date for which we
have observed some of the total death count is January 1.
In Section 4.5, we then present a rolling prediction exper-
iment to assess nowcasting and forecasting performance
when this model and others are employed systematically
over a period of 15 months.
The left panel of Figure 3 shows the posterior median

splines of time 𝛿𝑡,𝑠 in themean fatality rate 𝜆𝑡,𝑠. The dashed
line shows the overall effect for England, 𝛼𝑡. All regions
show a peak around the first week of April, before decreas-
ing steadily until reaching apparent minimums around
August. Following this, the fatality rate increases sharply
in all regions, with somenonlinearity closer to the data cut-
off date (January 1). Meanwhile, the right panel of Figure 3
shows the posterior median temporal splines in the pro-
bit model for the cumulative proportion reported. Here,
higher values mean faster reporting on average. Reporting
performance appears to have reached a high point around
May 2020, before deteriorating in all regions up to August.
Reporting performance then improves in most regions,

before declining again up to the data cutoff. A simple rela-
tionship between reporting performance and the fatality
rate is not immediately obvious when comparing the two.
Combining the cumulative delay effects 𝜓𝑠,𝑑 and the

weekly cycle splines 𝛾𝑡,𝑠, Figure 4 shows the posterior
median expected proportion reported in the first delay (𝑑 =

1), left, and in the second delay (𝑑 = 2), right, by date of
death. Recall that here the first delay means deaths cap-
tured by the same 24 h reporting period they occurred in
and published the following day at 5 pm, and the second
delay means deaths captured within the next reporting
period. The two panels show clear evidence of “weekend
effects” for most regions, with a noticeably lower propor-
tion of deaths occurring toward the end of the week being
captured by the first two delayed counts. In London, for
instance, more than twice as many deaths occurring on
Wednesday are reported in the first delay interval, on aver-
age, compared to deaths occurring on Saturday. The 95%
CIs for the weekly cycle splines 𝛾𝑡,𝑠 on Wednesday and
Saturday do not overlap for any region except the south-
west, where it is instead the Monday–Saturday difference
in reporting which is significant, evidencing the strength
of the weekend effect across England.
Finally, Figure 5 shows nowcasting and forecasting pre-

dictions based on data available after 5 pm on January
2, 2021. With hindsight, we can compare predictions to
the now fully reported counts to assess performance, plot-
ted as points. Generally, the nowcasting predictions are
good; forecasted trends are broadly in line with the data,
and uncertainty reflects potential changes in the trend.
The next subsection details result from employing this and
other approaches repeatedly over a 15 month period.

4.5 Rolling prediction experiment

We now aim to assess whether our theoretical argu-
ments in favor of the GDM over competing approaches
(Section 2.1) translate into meaningful improvements in
prediction performance when systematically applied to
real COVID-19 data in an operational setting. To investi-
gate this, we emulate use of six competing models every
3 days for 15 months (meaning that each model was fitted
153 times). Full details for each competitor model are pro-
vided in Web Appendix D, but they can be summarized as
follows:

(1) GDM survivor: The GDM survivor model described
in Section 4.2.

(2) GDM hazard: An alternative version of the above
model with a GDM hazard formula-
tion for the mean reporting propor-
tions (as described by Equation (4)),
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STONER et al. 9

F IGURE 3 Posterior median spline effects of time on the daily COVID-19 fatality rate (𝛿𝑡,𝑠 , left) and the cumulative proportion reported
(𝛽𝑡,𝑠 , right), for each region. The dashed lines show the overall effects for England, 𝛼𝑡 (left) and 𝜉𝑡 (right). This figure appears in color in the
electronic version of this paper, and any mention of color refers to that version

F IGURE 4 Posterior median (with 95% credible intervals) expected proportion of COVID-19 deaths reported in the 1st delay (d = 1), left,
and in the 2nd delay (d = 2), right, as an overall average from the 4th of April 2020 until the 1st of January 2021. This figure appears in color in
the electronic version of this article, and any mention of color refers to that version.

including different splines of time
and weekly cycles for each delay.

(3) NB survivor: A negative-binomial model for the
delayed counts 𝑧, where the means
of 𝑧 are defined by combining exactly
the same spline models for the total
count and for the cumulative report-
ing proportions as from the GDM
Survivor model in Section 4.2.

(4) INLA: An appropriately modified variant
of the negative-binomial model for
𝑧 in Bastos et al. (2019). Notably,
we replaced the seasonal compo-
nent with different weekly cycles for
each delay, and we explicitly mod-
eled the remainder term to reduce
uncertainty.

(5) NobBS: A model for the delayed counts 𝑧

based on the framework proposed in

McGough et al. (2020) and imple-
mented using the NobBS package for
R.

(6) NobBS-14: A second model based on McGough
et al. (2020), where a shorter moving
window of 14 days is specified to cap-
ture systematic temporal variation in
the delay.

So that the comparison can focus primarily on the per-
formance of each modeling framework, rather than any
specific spatio-temporal structures, all models are imple-
mented as independent time series models for each of the
seven regions (i.e., nested spline structures are not used in
models 1–3). The reason for testing the NB survivor model
is to shed some light on the degree to which any differ-
ences in performance between the GDM models and the
other approaches (i.e., INLA and NobBS) are attributable
solely to the use of the full GDM conditional model to
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10 STONER et al.

F IGURE 5 Posterior median nowcasting and forecasting predictions of the total daily deaths 𝑦𝑡,𝑠 (lines) with up to 95% prediction
intervals (shaded areas) for each region, using only data available on January 2 (vertical lines). Points show the total daily deaths reported
within 14 days of occurrence (only available with hindsight). This figure appears in color in the electronic version of this paper, and any
mention of color refers to that version

appropriately capture variability in the reporting delay.
The NB Survivor model is fitted using MCMC because
it has a nonlinear mean structure, meaning computation
time is comparable to the GDM. For this experiment, we
define the “cutoff” date 𝐶 as the day 𝑡 = 𝐶 for which we
have only observed the first (𝑑 = 1) portion 𝑧𝐶,𝑠,1 of deaths
𝑦𝐶,𝑠 occurring on day 𝐶. August 1, 2020 is the first cutoff
date, while October 31, 2021 is the last. The experiment
procedure is as follows:

Step 1: Select an initial data cutoff date 𝐶.
Step 2: Hold back all partial counts which would have

been unavailable then.
Step 3: Fit the models, then predict any partially observed

deaths and forecast 7 days ahead.
Step 4: Set the cutoff date 𝐶 = 𝐶 + 1 and repeat steps 2–4.

Figure 6 shows predictions from the GDM survivor
model in the East of England and Northwest regions, for
seven example cutoff dates spaced over part of the experi-
ment period. The figure shows two distinctly shaped time
series of daily deaths, with two peaks in the Northwest and
one in the East of England. For most of the cutoff dates,
the predictions for both regions are satisfying in that the
nowcasts (predictions left of the vertical lines) are very
close to the true values (the points), while the forecasts
generally track the future trends well or otherwise capture

them in the 95% prediction intervals. There are naturally
some less satisfactory sets of predictions, such as in the
Northwest when the cutoff date was December 26 (pink).
Here, the predictions appear to carry on the previous slight
downward trend, while the points trend upward.
We arranged predictions by the difference, in days,

between the date of death each prediction is made for, and
the corresponding data cutoff date (𝑡 − 𝐶)—termed here
the “prediction time difference” (PTD). Differences greater
than 0 correspond to dates, where none of the deaths were
observed yet (i.e., forecasts). Meanwhile, a difference of 0
days or less corresponds to predictions made when at least
one part of the total deaths has been observed. Studying
prediction performance across the whole range of PTDs
is interesting as it shows how the different models cope
with different levels of completeness in the available data.
Inevitably, though, PTDs close to 0 are most relevant to
the goal of correcting reporting delays to provide more
accurate and timely disease surveillance, without relying
on the ability of specific models to extrapolate into the
future appropriately.
We summarize prediction performance by calculating

several metrics for each model. The first is the mean aver-
age error (MAE) of the posteriormedian predicted number
of deaths occurring on each day, and the second is the
root-mean squared error (RMSE). Both of these quan-
tify how accurate point estimates are, with the RMSE
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STONER et al. 11

F IGURE 6 Posterior median nowcasting and forecasting predictions of the total daily deaths 𝑦𝑡,𝑠 (lines) with up to 95% prediction
intervals (shaded areas) for the East of England (top) and Northwest (bottom) regions, from the GDM survivor model. Predictions are shown
for seven evenly-spaced data cutoff dates, where the corresponding cutoff dates are plotted as vertical lines. Points show the total daily deaths
reported within 14 days of occurrence. This figure appears in color in the electronic version of this paper, and any mention of color refers to
that version

being more sensitive to larger errors. The third is the
bias, defined as the mean difference between the median
predicted deaths and the observed deaths, which quanti-
fies any systematic over- or under-prediction. The fourth
is the mean 95% prediction interval (PI) width for the
total number of deaths on each day, which quantifies
how precise/uncertain predictions are. The fifth metric is
the 95% PI coverage, which checks whether uncertainty
is adequately quantified by the model. Here, we use the
word “coverage” to describe the proportion of data points
containedwithin their corresponding 95% prediction inter-
vals. Coverage values much less than 0.95 might suggest
too few data points are captured by the 95% intervals
and the model is over-confident. Conversely, higher cover-
age values could suggest the predictions display excessive
uncertainty. Finally, we computed indicative average daily
computation times (see Web Appendix D) to compare the
relative practicality of each approach for daily operational
use. The GDM survivor approach took 75 min per day, the
GDM hazard took 68 min, the NB survivor took 55 min,
INLA took 2 min, NobBS took 7 min, and NoBBS-14 took
1 min.
We computed these metrics by taking predictions from

all predetermined cutoff dates, separately for each PTD.

Figure 7 shows the mean average error (left), mean 95%
prediction interval width (center), and 95% prediction
interval coverage (right) for each model, for PTDs rang-
ing from 4−days up to +4 days. For all models, we can
see more accurate and less uncertain predictions for neg-
ative differences, because the total counts (deaths) have
been more fully observed the further one predicts into the
past (and vice versa for forecasting). Meanwhile, if the
models are quantifying predictive uncertainty reliably, we
should expect high coverage values (>90%) regardless of
when we are making predictions for. The coverage val-
ues appear quite consistent for all models except the two
based on theNobBSmethod (McGough et al., 2020).When
nowcasting and forecasting, the two GDM models offer
the lowest MAEs overall, with the NB survivor model and
INLA model offering only slightly higher MAEs, and with
the highest MAEs coming from the NobBS models. We
believe that theweaker performance from theNobBSmod-
els in this experiment could largely be because they did not
include a weekly cycle in the reporting delay. We believe
this because the INLA model had similarly high MAEs
before we included different weekly cycles for each delay.
Meanwhile, Table 1 presents the full range of metrics,

separately for each region of England andoverall, for a PTD
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12 STONER et al.

F IGURE 7 Mean average errors (left), mean 95% prediction interval widths (center), and 95% prediction interval coverage values (right)
for daily COVID-19 deaths in the rolling prediction experiment. Performance metrics are arranged on the x-axis by prediction time difference
(PTD), from −4 days up to +4 days, and the different models used to generate predictions are represented by different colors and shapes. This
figure appears in color in the electronic version of this paper, and any mention of color refers to that version

of 0 days (nowcasting). Here, theMAE values demonstrate
that point estimates from an appropriately designed INLA
model (Bastos et al., 2019) can potentially match or some-
times outperform the nowcasting accuracy of those from
a more computationally expensive GDMmodel. However,
the mean prediction interval width values from the GDM
models show a clear improvement in prediction preci-
sion compared to the INLA and NB survivor, which both
assume that the parts of the total count reported at each
delay are conditionally independent. Table 1 illustrates
that GDM leads in prediction interval widths are univer-
sal across the seven regions studied, while Figure 7 shows
the leads are maintained when forecasting. Considering
that the NB survivor and GDM survivor share identical
spline models for the mean total deaths and cumulative
proportion reported after each delay, the results from this
experiment suggest that the hierarchical GDM approach
is more effective for quantifying prediction uncertainty in
this application.
Similar performance between the two versions of the

GDM is reassuring but also interesting, because the GDM
hazard version (Web Appendix D) had distinct splines
of time and weekly cycles for each delay modeled (𝑑 =

1, … , 𝑑 = 𝐷), meaning we might expect it to better capture
complexity in the weekly cycle or changes over time in
the reporting delay than the simpler GDM survivor. How-
ever, in practice we often see those splines shrinking to 0
for higher delays, as the relative proportions 𝜈𝑡,𝑠,𝑑 become
less meaningful.

5 DISCUSSION

The COVID-19 pandemic has highlighted the need to opti-
mally correct delays in disease data for timely mitigation

actions. Here, we have critically reviewed the three main-
stream approaches to correcting delays, and quantified
their respective performance when applied to COVID-
19 mortality data. We have argued that our multivariate
approach based on the GDM is theoretically the most
advanced in explicitly capturing the different sources of
variability in the data. In particular, the separation of
systematic variability in the delayed reporting from the sys-
tematic variability in the total counts allows novel insights
into the structures underpinning each type of variability,
for example, weekly cycles in the reporting of COVID-19.
These insights can inform future improvements to report-
ing timeliness and more reliable conclusions about the
progress of the pandemic. In our simulation experiment
(Web Appendix C), we demonstrated that the GDM can
appropriately separate and capture the effect of covariates
imitating real-world drivers of disease (e.g., vaccination,
proliferation of variants) and reporting delays (e.g., staff
absence).
Furthermore, of the three current approaches, the GDM

is the only one that readily provides predictions of total
counts 𝑦 conditional upon all available data, that is his-
toric 𝑦 and partial counts 𝒛. Indeed, in our realistic rolling
COVID-19 prediction experiment comparing two versions
of the GDM against four other models representing the
current best-practice in addressing delayed reporting, the
GDM approach was the most optimal in terms of nowcast-
ing accuracy and bias, while demonstrating a clear lead in
prediction precision. When nowcasting, the GDM offered
a 5%–25% smaller overall RMSE compared to competitors
and around a 23%–46% smaller overall mean 95% predic-
tion interval width, while still offering coverage values
above 0.95. The GDM leads in prediction precision were
consistent across the seven regions of England and were
maintained when forecasting.
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STONER et al. 13

TABLE 1 Nowcasting performance metrics of competing models in the COVID-19 rolling prediction experiment: mean average error
(MAE); root-mean squared error (RMSE), bias, mean 95% prediction interval width (PIW), 95% prediction interval coverage (coverage)

East of England London
MAE RMSE Bias PIW Coverage MAE RMSE Bias PIW Coverage

GDM-S 2.8 4.6 −0.4 16 0.97 GDM-S 4.6 9 −0.2 20 0.95
GDM-H 3.2 5.9 0.1 17 0.98 INLA 4.8 9.9 -0.6 25 0.97
NB-S 3.2 5.3 −0.4 21 0.98 NB-S 4.8 9.7 −0.2 26 0.96
NobBS-14 4 7.5 −0.8 33 0.99 GDM-H 5.1 12 0.4 20 0.94
INLA 4 7.7 −1.1 21 0.97 NobBS−14 5.4 12 −0.6 34 0.98
NobBS 5.1 9.4 −2.4 25 0.93 NobBS 5.4 11 −1.7 32 0.96

Midlands Northeast and Yorkshire
MAE RMSE Bias PIW Coverage MAE RMSE Bias PIW Coverage

INLA 4.4 7 −0.3 32 0.99 GDM-S 3.6 5.5 0.1 20 0.97
GDM-H 4.5 7.4 0.5 24 0.99 GDM-H 3.6 5.6 0 19 0.97
GDM-S 4.5 7.4 0.3 24 0.98 NB-S 3.8 6.1 −0.6 29 1
NB-S 4.6 7.8 −0.3 33 0.99 INLA 3.9 5.8 −0.6 24 0.97
NobBS-14 4.9 7.6 −0.3 40 0.99 NobBS-14 4 6.2 −0.5 38 0.99
NobBS 6.2 11 −2.4 39 0.96 NobBS 4.9 8.1 −2 31 0.97

Northwest Southeast
MAE RMSE Bias PIW Coverage MAE RMSE Bias PIW Coverage

GDM-H 3.7 5.6 0.3 20 0.99 INLA 3.3 6.4 −0.2 24 0.99
INLA 3.8 5.9 −0.5 26 1 GDM-H 3.4 6.8 0.4 17 0.99
GDM-S 4 6.5 0.5 21 0.97 GDM-S 3.5 6.5 0.7 18 0.98
NobBS 4.8 8 −0.9 36 0.99 NB-S 3.7 7.5 0.5 23 0.99
NB-S 4.8 8 0 32 0.99 NobBS 3.7 6.5 −1.3 29 0.94
NobBS-14 5 8.4 −0.4 40 1 NobBS-14 3.8 8.5 −0.1 32 0.99

Southwest Overall
MAE RMSE Bias PIW Coverage MAE RMSE Bias PIW Coverage

GDM-H 1.7 3.1 −0.1 10 0.99 GDM-S 3.5 6.4 0.1 18 0.97
GDM-S 1.8 3.3 −0.1 10 0.98 GDM-H 3.6 7 0.2 18 0.98
INLA 1.8 3.1 −0.3 12 0.99 INLA 3.7 6.8 −0.5 23 0.98
NB-S 1.8 3.6 −0.1 12 0.99 NB-S 3.8 7.1 −0.1 25 0.99
NobBS-14 2.2 3.9 −0.2 20 0.99 NobBS-14 4.2 8 −0.4 34 0.99
NobBS 3 5 −1.7 12 0.88 NobBS 4.7 8.6 −1.8 29 0.95

Note: For each region, models are arranged in order of ascendingMAEs. GDM-Smeans GDM survivor, GDM-Hmeans GDMhazard, andNB-Smeans NB survivor.

The GDM framework can accommodate a wide vari-
ety of spatial and spatio-temporal structures in both the
model for the total reported counts, and in the model
for the delay mechanism. Within this setting, we have
developed models based on nested spline structures, to
capture similarity of trends between regions. However, for
higher spatial resolutions, more sophisticated spatial or
spatio-temporal structures will be necessary, for example,
to potentially capture the spread of a disease over time.
Moreover, in cases where some regions have a lot of miss-
ing data, models with explicit spatial structure may allow
for more precise predictions in those regions. Recognizing
these points, further development of methods for appli-
cations needing more complex spatio-temporal structures

should be a main focus of future work. Finally, appli-
cations intended for operational use might also benefit
from more complicated mean delay models with delay–
time interactions, which are of course possible within the
framework proposed here too, for example, using tensor
product smooths (Wood, 2006).
Each GDM model of the COVID-19 deaths took just

over 1 h to compile and run (using a moving data win-
dow width of 70 days, see Web Appendix E for details).
Though our approach is more computationally intensive
than competitors, we believe that the run time is reason-
able in a daily operational setting, allowing for potential
errors and any need to run the MCMC for more itera-
tions for convergence. Indeed, a model based on Stoner &

 15410420, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1111/biom

.13810 by U
niversity O

f G
lasgow

, W
iley O

nline L
ibrary on [22/02/2023]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



14 STONER et al.

Economou (2020) for nowcasting daily COVID-19 deaths
by age and region in England (Seaman et al., 2022) is
used operationally, providing information to the UK Sci-
entific Pandemic Influenza Group on Modelling (SPI-M)
on aweekly basis (MRCBiostatistics Unit, 2020). However,
bigger data and model complexity (e.g., COVID-19 data at
hospital trust level) could very easily result in run times in
the order of days, so there is a need for either a more effi-
cient implementation of the GDM or a new approach alto-
gether which offers comparable predictive performance to
the GDM and improved computational feasibility.
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